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Peak flow events can lead to flooding which can have negative impacts on human life and
ecosystem services. Therefore, accurate forecasting of such peak flows is important.
Physically-based process models are commonly used to simulate water flow, but they
often under-predict peak events (i.e., are conditionally biased), undermining their suitability
for use in flood forecasting. In this research, we exploredmethods to increase the accuracy
of peak flow simulations from a process-based model by combining the model’s output
with: a) a semi-parametric conditional extreme model and b) an extreme learning machine
model. The proposed 3-model hybrid approach was evaluated using fine temporal
resolution water flow data from a sub-catchment of the North Wyke Farm Platform, a
grassland research station in south-west England, United Kingdom. The hybrid model was
assessed objectively against its simpler constituent models using a jackknife evaluation
procedure with several error and agreement indices. The proposed hybrid approach was
better able to capture the dynamics of the flow process and, thereby, increase prediction
accuracy of the peak flow events.

Keywords: peak flow, conditional extreme model, extreme learning machine, process-based model, hybrid,
grassland agriculture

INTRODUCTION

In the United Kingdom, the estimated yearly cost of damages caused by floods is over £1 billion
(Collet et al., 2017). Accurate and reliable forecasting of extreme flow events is crucial for planning
and implementing measures to mitigate their effects and so protect lives, properties and services. The
magnitude and frequency of floods is likely to increase as a result of climate change (Kundzewicz
et al., 2007; Bates et al., 2008; Field et al., 2012) and this could push ecosystems beyond the threshold
of normal disturbance (Thibault and Brown, 2008). Increased runoff and flooding intensify erosion
and result in higher sediment and nutrient losses that can lead to soil degradation and high
concentrations of pollutants in water courses (Bouraoui et al., 2004).

Over recent decades, different approaches have been proposed for more accurate modeling and
forecasting of peak flows with reduced uncertainty. The two main methods of modeling hydrological
variables are physically-based models and statistical models. However, there is an increasing trend
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toward combining these approaches in hybrid models. One of the
most common ways to do this is to post-process statistically an
ensemble of forecasts from process-based models (e.g., Cloke and
Pappenberger, 2009; Li et al., 2017). Bayesian methods using
climate indices (Bradley et al., 2015), stochastic data-driven
methods on wavelet decomposed series (Quilty et al., 2019),
Bayesian model averaging (Raftery et al., 2005), extended
logistic regression (Roulin and Vannitsem, 2011), quantile
regression (López López et al., 2014), bias correction (Li et al.,
2019) and nearest neighbor resampling for uncertainty
estimation (Sikorska et al., 2015) are among the many post-
processing techniques described in the literature. Examples of
combining a process-based model with more than one statistical
or machine learning model can be found in Bogner et al. (2017),
Papacharalampous et al. (2019) and Tyralis et al. (2019). The
usefulness of combining deterministic and stochastic models
(Box and Jenkins, 1976) in real-time flood forecasting was
reported by Toth et al. (1999), while the performance of
various post-processing techniques according to the level of flow
was investigated in Bogner et al. (2016) and Papacharalampous et al.
(2019). Hybrid methods for water flow (streamflow) forecasting
also include the combination of classical statistical methods with
more data-driven, machine-learning methods such as artificial
neural networks (ANNs) (Yaseen et al., 2016; Chen et al., 2018;
Zhou et al., 2018), discrete wavelet transforms and support vector
machines (Kisi and Cimen, 2011), and coupling ANNs with
autoregressive techniques (Fathian et al., 2019). The effect of
catchment characteristics on the predictive performance of two
different statistical models was discussed in Dogulu et al. (2015).

Hydrological process-based models (PBMs) are traditionally
used for streamflow modeling and forecasting, where under-
prediction of peak flows is a common issue (e.g., Lane et al.,
2019; Wijayarathne and Coulibaly, 2020). The PBM performance
can suffer from uncertainty due to both random and systematic
errors. Both random and systematic errors can arise in the
estimated model parameters and measured input variables.
However, of particular interest is a type of systematic error (or
bias) called conditional bias that depends on flow magnitude.
That is, the structure and parameters of the model can generalize
the outputs leading to conditional bias, specifically under-
prediction of large values and over-prediction of small values;
an effect similar in nature to that of having a support that is larger
than ideal. Alternatively, data-driven methods may be used,
especially when the initial conditions and the parameters of
the physical model are difficult to estimate or when the length
and/or quality of the data are insufficient for a reliable model
calibration.

In this research, we explored combining statistical and machine
learning techniques with flow simulations obtained from a PBM to
increase the accuracy of forecasting peak flow events. Specifically, we
considered the semi-parametric, conditional extreme model (CEM)
of Heffernan and Tawn (2004) (a statistical model) and the extreme
learning machine (ELM) of Huang et al. (2006) (a machine learning
model). The proposed approach is considered a generic solution for
enhancing any given hydrological PBM.

The CEM is appropriate for describing the probability that one
or multiple variables are extreme and has been applied widely for

flood risk analysis (Mendes and Pericchi, 2009; Lamb et al., 2010;
Keef et al., 2013; Zheng et al., 2014). A significant property of the
CEM is that it is flexible in modeling different dependence
structures, such as the dependence of different variables at the
same site or the dependence of the same variable at different sites.
A key assumption of the application of the CEM is that the
extremes of each variable must be independent and,
consequently, cannot be used to model peak flow events that
have a duration of several consecutive days and, therefore, exhibit
temporal dependence. For this reason, the maximum flow during
each event was modeled using the CEMwhile all other peaks were
modeled using the ELM (and, thus, a 3-model rather than a 2-
model hybrid is proposed).

The ELM model is ANN-based and has been used in various
areas of water resources engineering, with a recent focus on water
flow (see Yaseen et al., 2019 for an extensive review). In this context,
it has been shown to increase accuracy and reduce computational
time compared to commonly used benchmark models (Lima et al.,
2015) and to other ANN models (Deo and Şahin, 2016).

The resultant 3-model hybrid was evaluated empirically using
measured flow data from a sub-catchment of the North Wyke
Farm Platform, a grassland research facility in south-west
England (Orr et al., 2016). To our knowledge, no study to-
date has used the CEM and the ELM to improve the
simulation of peak flow events obtained from a PBM, or in
which they are combined. The proposed methodology builds
on the modeled dependence structure between measured and
PBM-simulated peak flow events and uses this relationship to
obtain a more accurate representation of these events.

METHODS

This section presents a general description of the CEM
(Heffernan and Tawn, 2004) and the ELM (Huang et al.,
2006) and explains how they can be applied to peak flow
events obtained from a chosen PBM (described in Choice of
Process-Based Model) in a hybrid context. The flow threshold,
above which the simulated and the observed data are
considered as possible peaks, is determined based on
Generalized Pareto Distribution (GPD) stability plots of the
PBM simulated values (Curceac et al., 2020). The performance
of the proposed hybrid approach is evaluated using a jackknife
procedure and by calculating several error and agreement
indices.

Generalized Pareto Distribution
We characterize peak flow events by fitting the GP distribution to
the extreme flow above a certain threshold. The cumulative
distribution function (CDF) of the iid excesses over an
appropriately high threshold u for the GPD is:

G(x) � Pr(X − u< x|X > u) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 − (1 + ξ(x − u)

σ
)−1

ξ

, ξ ≠ 0

1 − e(−x−u
σ ), ξ � 0
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where x, for this study, is the peak flow in mm d−1, u is the
location parameter, σ is the scale parameter and ξ is the shape
parameter. The value of the shape parameter defines the type of
distribution from the GPD family; that is, ξ � 0 refers to the
exponential distribution, the distribution has an upper bound of
u − σ/ξ when ξ < 0 and has no upper limit when ξ ≥ 0.

The first step in modeling the exceedances is to select a
threshold over which peaks in flow are considered extreme.
The next step is to ensure that the peaks above it are
independent (so as to conform with iid) and estimate the scale
and shape parameters. The selection of the threshold is a crucial
step in GPD extreme value analysis and is basically a trade-off
between bias (low threshold-large sample size) and variance (high
threshold-small sample size).

The flow threshold in this research was selected based on the
simulated flow from the study’s PBM using an automated
threshold stability method (Curceac et al., 2020) (Generalized
Pareto Distribution Threshold Selection) and the same threshold
was used for the measured flow data. The GP model was fitted
initially independently to the simulated and observed peak flows
and the conditional dependence structure between them was
estimated using the CEM (Conditional Extreme Model).

Generalized Pareto Distribution Threshold
Selection
If the GPD is an appropriate model for the excesses above a
threshold u, then for all larger thresholds up > u it will also be
suitable with the shape parameter being relatively constant
(Coles, 2001; Scarrott and MacDonald, 2012). That is, it is the
approximately linear and horizontal segment on a plot of shape
parameter against threshold. This does not apply for the scale
parameter σup , which changes with the threshold
σup � σu + ξ(up − u). However, the modified scale parameter σ1 �
σup − ξu remains relatively constant. Therefore, following Curceac
et al. (2020), we fitted a cubic smoothing spline to this plot and
calculated the rate of change at each of m consecutive steps. The
cubic smoothing spline estimate f̂ of a function f in the model
Yi � f (xi) + ϵi, is defined as the minimizer of∑n
i�1

{Yi − f̂ (xi)}2+λ∫ 
f̂
’’(x)2dx , where λ is the smoothing

parameter. The minimum change rate locates the part of the
plot where the shape and the modified scale parameters reach a
plateau.

Conditional Extreme Model
For a continuous d-dimensional vector variable
X � (X1, . . . , Xd) with unknown distribution function F(x),
the CEM describes the distribution function of X when it is
extreme in at least one component. In other words, it describes
the conditional distribution of X−i|Xi > uXi, where X−i is the vector
variable X without the component Xi.

After estimating the marginal distribution of each
Xi, i � 1, . . . , d (Generalized Pareto Distribution), and before
estimating the extremal dependence, the variables are
transformed so that they follow the same distribution. This
process is called marginal standardization and is used to

distinguish the marginal behavior from the dependence
structure (Drees and Janßen, 2017). The data can be
transformed to either Gumbel margins to describe the positive
dependence or to a Laplace marginal distribution which, due to its
exponential tail and symmetry, captures both positive and
negative dependence (Keef et al., 2013). The initial vector
variable X is, therefore, transformed as:

f (x) � { log{2FXi(Xi)}, Xi < F−1
Xi
(0.5)

− log{2[1 − 2FXi(Xi)]}, Xi ≥ F−1
Xi
(0.5)

where F−1
Xi

is the inverse cumulative distribution function of Xi.
The resulting vector variable Y � (Y1, . . . ,Yd), therefore, has
Laplace margins with:

Pr(Yi ≤ y) � FYi(y) � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
exp(y), y < 0

1 − 1
2
exp(−y), y ≥ 0

The dependence model considers the asymptotics of the
conditional distribution Pr(Y−i ≤ y−i

∣∣∣∣Yi � yi), where for
yi →∞, the increase of y−i must result in non-degenerate
margins. For this, assume the normalizing functions ai(yi) and
bi(yi), that have the same dimension as Y−i and for which:

lim
yi →∞

[Pr{Y−i − ai(yi)
bi(yi) ≤ zi

∣∣∣∣∣∣∣∣Yi � yi} ] � Gi(zi)

where the limit distribution Gi has non-degenerate marginals Gj|i
for all j≠ i. Therefore, the random variable Z|i � Y−i−a|i(yi)

b|i(yi) is

independent of Yi > uYi and has distribution function G|i. The
location a|i(yi) and scale b|i(yi) functions are given by ai(yi) �
α|iyi and b|i(yi) � yiβi where the vector constants α|i and β|i take
values of αj|i ∈ [−1, 1] and βj|i ∈ (−∞, 1), respectively, for all j≠ i.
Finally, the dependence structure is described by the multivariate
semi-parametric regression model:

Y−i � α|iyi + yi
β|i Z|i for Yi � yi > uYi, i � 1, . . . , d.

The above equation expresses the behavior of the vector variable
Y , excluding the element of Yi when it takes a large value. The
dependence between the variables Yi and Yj is explained by the
constant αji. Positive values indicate a positive relationship. The
constant βji incorporates the changes in the variability of Yj as Yi

increases. Details on estimating the dependence parameters are
given in Heffernan and Tawn (2004) and Keef et al. (2013).

To obtain randomly generated samples of X|Xi > uXi, we
adopted the following procedure. Initially, samples of Yi from
the Laplace distribution are simulated conditional on it exceeding
its cumulative probability corresponding to FXi(uXi). Similarly,
samples of random observations of Zi are drawn from its estimated
distribution Ĝi. Then, using the semi-parametric model, we obtain

Y−i � α̂iyi + yîβiZi and transform the vector Y � (Y−i,Yi) to the
originally distributed X � (X−i,Xi) by the inverse transformation.

Extreme Learning Machine
The ELM is a data-driven method developed by Huang et al.
(2006) that has been used effectively for streamflow forecasting
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(e.g., Deo and Şahin, 2016; Yaseen et al., 2016). Compared to
other common ANN techniques, it has the advantages of fast
learning speed and is characterized by improved performance in
terms of commonly encountered problems, such as over-fitting
and the effect of local minima. The model has a three-layer
structure with one input, one hidden and a single output layer and
can be expressed mathematically as:

∑Λ
i�1

Bihi(mi · xt + ni) � zt

where Λ is the total number of nodes, B are the estimated weights
between the nodes of the hidden and output layers, and h(m, n, x)
is the activation function with weightsmi ∈ Rd , biases ni ∈ R and
the explanatory variable of the training dataset xt ∈ Rd . Here, i
and d denote the index of a specific hidden neuron (HN) and the
number of input neurons, respectively, and Z is the model output.

Initially, the ELM model selects the input weights and hidden
layer biases at random, and then calculates the output weights
using a least squares method instead of adjusting them iteratively
(see Chen et al., 2018 for details). Once the output weights B̂ have
been estimated, forecasts are obtained by substituting the training
dataset xt with the testing one. The number of HNs in the hidden
layer and the activation function are the only parameters that
need to be pre-defined. The optimal number of HNs is a trade-off
between generalization ability and network complexity. A highly
complex model with too many HNs can lead to over-fitting,
whereas a decreased number of HNs can result in a model that is
too simple to capture non-linear relationships. The optimal
number of HNs is problem-dependent and is frequently
determined empirically (Huang et al., 2006; Sun et al., 2008).
In this research, the number of HNs was increased iteratively
from 1 to 100 and the network structure that provided the
smallest RMSE of the training procedure was selected.

Application and Evaluation
A jackknife evaluation procedure (Miller, 1964; Shao and Tu,
1995) was applied to assess the performance of the proposed
hybrid approach. It is a leave-one-out resampling technique
without random replacement where one observation or a fixed
subset of the dataset is omitted iteratively. The main strengths of
the jackknife method are that model accuracy is independent of
the calibration data and the loss in the sample data information is
minimal (McCuen, 2005).

As stated previously, peak events are defined as flow above a
certain threshold of the PBM simulated data. At each iteration, one
peak flow event (measured and simulated) was left out of the
dataset. This event constitutes the testing dataset and the rest of the
data the training dataset, and the CEM and the ELM were fitted to
the latter. The dependence behavior of measured peaks conditional
on the PBM simulated, above a certain threshold, was configured
by the CEM. From the fitted CEM, 50,000 stochastic simulations
were obtained for both the observed Xj (pseudo-observations) and
the PBM simulated Xi variables (pseudo-PBM simulated). From
the total set of random simulations of the conditioning variable Xi,
the ones with the smallest difference (≤0.1) from the maximum
PBM simulated peak of the testing sample, which was left out of the

training dataset, were considered. As CEM provides pairs of
simulated data according to their dependence structure, the
corresponding random simulations of Xj (pseudo-observations)
were then obtained. By calculating their median value, a forecast of
the maximum flow during an event was obtained and compared to
the maximum measured and PBM simulated peak excess of the
testing dataset.

The ELM model was trained using PBM simulated data as
inputs andmeasured data as outputs of the training dataset. Based
on the trained ELM model, flow forecasts were then obtained
using the PBM simulated flow of the testing sample as
explanatory variable, except for the maximum. Consequently,
peaks smaller than the cluster maxima were forecasted by the
ELM and the CEM was used only to forecast maximum flows.
The application of the ELMmodel alone on all the peaks was also
performed in experimentation and its performance compared to
the CEM for the maximum flows. At the next iteration, a different
peak flow event was omitted from the training dataset for testing
purposes and the same process was repeated for all peaks.

This procedure was performed initially for peaks above the
threshold that corresponds to the start of the region of stability of
shape and modified scale parameters. However, in order to
investigate the effect of threshold selection on the proposed
methodology, the above-mentioned procedure was repeated
for different thresholds. The considered thresholds were set as
a range from the minimum that resulted from the application of
threshold stability method, up to the 95th quantile of the PBM
simulated flow. Higher thresholds resulted in data scarcity that
did not allow the models to be fitted satisfactorily. All the above-
mentioned steps are presented diagramatically in Figure 1.

To assess the accuracy of the peak flow forecasts for each
threshold, a set of indices was calculated. More specifically, the
mean absolute error (MAE), the normalized root mean square
error (NRMSE), the percentage BIAS (PBIAS), the Nash-Sutcliffe
efficiency (NSE), the index of agreement (d) and the Kling-Gupta
Efficiency (KGE) were computed using the following equations:

MAE � 1
N

∑N
i�1
|ẑi − zi|

NRMSE � 100

�������������
1
N ∑N

i�1 (ẑi − zi)2
√

zmax − zmin

PBIAS � 100
∑N

i�1(ẑi − zi)∑N
i�1 zi

NSE � 1 − ∑N
i�1 (ẑi − zi)2∑N
i�1 (zi − zi)2

d � 1 − ∑N
i�1 (ẑi − zi)2∑N

i�1 (|ẑi − zi| + |zi − zi|)2

KGE � 1 −

���������������������������
(r − 1)2 + (σ ẑ

σz
− 1)2

+ (ẑ
z
− 1)2

√√
where ẑi are the simulated (or predicted) values, zi are the
measurements (or observed values), zi is the mean of the
measured values, r is the Pearson product-moment correlation
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coefficient (between ẑi and zi) and σ is the standard deviation. The
optimal value of the error indices (MAE, NRMSE, and PBIAS) is
zero and the smaller are the values, the more accurate are the
simulations. NSE (Nash and Sutcliffe, 1970) takes values from
−∞ to 1, where one corresponds to a perfect match between
simulated and measured values, zero indicates that model
simulations are as accurate as the mean of the measured
values and a negative value indicates that the mean of the
measured values is a more accurate predictor than the model.
The index of agreement, d is defined in the range of zero to one,
where again one represents the perfect model and zero no
agreement at all. KGE incorporates r, the ratio between the
means of the measurements and the simulations, and the
variability ratio. KGE takes the same value range as NSE.

STUDY SITE AND DATA

Study Site
The flow discharge data used in this research were measured at
the NorthWyke Farm Platform (NWFP). The NWFP is a farm-
scale experiment established in 2010 in the southwest of
England (50°46′10″N, 3°54′05″W) to support research into
sustainable grassland livestock systems (Orr et al., 2016).
The platform comprises three independent small farms, each
21 ha in size. Each farm is divided into five sub-catchments,
with some sub-catchments consisting of more than one field.

The platform monitors routinely water run-off and water
chemistry in each of the 15 sub-catchments, together with
other primary data collections (e.g., greenhouse gas
emissions) so that each farming system can be evaluated
according to its level of sustainability (Takahashi et al.,
2018). For the period 1985–2015, the average annual
temperature at North Wyke ranges from 6.8 to 13.4°C and
the average annual rainfall is 1,033 mm. The platform has an
altitude range of 120–180 m above sea level. Soil texture
consists of a slightly stony clay loam topsoil (about 36%
clay) above a mottled stony clay (about 60% clay). The
subsoil is impermeable to water and during rain events most
of the excess water moves by surface and sub-surface lateral
flow toward the drainage system described below.

Each of the 15 sub-catchments (inset in Figure 2) are
hydrologically isolated through a combination of topography
and a network of French drains (800-mm deep trenches)
which ensure that the total runoff is channeled to
instrumented flumes, measuring water discharge and its
chemistry with a 15 min temporal frequency since October
2012. The runoff from each sub-catchment is measured
through a combination of primary and secondary flow devices.
The primary devices are H-type flumes (TRACOM Inc,, Georgia,
USA) with capacity designed for a 1-in-50-year storm event (in
respect of data preceding 2010). The specific design of the H-type
flume facilitates the accurate measurement of both low and high
flows and is relatively self-cleaning since it allows the ready

FIGURE 1 | Schematic of the proposed methodology.
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passage of sediment and particulate matter. A secondary flow
measurement device (OTT hydromet, Loveland, CO, USA) is
used to measure the water height within the flume and convert it
to discharge rate using flume-specific formulas which depend on
water height. The flow is generated only from rainfall as the fields
are not irrigated. Each sub-catchment also monitors precipitation
and soil moisture every 15 min.

Platform data acquired from October 2011 to July 2013,
represent a baseline period where all farm fields were
categorized as permanent pasture and received identical rates
of inorganic fertilizers and farmyard manure. From July 2013 to
July 2015, two of the three farms entered a transition phase and
were ploughed and reseeded progressively with different types of
pasture; specifically, a mixture of white clover and high sugar
perennial ryegrass, and sugar perennial ryegrass only. Thus, two
farms entered fully a post-baseline period in July 2015.

For this research, we used flow discharge (from April 2013 to
February 2016) measured at sub-catchment six of the permanent
pasture farm (Figure 2), which consists of a single field (GoldenRove).
This field was chosen because, as part of the permanent pasture farm,
it would not have been ploughed and reseeded during the period of
study (which would affect various processes, such as runoff).

Choice of Process-Based Model
For this research, we used the “SPACSYS” model to simulate the
flow discharge for sub-catchment six of the NWFP over the
period of interest. The SPACSYS model is a process-based, field-

scale model which simulates key agricultural processes such as
plant growth and development, soil Carbon and Nitrogen (N)
cycling, water dynamics and heat transformation (Wu et al.,
2007) (see Figure 1). The main processes concerning plant
growth are assimilation, respiration, water and N uptake,
partitioning of photosynthate and N,N-fixation for legume
plants and root growth. The Richards equation for water
potential is used in SPACSYS to simulate water redistribution
in a soil profile. Site-specific input data for the simulations
include daily weather variables from the North Wyke site, soil
properties, field and grass management (e.g., fertilizer application
dates and composition, reseeding, grazing and cutting dates), and
initialization of the state variables (standing biomass and root
distribution, soil water and temperature distribution). Previous
simulations of water runoff, soil moisture and other agricultural
processes for sub-catchment six of the NWFP using SPACSYS
can be found in Liu et al. (2018), where a detailed explanation on
the SPACSYS calibration is given.

RESULTS

Comparison of Measured Flow Data With
Process-Based Model Simulations
The plotted time-series of measured and PBM simulated flow
(Figure 3), shows that the simulation appears to capture well the
general behavior of the process at low flows. However, it tends to

FIGURE 2 | Details of the sub-catchment selected for this research from the total of 15 sub-catchments within the North Wyke Farm Platform.
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under-predict the high flows and over-predict the medium ones.
This is confirmed by the corresponding scatterplot (Figure 4)
where many values in the range 5–10 mm d−1 are below the 1-to-
1 line and, thus, the simulated flow is greater than that measured.
A non-linear locally weighted regression fit (i.e., a Loess
smoother, see Cleveland, 1979), to the measured and
simulated data is also given to help illustrate this behavior.

Threshold Selection
The shape and modified scale parameters estimated using the
method of Curceac et al. (2020) indicated very similar

threshold choices, in regions where the parameters
remained relatively stable for increasing threshold
candidates (Figure 5). The minimum threshold according
to the shape parameter is 3.96 mm d−1 and according to the
modified scale parameter, 3.88 mm d−1. These thresholds
were estimated based on the PBM simulated flow (as
described above), and the same thresholds were used for
the observed peaks. Diagnostics, such as QQ plots of the
empirical and modeled distributions (not presented),
indicated that the GPD provides a good fit to the excesses
and can model satisfactorily the peaks above the threshold of
3.88 mm d−1, which was eventually selected. The range of
thresholds above which the models where applied, was set
from 3.88 up to 6.41 mm d−1, with the maximum
corresponding to the 95th quantile of the PBM
simulated flow.

Conditional Extreme Model Fit
The diagnostics of the extreme dependence model (CEM) show a
satisfactory fit (Figure 6). As stated in Conditional Extreme
Model, one of the main assumptions of the model is that the
residuals Z are independent of the conditioning variable (in this
case, the PBM simulations). The pattern of both the initial and
absolute values of the normalized residuals conforms
approximately to a uniform distribution with no distinct
pattern in the location or scatter of these residuals with the
conditioning PBM simulations. The slight trend in the residuals
Z for the lowest peaks of the conditioning variable might indicate
that a higher threshold should be considered. The fitted quantiles
of the conditional distribution of the dependent variable
(measured data) conditional on the PBM simulated data
(Figure 6, bottom) shows a good agreement between the data
and the fitted quantiles, which capture the whole range of the
scatter. Histograms of the scale and shape parameters (Figure 7)
show that the measured and PBM simulated peaks have similar
scale characteristics. However, the distribution of the measured
peaks has a considerably heavier tail (ξobs > ξsims). The CEM

FIGURE 3 | Time-series of measurements and PBM simulation of flow (mm d−1) at the study site from May 2013 to February 2016.

FIGURE 4 | Scatterplot of measurements of flow (mm d−1) against PBM
simulated flow at the study site. The scatterplot is shown with the ideal 1:1 line
and a Loess smoother fit.
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simulated values of the dependent variable (measured data)
along with the values of the conditional variable (PBM
simulated data) (Figure 8) were obtained using the CEM with
estimated dependence parameters of α � 0.44 and β � 0.59. These

parameters confirm that there is a positive dependence between
the measured and the PBM simulated data, and that the
measured data increase in variability as the values of the PBM
simulations increase.

FIGURE 5 | Shape andmodified scale parameters for different threshold candidates applied to the PBM simulated daily flow. The red lines are the fitted splines and
the green vertical lines specify the selected region of stability.

FIGURE 6 | Diagnostic plots for the fitted extreme dependence model (CEM): (top) scatterplot of the residuals Z against the conditioning PBM simulated data with
a Loess curve (in red) for the local mean values; (middle) absolute of the normalized residuals Z against the conditioning PBM simulated data with a Loess curve (in blue);
(bottom) scatterplot of measured vs. PBM simulated data, with the fitted quantiles of the distribution of measured data conditional on PBM simulated data (dashed
lines).

Frontiers in Artificial Intelligence | www.frontiersin.org October 2020 | Volume 3 | Article 5658598

Curceac et al. Hybrid Modelling for Peak Waterflow

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Hybrid Model via Conditional Extreme
Model-Extreme Learning Machine
Adjustments of Process-Based Model
Simulated Data
To recap, this research applies the CEM for the maximum peaks,
while the ELM model is used for the smaller peaks during a peak
flow event as the ELM alone did not increase the accuracy of the
maximum peaks (over that found with the PBM alone). For
reference, error and agreement performance indices are given in
Appendix (Figure A1) for the three constituent models of the
study hybrid (i.e., for PBM only, CEM only, and ELM only), for
predicting the maximum peaks.

The resultant hybrid simulations (or adjusted PBM simulations)
for peak flow events above the minimum threshold of 3.88mm d−1

are presented in Figure 9 together with the PBM simulated data and
the measured data. The PBM most commonly under-predicts the
largest peaks and over-predicts the ones preceding and following it.
Use of the CEM captures the cluster maximamore accurately, which
naturally depends on the value of the PBM simulation. In cases
where the PBM over-predicts the maximum peak, the CEM leads to
an even greater error. The ELM model addresses the fact that the
PBM tends to over-predict the smaller peaks and, thus, provides
hybrid forecasts of these peaks that are smaller and closer to the
measured ones. The characteristics of the elements of the proposed
methodology, in combination, results in improved characterization

FIGURE 7 | Bootstrap-estimated distributions of the scale and shape parameters (top and bottom histograms, respectively) for the conditioning (PBM
simulated) and dependent (measured data) variables (left and right histograms, respectively).

FIGURE 8 | Scatterplot of measured vs. PBM simulated flow (red circles) together with CEM simulated data (gray crosses and green circles) plotted above the
threshold for prediction (green, dashed vertical line). The fitted curve (green solid line) joins equal quantiles of the marginal distributions and is used only for reference.
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of the peak flow events, that tend to rise and fall more steeply (and
realistically) than is foundwith the PBM simulations. Key exceptions
arise for cases where the PBM over-predicts the whole event, as the
hybrid compounds this over-prediction.

Error and agreement indices (Figure 10) provide an overall
assessment of the proposed hybrid methodology for the same
peak flow events (of Figure 9), but specifically just for instances of
PBM simulations >3.88 mm d−1. In general, the proposed hybrid
approach is more accurate, as it results in smaller error indices
and larger agreement indices than produced using the PBM
alone, except for PBIAS, despite reductions in the other two

error indices (MAE and NRMSE). Clearly, PBIAS is more
reflective of how the hybrid can sometimes compound over-
prediction. The greatest relative improvement was found in the
KGE index, although both NSE and d also indicated improved
agreement between observed and hybrid simulated values.

All of the results discussed above relate only to instances of PBM
simulated flow values above the threshold of 3.88 mm d−1, where
the measured and hybrid simulated values directly correspond to.
We compare now between all the measured water flow data, the
PBM and hybrid simulations when above the selected threshold.
The resultant plots of error (MAE and PBIAS only) and agreement

FIGURE 9 | Time-series plots of measured, PBM-predicted and hybrid model-predicted flow for all considered peak flow events for which the PBM simulated
data >3.88 mm d−1, following the threshold selection analysis of Discussion.
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(d and KGE only) indices against the magnitude of observed flow
are given in Figure 11. TheMAE is very small for both the PBMand
the hybrid when comparing simulated flow with all the observed
flow above the threshold. Increasing the observed flow threshold
above which data are compared with the simulated data, results in a
slower increase (with flow magnitude) in the MAE for the hybrid
than for the PBM outputs. The hybrid approach also results in a
significant decrease of the negative PBIAS with increasing peak
flow, relative to the PBM. The agreement indices (d and KGE)
similarly confirm this improvement found for the hybrid
simulations over the PBM simulations.

All of the results discussed above refer to peak events above the
threshold of 3.88 mm d−1, as selected based on the GPD parameter
stability plots (Figure 5). As a final step in the analysis, it is prudent
to assess how threshold selection has an effect on the performance

of the proposed methodology. Thresholds were set to range from
3.88mm d−1 up to the 95th quantile of the PBM simulated flow
(6.5 mm d−1). According to the calculated MAE indices, the hybrid
model has a performance similar to the PBM when considering
peak events above the threshold of 5.8 mm d−1 (Figure 12). This is
not confirmed by the NRMSE which, however, shows a steep
increase for the same threshold. PBIAS shows an overall increasing
trend with some fluctuations in between. The agreement indices
(Figure 12) seem to be less sensitive to the threshold, although
NSE shows an abrupt decrease when flow is higher than
5.8 mm d−1. All the indices have the common characteristic
of the consistent trend (increasing for error, decreasing for
agreement) as the threshold increases, which could be
attributed to the smaller samples of the data used for
testing, in which the highest flow values dominate.

FIGURE 10 | Error and agreement indices of the PBM and hybrid simulated data compared to observed data: (A)mean absolute error (MAE), (B) the normalized
root mean square error (NRMSE), (C) the percentage BIAS (PBIAS), (D) the Nash-Sutcliffe efficiency (NSE), (E) the index of agreement (d) and (F) the Kling-Gupta
Efficiency (KGE)
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DISCUSSION

The main motivation for developing the proposed hybrid approach
was to forecast more accurately the peak flows that are typically
under-predicted using PBMs due to model over-generalization or
smoothing. The analysis in this research was based on simulations
obtained from the SPACSYS model. SPACSYS has characteristics
that can be considered as representative of the vast majority of
PBMs used for flow simulations and the hybrid approach presented
is entirely general. However, the PBM also exhibited other
problems, such as over-predicting small and moderate flow
values. This second problem arises because the model (as for
most PBMs) is calibrated implicitly to the mean of the observed
distribution through the careful choice and selection of model
parameters. It should be noted, however, that SPACSYS is not
fitted or re-calibrated explicitly to external data.

Topological characteristics, such as the integrating effect of the
catchment, could also contribute to this behavior. For example, large
local slopes (that SPACSYS cannot represent) result in faster running
water which, combined with intense rainfall, may result in higher

peak flows that are not captured by SPACSYS.Over-predicted events
are likely due to inaccurate representation of soil moisture,
topography and other soil properties at the within-field scale,
since SPACSYS simulates at the field scale (Liu et al., 2018).
Despite these issues and the fact that our proposed hybrid
approach was aimed at under-predicted extreme flow events, the
hybrid approach resulted in more accurate forecasts and an increase
in accuracy overall.

The CEM is usually used to describe the extreme dependence
structure of the same variable at different sites or of different
variables at the same site. In this study, we used the CEM in a
bivariate context to model and link the same underlying state
variable captured by different representational processes
(i.e., direct measurement and PBM simulation of flow). The
pseudo-observations obtained from the fitted model and based
on the conditioning variable were aggregated to a single value
which was then compared to the equivalent measured value. The
same conditional simulations can be used to create confidence
intervals that correspond to various scenarios and allow flexibility
in choosing values according to the intended purpose.

FIGURE 11 | Error and agreement indices of the PBM and hybrid simulated data for increasing observed flow values. (A) MAE, (B) PBIAS, (C) d, (D) KGE.
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In general, none of the applied criteria for the evaluation of the
proposed hybrid method is sufficient singly; each of the model
performance indices have strengths andweaknesses. The agreement
indices are used mainly to investigate how accurately the model
captures the dynamic of the temporal process. The error indices
capture differences between the total flow or the volume of the
hydrograph. Therefore, using both measures provides a more
holistic evaluation of model performance. Since our main
objective was to evaluate the performance of the proposed
hybrid method in predicting extreme flows, the choice of the
agreement indices is appropriate as they have been shown to be
sensitive to peaks (Krause et al., 2005).

Despite the promising results obtained from the proposed
methodology, it has the limitation of being tested for a specific
case study site and for one PBM. Future research should, therefore,

consider testing this approach for other catchment sites with different
characteristics, as data-driven models need to be tested using a range
of (large) datasets before applied in practice (Boulesteix et al., 2018;
Papacharalampous et al., 2019; Tyralis et al., 2019). It would also be
interesting to investigate whether and how the performance of
SPACSYS, and by extension, the proposed techniques, would be
affected by using forecasted weather variables as inputs instead of
measured data to obtain the simulations. In real case scenarios, the
threshold is defined commonly based on pre-existing information.
Due to the nature of the NWFP experiment, it was not possible to
define a threshold with physical meaning (e.g. likely flooding) with
which to evaluate the estimated threshold. The threshold defines
the peak flow events and consequently the training and testing
datasets used in this research. Thus, it was not possible to define a
threshold based strictly on the training dataset only as would

FIGURE 12 | Error: (A) MAE, (B) NRMSE, and (C) PBIAS indices (top three plots) and agreement: (D) NSE, (E) d,and (F) KGE indices (bottom three plots) of the
PBM and hybrid simulated data for a range of thresholds (3.88–6.5 mm d−1).
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normally be the case. However, we expect this to have a minimal
effect on the results and not change the main conclusions drawn.

CONCLUSIONS

In this research, we used a data-drivenmachine learningmodel (ELM)
and a semi-parametric conditional model that stems from extreme
value theory (CEM) to increase the accuracy of peak water flow events
simulated by a PBM. The PBM most frequently under-predicted the
maximum flows during a peak event, for which the CEMwas applied,
and over-predicted flows preceding and following it, for which the
ELM was applied. The combined characteristics of the proposed
methodology in general resulted in more accurate forecasts and
improved representation of these peak events, according to several
error and agreement indices. The detailed analysis undertaken in this
research was developed based on simulated flow data obtained from
only one PBM and for observed data at only one case study site.
However, because of the general characteristics of the chosen PBM
and of the proposed hybrid methodology, it is anticipated that the
proposed approach will be suitable for a wide range of PBMs and
water monitoring station schemes.
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FIGURE A1 | Error and agreement indices of the process-based model, conditional extreme model, and extreme learning machine simulated maximum peaks
compared to observed data. (A) MAE, (B) NRMSE, (C) PBIAS, (D) NSE, (E) d, (F) KGE.

APPENDIX

Forecasting Maximum Peaks Using Process-Based Model, Conditional Extreme Model,
and Extreme Learning Machine
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