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Abstract

Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in
nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and
therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differen-
tiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of
Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The
cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evi-
dence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also imple-
ment a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The appar-
ent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population
pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to
be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of ele-
vated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation.
These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and
widespread process.

Keywords: parallel adaptation; transcriptomics; regulatory evolution; Drosophila melanogaster

Introduction
Different species or populations often evolve similar phenotypes
when adapting to similar environments (Schluter 2000; Losos,
2011). Although such parallel phenotypic evolution can be caused
by amino acid changes, there is increasing evidence that regula-
tory mutations altering gene expression underlie many cases of
phenotypic evolution (Wittkopp and Kalay, 2011; Jones et al. 2012;

Stern 2013; Sackton et al. 2019). Most studies on gene regulatory
evolution focus on expression abundance (the number of tran-
scripts for a whole gene). However, alternative splicing changes
resulting in modified transcript proportions can also contribute
to adaptation (Barbosa-Morais et al. 2012; Gamazon and Stranger
2014; Smith et al. 2018), and yet splicing evolution has received
far less study.

The level of parallelism for gene expression evolution varies
across study systems. In some taxa and natural conditions, sig-
nificantly more genes show parallel changes (repeatedly up- or
down-regulated in one ecotype relative to the other among inde-

pendent population pairs) than anti-directional changes (Zhao
et al. 2015; Hart et al. 2018; McGirr and Martin 2018; Kitano et al.
2019). However, some other cases did not show significant

parallel patterns, or they even showed anti-parallel patterns
(Derome et al., 2006; Lai et al. 2008; Hanson et al. 2017). The vary-
ing degree of parallelism may partly be explained by the level of
divergence among ancestors: more closely related ancestors are
expected to show a higher degree of parallel genetic evolution un-
derlying similar phenotypic evolution (Conte et al. 2012;
Rosenblum et al. 2014).

Furthermore, gene expression evolution can be caused by the
same or different molecular underpinnings. Because of the diffi-
culties of mapping expression quantitative trait loci (eQTLs), the
first step is to classify the expression evolution into two
regulatory classes. Cis-regulatory changes are caused by local
regulatory mutations and result in allele-specific expression in a
hybrid of divergent parental lines (Singer-Sam et al. 1992; Cowles
et al. 2002; Yan et al. 2002; Wittkopp et al. 2004). Trans-regulatory
changes are caused by mutations at other loci. They modify the
expression of both alleles in hybrid diploids and do not result in
allele-specific expression (Yvert et al. 2003; Wittkopp et al. 2004;
Wang et al. 2007). The relative importance of cis- and trans-effects
to parallel evolution varies among different study systems
(Wittkopp et al. 2008; McManus et al. 2010; Wittkopp and Kalay
2011; Coolon et al. 2014; Lemmon et al. 2014; Nandamuri et al.
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2018). Many previous studies have focused on regulatory evolu-
tion between relatively distantly related lineages such as differ-
ent species, from which population genetic evidence of adaptive
evolution may not be available. Some studies have investigated
the cis- vs trans-regulatory variation within or between recently
diverged populations but are limited to one or two populations
(Chen et al. 2015; Osada et al. 2017; Glaser-Schmitt et al. 2018). To
our knowledge, the only two cases comparing cis- and trans-regu-
latory changes for repeated adaptive divergence between popula-
tions are from threespine stickleback fish and they revealed
contrasting patterns (Hart et al. 2018; Verta and Jones 2019).
Hence, the relative contributions of cis- and trans-effects to recent
parallel adaptation remain mostly unknown.

In part driven by interest in the evolutionary response to cli-
mate change, Drosophila has been used as a model system to
study the genetic basis of thermal adaptation (Hoffmann et al.
2003). Because temperature is an important environmental vari-
able along latitudinal clines, clinal populations of Drosophila mela-
nogaster have been studied for decades (Adrion et al. 2015). Along
these clines, populations exhibit different degrees of cold toler-
ance in the expected direction, suggesting spatially varying selec-
tion related to temperature (Hoffmann and Weeks 2007; Schmidt
and Paaby 2008). The recent development of genomics has
allowed identification of clinal genomic variants, which are can-
didates for thermal adaptation (e.g., Kolaczkowski et al. 2011;
Fabian et al. 2012; Mateo et al. 2014; Bo�zi�cevi�c et al. 2016). There is
also evidence of parallel evolution at the genomic and transcrip-
tomic level (Reinhardt et al. 2014; Zhao et al. 2015; Bergland et al.
2016; Juneja et al. 2016; Machado et al. 2016; Zhao and Begun
2017). Some of these studies compared clines between species
(which may have somewhat distinct biology), while others com-
pared clines between Australia and North America (which both
feature primarily European ancestry with clinically variable
African admixture). Other transcriptomic studies have identified
genes showing differential expression between sub-Saharan
African and European populations (e.g., Catalan et al. 2012;
Huylmans and Parsch 2014), which are separated by moderately
strong neutral genetic differentiation associated with the out-of-
Africa bottleneck.

More broadly, populations of D. melanogaster from contrasting
environments offer an excellent opportunity to study parallel
gene regulatory evolution and its underlying mechanisms.
Originating from a warm sub-Saharan ancestral range (Lachaise
et al. 1998; Pool et al. 2012), D. melanogaster has occupied diverse
habitats, including environments with contrasting temperature
ranges. There are at least three instances in which the species ex-
panded to cold environments: from Africa into higher latitude
regions in Eurasia, from Ethiopia lowland to higher altitudes, and
from South Africa lowland to higher altitudes. Populations were
collected from these six regions, representing three warm-cold
population pairs: Mediterranean pair (MED), collected in Egypt
(EG, warm) and France (FR, cold); Ethiopian pair (ETH) collected
in Ethiopia lowland (EA, warm) and highland (EF, cold); and
South Africa pair (SAF), collected in South Africa lowland (SP,
warm) and highland (SD, cold). Importantly, each of these popu-
lation pairs has the advantage of low genetic differentiation be-
tween its warm- and cold-adapted members compared to the
differentiations among pairs (Pool et al. 2017). Although the cold
populations have invaded colder habitats for only �1000–
2000 years (�15–30k generations) (Sprengelmeyer et al. 2020) and
different habitats have distinct selective pressures besides cold
(e.g., air pressure, ultraviolet radiation, and food resources), the
cold-dwelling populations have shown signals of parallel

adaptation for cold tolerance and allele frequency changes (Pool
et al. 2017). In this study, this unique system allows us to assess
the degree of parallelism for transcriptomic changes underlying
parallel adaptation to colder environments.

Because the selection environments can vary drastically
across life stages of Drosophila, we may expect to see different
patterns of local adaptation and parallelism in gene expression
across stages. For D. melanogaster, the larvae are mostly located
within fruit and their primary role is feeding. The pupae are lo-
cated on or near the fruit and are immobile. The adults are mo-
bile; their primary role is mating and reproduction (Sokolowski
et al. 1986; Powell, 1997), and it is thought to be the primary over-
wintering stage in seasonally cold environments (Izquierdo 1991).
And a recent study using D. melanogaster populations across the
globe found local adaptation to thermal environments at egg, lar-
val and adult stages but not the pupal stage (Austin and
Moehring 2019). Therefore, we may expect a different level of par-
allel gene expression evolution for thermal environments for the
pupal stage.

Here, we generate RNA sequencing (RNA-seq) data for multi-
ple outbred genotypes from each of the six population samples
listed above, from larval, pupal, and adult stages. We estimate
gene expression and alternative intron usage levels for each sam-
ple, then identify cases of unusually high quantitative trait differ-
entiation between each pair of warm- and cold-adapted
populations and compare their genomic locations across devel-
opmental stages. We find that genes with highly differentiated
expression are enriched on the X chromosome in the adult stage
relative to the larval stage. We find evidence for parallel evolu-
tion for expression for both the larval and the female adult
stages, but less parallel signal for the pupal stage. We further
tease out the cis- and trans-regulatory effect at the adult stage by
sequencing the transcriptomes of the parental lines from differ-
ent populations and their F1 offspring. Applying our resampling
approach to study cis- and trans-regulatory effects, we find that
the relative contributions of these effects to adaptive expression
differentiation is quite variable across population pairs, with
trans-effects showing greater parallelism. Finally, we observe
enrichments of genes with high FST among those that showed cis-
effects and identify several candidate genes with both cis-effects
and high FST, as potential targets of local adaptation.

Materials and methods
Ecologically and phenotypically differentiated
populations
The three D. melanogaster cold-warm population pairs used in this
study, France-Egypt (MED), Ethiopia (ETH), and South Africa
(SAF), were described in Figure 1A (Pool et al. 2012, 2017; Lack
et al. 2015). A previous study has shown that female adults from
the cold populations (FR, EF, and SD) were more likely to recover
after 96 h at 4�C than the respective warm populations (Pool et al.
2017). To extend these results, three inversion-free strains from
each of the cold populations as well as an ancestral warm
adapted population (ZI) were used to measure egg to adult viabil-
ity at different temperatures. Viability was assayed at 15�C as the
cold environment and 25�C as the warm control environment.
Forty mated female flies were allowed to lay eggs in a half pint
glass milk bottle with a standard medium at room temperature
for 15 h. Each strain occupied �8 bottles. After the flies were re-
moved and the numbers of eggs were counted, about half of the
bottles were incubated at 25�C and the other half 15�C. The num-
bers of adult flies that emerged from each bottle were counted
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after 14 and 42 days from warm and cold environments respec-
tively. Viability for each strain was measured as the average
emergence proportion among bottles, which is the number of
emerged adults divided by the number of eggs. To determine sig-
nificance, unpaired t-tests between strains from each cold popu-
lation and those from the ZI population were performed for both
temperature conditions.

RNA sample collection and sequencing
Within each population of the three warm/cold pairs (six popula-
tions in total), we selected 16 strains and assigned them into
eight crosses (Figure 1). Before the crossing, all the strains had
been inbred for eight generations. The criterion for choosing pa-
rental strains for a cross was based on minimal genomic regions
of overlapping heterozygosity. Among the strains chosen within
each population, we used similar criteria to select four strains to
perform crosses between the warm and the respective cold popu-
lations. Two of the four strains were used as the maternal lines
and the other two were used as paternal lines in the between-
population crosses. One cross between SD and SP populations
was lost. We also collected adult female samples from the paren-
tal inbred lines used in the between-population crosses.
Inversion frequencies are known to differ between these popula-
tions (Pool et al. 2017) and inversions have been associated with
expression differences (Lavington and Kern 2017; Said et al. 2018).
While inversions are not an explicit focus of our study, they may
contribute to population expression differences. The inversion in-
formation for the strains used can be found in Supplementary
Table S1.

All the flies were reared at 15�C, which approximated the de-
rived cold condition. Twenty virgin females and 20 males were
collected from maternal and paternal lines respectively for each
cross and allowed to mate and lay eggs for a week in half-pint
bottles. Each bottle contained standard Drosophila medium

(containing molasses, cornmeal, yeast, agar, and antimicrobial
agents). For the within-population crosses, samples at three de-
velopmental stages were collected: larva, pupa, and female adult.
Third-instar larvae were collected on the surface of the medium.
For pupa, new yellow pupae were collected within 1 day of pupa-
tion. For adult, female flies were collected 4–5 days after eclosion.
For samples from between-population crosses and parental lines,
only female adults were collected. All the samples were shock-
frozen in liquid nitrogen immediately after collection.

Approximately 50 larvae or 50 pupae or 30 female adults were
used for RNA extraction for each sample. Samples were homoge-
nized using TissueLyser II (Qiagen, Hilden, Germany). Total
mRNA was isolated using the Magnetic mRNA Isolation Kit
(#S1550 New England Biolabs, Ipswich, MA, USA) and purified us-
ing RNeasy MinElute Cleanup Kit (#74204 Qiagen, Hilden,
Germany). Strand-specific libraries were prepared using the
NEBNext mRNA Library Prep Reagent Set for Illumina (#E6100
New England Biolabs, Ipswich, MA, USA). Libraries were size-se-
lected for approximately 150 bp inserts using AMPureXP beads
(Beckman Coulter, CA, USA). The 179 libraries were quantified us-
ing Bioanalyzer and manually multiplexed for sequencing. All li-
braries were sequenced on a HiSeq2500 (V4) with 75 bp paired-
end reads in two flow cells. Numbers of paired-end reads gener-
ated for each library can be found in Supplementary Table S2.

Quantifying gene expression and exon usage
frequency
The paired-end sequence reads for the within-population cross
samples were mapped to the transcribed regions annotated in
the D. melanogaster reference genome (release 6, BDGP6.84) using
STAR with parameters from ENCODE3’s STAR-RSEM pipeline (Li
and Dewey 2011; Dobin et al. 2013). We note that cold- and warm-
derived members of each population pair are expected to have
very similar genome-wide reference sequence divergence (Lack

Figure 1 Illustrations of the geographic origins of the three population pairs and the crossing design. (A) A map of average year-round temperature (�C)
showing the geographic origins of each population sample studied, and their groupings into pairs of closely related warm- and cold-derived population
samples. The Mediterranean (MED) pair comprises a cold-derived France population (FR), and a warm-derived Egypt population (EG). The Ethiopian
(ETH) pair comprises a cold-derived high-altitude population (EF) and a warm-derived low-altitude population (EA). Likewise, the South African (SAF)
pair comprises a cold-derived high-altitude population (SD) and a warm-derived low-altitude population (SP). The location of an additional warm-
derived population from Zambia (ZI), within the species’ putative ancestral range, is also indicated. (B) Schematic figure showing the crossing design for
one population pair (MED) as an example. Within-population crosses generated controlled outbred offspring for estimating PST to quantify population
differentiation in gene expression; samples at three developmental stages (third instar larva, pupa, and female adult) were collected from each cross.
Parental inbred strains from warm- and cold-adapted populations and inter-population crosses between them were studied to estimate cis- and trans-
regulatory effects that underlie the expression divergence; samples from female adults were collected.

Y. Huang et al. | 3

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data


et al. 2016a). For gene expression, the numbers of reads mapped
to each gene were quantified using RSEM (Li and Dewey 2011).
Reads mapped to the rRNA were excluded in the analysis. The ex-
pression abundance for each gene was standardized by the num-
bers of reads mapped to the total transcriptome of the sample.

To quantify exon usage, we used Leafcutter (Li et al. 2018) to
estimate the excision frequencies of alternative introns. This
phenotype summarizes different major splicing events, including
skipped exons, and 50 and 30 alternative splice-site usage.
Leafcutter took the alignment files generated by STAR as input to
quantify the usage of each intron. Then Leafcutter formed clus-
ters that contain all overlapping introns that shared a donor or
accept splice site. The default parameters were used: �50 reads
supporting each intron cluster and �500 kb for introns length.
The exon usage frequency is the number of intron excision
events divided by the total events per cluster. It is worth noting
that Leafcutter only detects exon–exon junction usage and it is
unable to quantify 5’ and 3’ end usage and intron retention
(Alasoo et al. 2019), which were not examined here.

Principal component analysis
To visually assess the overall patterns of variation in the tran-
scriptomes among samples, we first performed principal compo-
nent analysis (PCA) for the within population cross samples
across three developmental stages using DESeq2 (Love et al. 2014).
The DESeq dataset object was constructed from the matrix of the
count data outputted from RSEM. After the variance stabilizing
transformation (vst), the top 5000 genes with the highest variance
across samples at the transformed scale were used for PCA. The
principal component value for each sample was obtained by the
function plotPCA (Supplementary Figure S2). We also performed
principle component analysis for samples at each developmental
stage. For the adult stage, we included the F1 offspring from
crosses within populations, F1 offspring from crosses between
populations and the inbred parental lines of the latter crosses.

Identifying outliers in gene expression and intron
usage differentiation using within-population
crosses
To identify candidate genes under differential evolution between
the warm and cold populations in each pair, we first controlled
for the potential transcriptome skew caused by very highly
expressed genes. For each expressed gene, we calculated the av-
erage expression of the cold samples (AvgExpcold) and that of the
warm samples (AvgExpwarm). Then we obtained the median of the
ratio of AvgExpcold/AvgExpwarm across all expressed genes for the
population pair. Gene expression for the warm samples was nor-
malized by multiplying this median before subsequent analysis.
This correction was designed to avoid a scenario in which either
the cold population or the warm population had important ex-
pression changes in one or more highly expressed genes that
caused the relative expression of all other genes to shift, even if
their absolute expression level did not.

We used PST statistics to quantify gene expression divergence
between cold and warm populations in each population pair us-
ing samples from within-population crosses:

PST ¼
Vbetween

Vbetween þ 2Vwithin

where Vbetween is between-populations variance for expression
abundance and Vwithin is the average variance for expression
abundance within populations. Although both within- and

between-population components of variance can be confounded
by the environmental variance, PST is still a useful statistic to
quantify phenotypic differentiation (Lande 1992; Spitze 1993;
Merilä 1997; Brommer 2011; Leinonen et al. 2013). Here, environ-
mental variance should be reduced by the common laboratory
environment. To reduce sampling variance before calculating PST,
for each gene, we required the total mapped reads across all 48
within-population samples to exceed 200 for a given develop-
mental stage. Then for each population/stage, we excluded the
crosses/samples with the highest and lowest gene expression for
each gene (to avoid high PST values being driven by single anoma-
lous values), resulting in six samples per population/stage. The
PST quantile based on data excluding extreme samples is concor-
dant with the PST quantile calculated using all the crosses for
most cases (Supplementary Figure S3).

We chose the above PST-based approach instead of simply test-
ing for differential expression in part because our within-popula-
tion samples reflect real variation as opposed to technical
replicates. Also, many alternative methods make assumptions
about the data (e.g., negative binomial distribution for transcript
counts) which are difficult to apply to splicing, even if they hold
for expression. PST and the population genetic index FST are under
the same theoretical framework, and are often directly compared
to search for evidence of adaptive trait differentiation. However,
environmental and measurement variance will downwardly bias
PST, making targets of local adaptation less likely to reach a
threshold defined by genome-wide high FST outliers. Hence, in
this study, we simply focus on the highest quantiles of PST for a
given trait/population comparison, as detailed below.

As with gene expression, we used PST to estimate the intron us-
age differentiation between cold and warm populations, with
Vbetween as the between-population variance for a given intron’s
usage frequency, Vwithin as the average within-population vari-
ance for intron usage frequency. Before calculating PST, for each
exon–exon junction, we averaged the intron excision events (ni)
and the alternative events (nj) of the cluster across all samples in
a developmental stage. The minimum for both types of event had
to be at least 5 (n 2 [ni, nj] � 5). We also required that at least six
samples have intron usage count >0 in each population for the
exon–exon junction to be included in subsequent analysis. Then
for each exon–exon junction, we excluded the sample with the
highest and lowest intron usage in a population/stage and calcu-
lated PST.

Examining the relative contribution of the X
chromosome to population differentiation across
stages
For gene expression differentiation, we used the upper 5% quan-
tile of PST as outlier cutoff to identify candidate genes potentially
under geographically differential selection. Then we calculated
the fraction of the outliers located on the X chromosome (fx). To
generate the null distribution of fx, we permuted the genes used
in calculating PST and calculated fx’ for the top 5% of the per-
muted gene set. This process was repeated 10,000 times to obtain
a null distribution of fx’. The upper 2.5% and lower 97.5% quantile
of fx’ define the 95% confidence interval. To test whether the ac-
tual fx is significantly different from the null, the p-value is calcu-
lated as two times the proportion of the fx’ that were equal or
more extreme than the actual fx (two-tailed test).

To test whether the developmental stage impacts the enrich-
ment of outliers on the X chromosome, we analyzed the fraction
of genes on the X chromosome (f) using linear model (lm function)
in R (version 3.6.3):
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fx ¼ Stageþ Typeþ Stage� Typeþ Pair

where Stage is larvae/pupal/adult. Type is outliers or nonoutliers.
Pair is the population pair. As we are interested in whether the
difference in f between outliers and the background depends on
the development stage, the model above was compared to a re-
duced model without the interaction term Stage � Type using
likelihood ratio test (anova function with test ¼ “LRT”). If the
Stage � Type for the full dataset was significant, we performed
the same analysis separately for larva-pupa, pupa-adult and
larva-adult datasets to determine which stages caused the signif-
icant Stage � Type effect.

Comparing PST outliers with published data for
African and European populations
To study whether the adult fly in MED pair changes expression in
similar ways as other African and European population compari-
sons, we first obtained lists of candidate genes showing signifi-
cant differential expression between African and European
populations for adult samples from Müller et al. (2011) (padj <

0.05) and von Heckel et al. (2016). We calculated the numbers of
PST outliers that are shared with the published lists with be-
tween-populations differential gene expression (in the same
directions of expression changes). Then we permuted all the
genes, we tested in the MED pair and selected the same number
of genes as the true outliers randomly. We asked how many
genes in the randomly permuted list are shared with the pub-
lished lists. We repeated the process 10,000 times to obtain a null
distribution of the shared numbers. The p-value was calculated
as the proportion of the null distribution that was equal or more
than the actual number of shared genes (one-tailed test).
Another test was whether the shared genes for PST outliers were
more likely to change expression co-directionally with the pub-
lished lists than the nonoutliers, which was tested by a Chi-
square test.

Examining co-directional change for outliers
shared between population pairs
To study the degree of parallel evolution in gene expression, we
identified outlier genes shared between two population pairs and
showing consistent changes in the cold populations relative to
the warm ones (co-directional). Whether the number of shared
outliers with co-directional change was significantly different
from expected by chance was determined by a permutation-
based test. For the outlier genes in a certain pair, we calculated
the number of these genes (N) that were shared and changed ex-
pression in the same direction in the outliers from another pair.
To generate the null distribution of N, we permuted the genes
used in calculating PST and obtained a set of genes that pass a cer-
tain quantile in each pair. Then the N’ was calculated based on
the two permuted sets of outliers. This process was repeated
10,000 times to obtain a null distribution of N’. To determine the
statistical significance, a p-value was calculated as two times the
proportion of the N’ that were equal or more extreme than the
actual N (two-tailed test). The statistics here and those below as-
sume the expression changes are independent among genes/
introns, which is not always the case (genes can interact with
each other via regulatory networks). We performed similar tests
for pairwise comparisons between developmental stages for each
population pair. The numbers for shared outliers with consistent
changes between pairwise stages were reported in
Supplementary Table S8.

The second approach used to examine parallelism of gene ex-
pression evolution was to focus on the outlier genes for a specific
population pair and examined whether the expression changes
in another pair followed the same directions. If cold adaptation
causes similar evolution in gene expression, those genes should
tend to show changes in the same directions in both pairs. Each
of the pairwise population combinations had two comparisons:
the outliers can come from either pair. For the outlier genes in a
certain pair, we calculated the fraction (F) of these genes chang-
ing expression in the same direction in another pair. To generate
the null distribution of F, we permuted the genes used in calcu-
lating PST and calculated F’ for the permuted genes that pass a
certain quantile. This process was repeated 10,000 times to ob-
tain a null distribution of F’. The upper 2.5% and lower 97.5%
quantile of the distribution define the 95% confidence interval.
The p-value was calculated as two times the proportion of the F’
that were equal or more extreme than the actual F (two-tailed
test).

To identify intron usage outliers, a cutoff of the upper 5% PST

was used. If multiple exon junctions had PST above the top 5%
cutoff, only the exon junction with the highest PST would be kept
as an outlier to control for nonindependence. Because the num-
bers of shared intron usage outliers in both population pairs are
small (<10), we only performed the second type of analysis de-
scribed above. For a certain developmental stage, we used the top
5% outlier intron usage in a particular pair and asked what per-
centages of the intron usage changed co-directionally in another
pair. To determine the statistical significance, we used the per-
mutation approach as described above.

GO enrichment test for PST outlier genes
The gene ontology (GO) enrichment tests were performed using
the R package “clusterProfiler” (Yu et al. 2012) based on the fly ge-
nome annotation (Carlson 2019). The types of GO terms being
tested contained all three sub-ontologies: biological process (BP),
cellular component (CC), and molecular function (MF). Selection
of overrepresented GO terms was based on adjusted P < 0.1 using
the “BH” method (Benjamini and Hochberg 1995) for each sub-on-
tology. This relaxed p-value threshold (after accounting for multi-
ple testing) was used in light of the hypothesis-generating goals
of this analysis. For gene expression, the upper 5% PST outliers
were tested for GO enrichment relative to all the expressed genes
for each population pair for a certain stage. To determine
whether the shared significant GO terms between pairs were
more than expected by chance, we randomly sampled the same
numbers of genes as the outliers and performed the GO test for
both pairs and identified the shared significant GO terms be-
tween pairs. We repeated the process 1000 times to get a set of
numbers for the shared significant GO terms and compared to
the actual number of shared significant GO terms to get a per-
muted p-value.

To access the functional categories of the differential intron
usage, we calculated the quantile of PST for each alternative
intron’s usage. To rank the differentiation for a gene, we used the
highest quantile (the most extreme differentiation) among the in-
tron usages within the gene as the gene quantile (qgene). To ac-
count for the multiple testing of the intron usages for a gene, the
adjusted total numbers of testing is calculated as
nsum ¼

Pi¼j

i¼1
ðni � 1Þ, where ni is the number of testing for a cluster

and j is the number of clusters for the gene. Then, the adjusted
gene quantile is q’gene ¼ 1� (1� qgene) � nsum. The upper 5% q’gene

was used to identify the most differentiated genes for intron us-
age and they were tested for GO enrichment as described above.
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Estimating cis- and trans-effects of regulatory
divergence using between-population crosses
and parental strains
To study the contributions of cis- and trans-regulatory effects on
expression and intron usage divergence, we focused our analysis
on the upper 5% PST outliers for gene expression/intron usage. For
each gene/intron junction in each population pair, we selected a
representative cross showing the greatest difference between pa-
rental strains for this analysis. In addition, this difference needed
to be larger than the average difference between the cold and
warm populations from the outbred crosses for its pair.

To study allele-specific expression/intron junction usage, we
obtained the genomic sequences of the two parental strains
aligned separately to the FlyBase D. melanogaster 5.77 assembly
(Lack et al. 2015, 2016a). The SNP calling from the reference ge-
nome was done by samtools (Li et al. 2009). To avoid mapping
bias for the RNAseq reads (Degner et al. 2009; Stevenson et al.
2013), we updated the reference based on the SNPs for the two
parental stains by masking the SNPs as “N.” The F1 female adult
RNA-seq reads were mapped to the updated reference using
STAR with options: –chimFilter None –outFilterMultimapNmax 1
(Dobin et al. 2013). Because of the fairly high level of heterozygos-
ity within our inbred lines (Lack et al. 2015), we attempted to use
polymorphic sites to study the allele-specific expression instead
of focusing on the fixed difference between parental strains.
However, based on the simulations we performed (see
Supplemental File), our new method requires a large number of
F1 offspring (>300 per cross) to reduce the random sampling of
parental alleles. For this experiment (only 30 F1 offspring per
cross), we therefore used SNPs that were fixed differences be-
tween the parental strains. SNPs were filtered with read counts
�10 in the F1 RNA-seq sample and the parental samples. Then
the allele frequency in the RNA reads for the F1 sample was cal-
culated to estimate allelic expression proportion. The allelic ex-
pression proportion for each candidate gene pF1 was the median
average allele frequency for all sites located in the gene region.

We tested two null hypotheses corresponding to cis- and trans-
only regulatory differences using a resampling approach. Under
the null hypothesis that cis-regulatory effects are absent, the pF1

is expected to be near 0.5 because the cold parental strain con-
tributes half of the alleles to F1 offspring, and alleles from differ-
ent parents are expressed similarly in these F1s (Cowles et al.
2002; McManus et al. 2010; Meiklejohn et al. 2014). Under the null
hypothesis that trans-regulatory effects are absent, pF1 is
expected to approximate the ratio of the cold parental strain ex-
pression to the total expression of both parental strains
(Wittkopp et al. 2004): rF0 ¼ Ec/(Ecþ Ew). However, sampling effects
can cause pF1 to deviate from the null expectations.

We accounted for different types of uncertainty on estimating
pF1. To account for the measurement uncertainty in F1 expres-
sion, we sampled with replacement for the F1 reads mapped to
each gene until we reached the numbers of reads mapped to the
gene. Then we recalculated the pF1

0 for each SNP and then aver-
aged across sites for each gene. We repeated the above process
1000 times to get a distribution of pF1’. A 95% confidence interval
of the distribution not overlapping with 0.5 suggested the exis-
tence of a cis-effect.

To test for a trans-effect, the uncertainty when estimating the
expression level in parental strains also needs to be accounted
for. For each gene/intron in a parental strain, we used binomial
sampling based on the expression level of the gene/intron. The
sampling probability is the proportion of reads for that gene/

intron relative to total reads in a sample and the number of sam-
pling events equals the total reads of the sample. Then we had
the updated expression for the cold strain Ec

0 and the warm strain
Ew
0. The updated rF0

0 is calculated as Ec
0/(Ec

0þ Ew
0). The sampling

and calculation were repeated 1000 times. Each time the rF0
0 was

paired with a pF1
0 described above to calculate the difference D0 ¼

rF0
0 – pF1

0. A 95% confidence interval of D’ not overlapping with 0
suggested the existence of a trans-effect.

To test the specificity and sensitivity of this approach, we per-
formed simulations to generate expression read data and apply
our method to the simulated data (see Supplemental File). We
found that our approach has good performance under reasonable
conditions and can be adapted for other traits, such as splicing.
For splicing, the pF1 is the allele frequency for the diagnostic SNPs
located in the exon-junction and the rF0 is the ratio of the cold pa-
rental strain intron usage frequency to the sum of the frequen-
cies for both parental strains.

Based on the tests above, the set of candidate genes were clas-
sified into categories including no significant cis- or trans-effect,
cis only, and trans only (McManus et al. 2010; Schaefke et al. 2013;
Chen et al. 2015). For genes showing both cis- and trans-effects, we
further classified them based on whether these two effects fa-
vored expression of the same (co-directional) or different paren-
tal allele (anti-directional). For exon usage differentiation, we
applied a similar approach to classify the differentiated exons
into the five categories, accounting for different sampling effects
and measurement errors. Instead of analyzing expression level of
the parental strains (E), we analyzed their intron usage frequency
for the sets of outlier intron junctions.

Examining gene expression co-regulation among
outliers for adult
To study the level of co-regulation among outliers related to cold
adaptation, we focused on the expressions of the outliers in the
cold-derived populations. For each pairwise combination of two
outliers, we calculated the correlation coefficient of the expres-
sion values among the eight outbred samples. To test whether
the correlation coefficient is different from random expectation,
we permuted the eight outbred samples randomly for one gene
for each gene combination, requiring at least five of the eight
samples to be changed. Then we calculated the correlation coeffi-
cient between genes with the permuted samples. We repeated
the process 10,000 times to obtain a null distribution of the corre-
lation coefficient. The p-value was calculated as the proportion of
the null distribution that was equal or more than the actual coef-
ficient (one-tailed test). We used P< 0.05 as a cutoff to identify
significantly co-regulated outlier pairs. To compare the level of
co-regulation between populations, we calculated the proportion
of co-regulated pairs were significantly co-regulated for each
population as well as the number of significant co-regulated part-
ners for each gene in each population.

Examining between-population genetic
differentiation for genes with cis-effect
For the PST outliers identified with significant cis-effects, we hy-
pothesized that causative cis-regulatory elements may show ele-
vated allele frequency differentiation between the warm and cold
populations. For expression abundance, the majority of cis-regu-
latory SNPs are located within 2 kb upstream of the transcription
start site and downstream of the transcription end site
(Massouras et al. 2012). Therefore, we used the interval from 2 kb
upstream to 2 kb downstream as the focal region of a gene for
this analysis. We calculated window FST and SNP FST using
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sequenced genomes from Drosophila Genome Nexus (Lack et al.
2015, 2016a). For window FST, the division of windows within a
gene region was based on 250 nonsingleton variable sites per win-
dow in the ZI population (Pool et al. 2017). Each window needed to
have at least five genotypes for each population. Before assigning
window FST to the focal genes, we confirmed that there is no large
chromosomal scale of differentiation between populations for
each pair (Supplementary Figure S8). The highest FST for the win-
dows overlapping the focal region was assigned as its FST_winmax.
To determinate the statistical significance of FST_winmax, we calcu-
lated FST_winmax for all other blocks of the same number of win-
dows (to account for gene length) along the same chromosome
arm where cross-over rates were above 0.5cM/Mb (Comeron et al.
2012), but excluding those within 10 windows of the focal region.
The specific nonlow recombination regions are: 2.3–21.4 Mb for
the X chromosome, 0.5–17.5 Mb for arm 2 L, 5.2–20.8 Mb for arm
2 R, 0.6–17.7 Mb for arm 3 L, and 6.9–26.6 Mb for arm 3 R. SNP FST

was calculated for sites with at least 10 alleles for each popula-
tion. The highest value (FST_SNPmax) within the focal region was
thus obtained for the focal gene. Analogous to our FST_winmax per-
mutation, we also calculated FST_SNPmax for permuted regions
with the same number of SNPs as the focal region, along the non-
low cross-over rate region on the same chromosome arm. For
both FST_winmax and FST_SNPmax, we then focused on regions in the
upper 5% quantile of permuted values for further analysis. To
test whether the expression outliers with cis-effects are enriched
for high FST outliers, we analyzed the fraction of FST outliers (f) us-
ing a linear model (lm) in R:

f ¼ Typeþ Pair

where Type is outliers with cis-effect (cis-outlier) or nonoutliers,
and Pair is the population pair. The model above was compared
to a reduced model without the Type term using likelihood ratio
test (anova function with test ¼ “LRT”). For outlier genes that
showed a cis-effect and high FST, location and functional informa-
tion were obtained from Flybase (Thurmond et al. 2019).

Data availability
The raw RNAseq reads are available from the Sequence Read
Archive (SRA) under accessions SRR14179998-SRR14180176 and
BioProject PRJNA720479. The population genomics data are from
the Drosophila Genome Nexus (Lack et al. 2016a; http://www.john
pool.net/genomes.html). Custom R and Perl scripts for the cis- and
trans-effects simulation and analysis can be found at https://
github.com/YuhengHuang87/simulation_cis_trans. Supplemental
material is available at figshare: https://doi.org/10.25386/genetics.
14558805.

Results
Gene expression differentiations between warm-
and cold-derived populations
In a cold environment (15�C), we found the FR and EF populations
have significantly higher egg-to-adult viability than an ancestral
range population and the SD population follows the same trend
(Supplementary Figure S1 and Table S3). In contrast, at a 25�C be-
nign temperature all of the populations have relatively high sur-
vival (75%). These findings were consistent with past results (Pool
et al. 2017) in suggesting that the cold-derived populations have
adapted to low temperature.

We then surveyed the transcriptomes of larvae, pupae, and fe-
male adults for multiple genotypes from each cold- and warm-

adapted population using high-throughput RNA sequencing
(RNA-Seq). To focus on the transcriptomes of outbred genotypes,
we generated eight within-population crosses from each popula-
tion under the derived cold environment (15�C). We pursued this
outbred strategy to guard against inbreeding effects amplifying
within-population regulatory variation and therefore dampening
estimates of regulatory differentiation between populations (esti-
mated using the quantitative genetic index PST). Comparing our
inbred adult RNA-Seq data against outbred data from a subset of
the same strains, we found results that were mostly consistent
with that expectation: five out of six populations showed greater
expression variance in inbred than outbred data, and two out of
three population pairs showed higher PST values from outbred
than inbred data (Supplementary Table S6). We, therefore, fo-
cused on outbred data for subsequent population comparisons.

After performing PCA on normalized expression values, we
found that the first and second principle component of gene ex-
pression showed clear signals of developmental stages among
samples, while signals of transcriptome-wide population differ-
entiation were more modest (Supplementary Figure S2). We then
used PST to quantify phenotypic differentiation of expression and
splicing between populations in each pair. PST, analogous to FST

for genetic variation, measures the amount of trait variance be-
tween populations vs total variance for a phenotype (Merila 1997;
Brommer 2011; Leinonen et al. 2013). The genes/intron usages
with the highest PST quantiles are more likely to be under ecologi-
cal differential selection between populations than those with
lower PST quantiles (Leder et al. 2015).

Genes were filtered for analysis based on �200 counts across
all 48 within-population samples (eight samples per population,
six populations in total for three pairs). The numbers of genes
that passed the filters for analysis were: 4699 genes for larva,
5098 genes for pupa, and 6785 genes for adult. We initially ob-
served that in the ETH pair, the adult sample showed a general
shift in transcriptome-wide relative abundances between popula-
tions, caused by a few highly expressed genes (Supplementary
Figure S4). Further investigation suggested that the EF population
was primarily responsible for the observed ETH asymmetries in
adults (Supplementary Figure S5). Many of the highly expressed
genes in the cold-adapted and larger-bodied EF population (Lack
et al. 2016b) are related to muscle protein (Supplementary Table
S4). To correct for the influence of such changes on relative ex-
pression levels, we standardized the expression values of warm-
derived populations by the median expression ratio between
cold- and warm-derived populations, resulting in about the same
numbers of genes with increased and decreased expression in the
cold-derived population relative to the warm-derived one tran-
scriptome-wide (Supplementary Figure S4). To study gene expres-
sion divergence potentially under ecologically differential
selection, we calculated PST (see Materials and Methods). The PST

values for all genes for each population/stage are listed in
Supplementary Table S4. We used the upper 5% quantile of PST as
outliers for each population pair. For the outliers, there is a strong
directionality on the expression difference between populations
for the ETH pair (Figure 2): a large majority of ETH PST outliers
had higher expression in the cold-adapted EF population in lar-
vae and especially adults, with pupae showing a reversed pattern.
These asymmetries mirrored transcriptome-wide skews in ex-
pression proportion for this population pair, in that substantially
more genes had higher EF expression than the modal proportion
(Supplementary Figure S4). These observations suggest unique
regulatory features for the populations in the ETH pair, perhaps
hinting that many outlier genes might be co-regulated.
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Comparing PST outliers with published studies
Since there are studies comparing whole-body transcriptomes
between African and European populations in this species
(Müller et al. 2011; von Heckel et al. 2016), we examined whether
our PST outliers for adults from the MED pair overlapped with the
candidates showing differential expression between African and
European populations from the published datasets. While each of
these analyses might detect regulatory evolution that occurred in
Europe, we emphasize the distinctness of these geographic com-
parisons, since our EG sample differs substantially from the
Zimbabwe population featured in those studies. For upper 5%
quantile of PST outliers, we do not see more sharing with the pre-
vious candidates from either study than random expectations
(permutation test, P¼ 0.47 for comparing with Müller et al. 2011
and P¼ 0.39 for comparing with von Heckel et al. 2016). However,
for the upper 10% of PST, the outliers of MED are more likely to be
shared with the candidates from Müller et al. 2011 than random
expectations (permutation test, P¼ 0.0033) but not with those
from von Heckel et al. (2016) (permutation test, P¼ 0.47).
Moreover, among all the shared genes, our outliers were more
likely to show gene expression change in the same directions as
the previous candidates than the nonoutliers (v2 ¼ 6.3, df ¼ 1,

P¼ 0.012 for comparing with Müller et al. 2011, v2 ¼ 7.4, df ¼ 1,

P¼ 0.0065 for comparing with von Heckel et al. 2016).

X chromosomal and autosomal contributions to
regulatory evolution
To investigate the contribution of autosomes vs the X chromo-

some to the expression differentiation due to cold adaptation, we

surveyed the locations of PST outliers for different developmental

stages (Figure 3). At the larval stage, the proportions of PST out-

liers located on the X chromosome were lower than the genome-

wide level in each population pair (permutation test, P¼ 0.72 for

MED; P¼ 0.0076 for ETH; P¼ 0.021 for SAF). In contrast, at the

adult (female) stage, the proportions of outliers located on the X

tended to be higher than the background level (permutation test,

P¼ 0.30 for MED; P¼ 0.013 for ETH and P¼ 0.89 for SAF). For pupa,

the X chromosome enrichment was not significantly different be-

tween outliers and the background. Considering the three popu-

lation pairs together, the relative enrichments of outliers on the

X chromosome were significantly different among developmental

stages (likelihood ratio test, P¼ 0.048). The patterns of different

enrichment among stages were caused by larva/adult differences

(likelihood ratio test, P¼ 0.0058 for larva-adult; P¼ 0.25 for pupa-

Figure 2 The relationship between expression differences between populations and PST illustrates asymmetric expression differences in some
population pairs/developmental stages. The x-axis is the cold-derived population expression proportion, which is the ratio of mean expression of the
cold-derived population relative to the sum of mean expression values from the two populations. Proportion higher than 0.5 (red vertical dashed lines)
indicate a higher expression for the cold-derived population and the warm-derived one. The blue horizontal dashed lines show the upper 5% quantile
of PST.
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adult; P¼ 0.24 for larva-pupa). The larva/adult difference might
suggest either (1) a greater abundance of genes affecting adult fit-
ness on the X chromosome, as previously suggested (Gibson et al.
2002; Innocenti and Morrow 2010), (2) a greater influence of fe-
male fitness on X chromosome evolution (e.g., Vicoso and
Charlesworth 2006), in light of sex differences between our adult
(female) and larval (mixed sex) samples, or (3) differences in the
contributions of local adaptation and genetic drift to outlier sets
at different stages, in combination with differential effects of drift
between the X chromosome and autosomes (e.g., Pool and
Nielsen 2007).

Codirectional evolution in gene expression
between population pairs
Among the upper 5% of PST outliers, we found at least some sig-
nificant signals of parallel expression divergence in all three pair-
wise comparisons (MED vs ETH; MED vs SAF; ETH vs SAF), where
the shared outliers with co-directional changes (i.e., expression
difference between cold- and warm-derived populations in the
same direction for both pairs) were more abundant than
expected by random permutation (Table 1; Figure 4A). Averaged
across three pairwise comparisons, 6.7% of the outliers were
shared and changed consistently for the adult stage while 4.7% of
outliers were co-directional for larva and only 2.6% were co-direc-
tional for pupa (for which one population pair comparison for
pupa showed significant anti-directional changes). Changing the
PST outlier cutoffs to 2.5% or 10% produced qualitatively similar
patterns (Supplementary Table S7). We found one shared outlier
with co-directional changes among all three pairs for the adult
stage: Iml1, a regulator of cell size, starvation response, TOR sig-
naling, and meiosis initiation (Bar-Peled et al. 2013; Wei et al.
2014). No three-pair shared outliers were found for the larva and
pupa stages. One shared outlier among three pairs is not

significantly more than the expectation by permutation. Still, it is
worth noting that changing the PST outlier cutoff to 10% results in
12 shared outliers with co-directional changes among three pairs
(permutation test, P< 0.0001), which suggests that meaningful
regulatory evolution may extend beyond our defined outliers.
The names, PST values and quantiles of these 12 genes are shown
in Table 2. Of these genes, we note the role of CrebB in circadian
behavior, which is known to differ between D. melanogaster popu-
lations from different thermal environments (Svetec et al. 2015;
Cao and Edery 2017; Helfrich-Förster et al. 2018). Overall, these
analyses suggest that the adult stage has the highest level of par-
allel evolution while pupa has the lowest.

The analysis above requires genes being outliers in both popu-
lation pairs, which is quite restrictive (the naı̈ve expected propor-
tion of sharing between two pairs under a 5% PST cutoff is 5% �
5% � 0.5¼ 0.125%) and may miss some broader patterns of paral-
lel changes. We, therefore, performed a complementary analysis
which only required genes being outliers in one population pair
and examined whether the expression for this set of genes
changed in the same direction in another pair, regardless of out-
lier status in the latter pair. For example, 235 genes were outliers
in the MED pair at the larval stage. Then in another pair, we cal-
culated the fraction of the 235 genes with expression differences
between cold- and warm-derived populations in the same direc-
tion as for MED. There were excesses of co-directional changes
for the larval stage (Figure 4B). The patterns were weaker for the
adult stage and there were excesses of anti-directional changes
for the pupal stage. Changing the PST cutoff to 2.5% or 10% pro-
duce qualitatively similar patterns (Supplementary Figure S6).

We also performed similar analyses for PST outliers of alterna-
tive intron usage. The numbers of intron-excision junctions that
passed the cutoffs for PST calculation were 4520 for larva, 5574 for
pupa, and 7367 for adult. The adjusted gene quantiles for splicing

Figure 3 The fraction of PST outliers located on the X chromosome varies between developmental stages. The dashed error bar indicates the 95%
confidence interval for the permuted data. If the real data (orange bar) is outside the range of the error bar, it indicates the fraction is significantly
different from the genomic background (P< 0.05).

Table 1 Evidence for parallel expression evolution between population pairs

Stage Larva Pupa Adult

Population pairs MED SAF MED SAF MED SAF

ETH 3.4% (3.0%) 3.0% (3.4%) 5.5% (2.7%) 2.0% (2.0%) 3.0% (2.4%) 10.1% (2.9%)
SAF 7.7% (3.0%) — 0.4% (2.0%) — 5.3% (2.4%) —

The percentages of PST outliers with parallel expression abundance changes are shown. The random expectation is the median of the permuted proportions (in
brackets). The majority of proportions were higher than the expectation, with larvae and adult stages showing stronger patterns than the pupa. Those that were
significantly different from the random expectation are in bold (permutation test, P< 0.01). We found one case, the MED-SAF comparison at pupal stage, that
showed a significantly lower level of parallel evolution than the random expectation. Further detail regarding the numbers of shared and nonshared outliers can be
found in Figure 4A. MED, Mediterranean; ETH, Ethiopian; SAF, South Africa pair.
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are listed in Supplementary Table S5. The patterns of co-direc-

tional changes were qualitatively similar to those for gene ex-

pression (Supplementary Figure S7). The fractions of co-

directional changes were still highest for the larvae among the

three stages; all of the comparisons except one showed an excess

of co-directional changes relative to the background level, al-

though only one comparison is significant based on the permuta-

tion test (outliers from MED being co-directionally expressed in

SAF). Overall, the patterns for co-directional changes were

weaker for splicing than those for gene expression.

Supplementary Table S9 lists the genes with the top 20 PST for

both expression and intron usage for each population pair. An in-

teresting example is curled, which is an extreme splicing outlier

for ETH and MED, and an extreme expression outlier for ETH as

well. Also known as nocturnin, one isoform of this gene is thought

to have a dedicated role in circadian regulation (Nagoshi et al.

2010).

Figure 4 Extent and direction of parallel evolution in gene expression among population pairs. (A) Venn diagrams for the numbers of shared outliers
with co-directional changes between pairs and the rest of genes. (B) Fractions of co-directional gene expression changes between pairs for the PST

outliers identified in one pair of them. The name above is the pair used to identify outliers. The name below is the other pair in the comparison. The
outliers used for each bar is the summed number of the pair in the Venn diagram. The dashed error bar indicates the 95% confidence interval for the
fraction of co-directional expression changes in permuted data. If the real data are outside the range of the error bar, it indicates the fraction is
significantly different from random expectation (P< 0.05, two-sided test based on permuted distribution).

Table 2 The PST values and quantiles for the 12 genes that passed
the top 10% cutoff with consistent expression changes across
three population pairs at the adult stage

Pair MED ETH SAF

Gene name PST value Quantile PST value Quantile PST value Quantile

Iml1 0.58 0.0177 0.85 0.0055 0.79 0.0001
larp 0.42 0.0532 0.70 0.0401 0.51 0.0074
Smox 0.49 0.0345 0.66 0.0607 0.49 0.0087
sky 0.38 0.0694 0.68 0.0529 0.47 0.0102
AGO1 0.36 0.0818 0.70 0.0423 0.45 0.0134
CG10365 0.53 0.0251 0.67 0.0553 0.39 0.0195
Nepl3 0.35 0.0840 0.64 0.0744 0.34 0.0270
CG42674 0.34 0.0948 0.84 0.0057 0.29 0.0383
CrebB 0.44 0.0461 0.74 0.0268 0.24 0.0566
Cka 0.56 0.0202 0.75 0.0249 0.23 0.0606
par-1 0.34 0.0883 0.70 0.0396 0.22 0.0713
CG5116 0.45 0.0432 0.78 0.0171 0.20 0.0796

MED, Mediterranean; ETH, Ethiopian; SAF, South Africa pair.
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Enriched functional categories for the PST outliers
Significant GO terms enriched in different sets of PST outliers for
gene expression are listed in Supplementary Table S10. Among
the significant GO terms for different population pairs, we found
five terms shared between the MED pair (24 significant terms)
and ETH pair (47 significant terms) at the adult stage (mitochon-
drion, nucleoside metabolic process, ribonucleoside metabolic
process, purine nucleoside metabolic process and oxidation-re-
duction process). The level of sharing was significantly more
than expected by chance based on permuted outlier sets
(P< 0.001, no shared GO terms were found in the permuted data-
sets), suggesting functional convergence for adult development
to the cold environment for the MED pair and ETH pair. Further,
similar (though nonidentical) GO terms were identified from dif-
ferent pairs at different stages such as terms related to mitochon-
dria, nucleoside metabolism, and oxidoreductase complex.
However, the majority of GO terms were unique for different
pairs, suggesting that many functional changes for adaptation to
cold environments may be population-specific. For intron usage,
we only found one significant GO term for SAF pair at the larval
stage (meiotic cell cycle).

Cis- and trans-acting contributions to differential
gene expression at the adult stage
Gene expression differentiation can be caused by cis- or trans-reg-
ulatory effects. A cis-effect comes from a local regulatory muta-
tion and results in an allele-specific expression difference in a F1
hybrid; while a trans-effect is caused by remote loci that modify
both alleles in a diploid cell. Therefore, a cis-effect can be esti-
mated by the allelic expression in F1 hybrid (Cowles et al. 2002).
We quantify that effect based on the expression proportion in the
F1 offspring of a between-population cross for the allele from the
cold population minus 0.5 (null expectation when cis-effect ab-
sent). A trans-effect can be estimated by the expression difference
between parents that was not attributed to the cis-effect
(Wittkopp et al. 2004), as described in the Materials and Methods.

First, we described the transcriptome-wide patterns of cis- and
trans-effect sizes across all analyzed genes at the adult stage. The
magnitudes of trans-effect sizes were significantly larger than the
cis-effect sizes in all three population pairs (mean absolute cis-
and trans-effects were: MED pair, 0.07 vs 0.16, P< 2.2e-16; ETH
pair, 0.07 vs 0.16, P< 2.2e-16; SAF pair, 0.09 vs 0.11, P< 2.2e-16.
“Mann-Whitney” paired test.). Moreover, we found strong nega-
tive relationships between cis- and trans-effects within each pop-
ulation pair (Supplementary Figure S7), where the cis- and trans-
effects were generally in the opposite directions. Although the
pattern can be biologically meaningful, it may also represent an
artifact from using the same F1 expression data for allele specific

expression (ASE) estimation to infer both cis- and trans-effects.
Any measurement error on ASE will introduce an artifactual neg-
ative correlation between cis- and trans-acting changes (see
Discussion below).

Next, we used our flexible permutation approach (see
Materials and Methods and Supplemental File) to study how
many genes show a significant cis-, trans-effect, or both among
the three population pairs (Table 3). Figure 5A shows a graphical
depiction of cis- and trans-effects on F1 and parental samples, il-
lustrating cis-effects influence both F1 allele-specific expression
and the parental expression ratio while trans-effects only influ-
ence the parental expression ratio. Averaged across population
pairs, about 60% of genes show significant cis- and/or trans-effects
(62% for outliers and 59% for nonoutliers). We also found that
19% of genes show cis-regulatory effects while 53% of them show
trans-effects, consistent with trans-effects being stronger on aver-
age than cis-effects. This apparently greater prevalence of trans-
regulatory evolution was observed in spite of our lesser power to
detect trans- relative to cis-effects (Supplementary Text).

To examine the cis- and trans-regulatory contributions to
adaptive evolution of gene expression, we compared genes show-
ing cis- or trans-effects between PST outliers (Figure 5, B–D) and
nonoutliers. Because of the potential artifact generating opposing
cis- and trans-effects, we excluded genes showing both significant
cis- and trans-effects in opposite directions (Both anti-dir catego-
ries in Table 3). For genes showing significant cis-effects (Figure
6A), they were enriched in the outliers relative to the nonoutliers
for the MED pair (v2 ¼ 11.6, df ¼ 1, P¼ 0.00066) and the SAF pair
(v2 ¼ 4.8, df ¼ 1, P¼ 0.029) but not for the ETH pair (v2 < 0.01, df ¼
1, P¼ 1). While for significant trans-effects genes (Figure 6B), they
were enriched in the outliers relative to the nonoutliers for the
ETH pair (v2 ¼ 9.6, df ¼ 1, P¼ 0.0019) and the SAF pair (v2 ¼ 5.4, df
¼ 1, P¼ 0.020) but the enrichment is opposite for the MED pair (v2

¼ 10.2, df ¼ 1, P¼ 0.0014).
Because theory suggests that co-regulation of genes can am-

plify the contribution of trans-effects (Liu et al. 2019), we exam-
ined the level of co-regulation between pairwise outliers by
calculating the correlation coefficient between the expression
values among the eight outbred samples within each cold-de-
rived population. Indeed, the percentage of pairwise correlation
with evidence of co-regulation (P < 0.05) is much higher in EF
population than that in FR and SD populations (Figure 6C,
Supplementary Table S11). At the gene level, the median number
of significant co-regulatory partners for EF is about twofold more
than that for FR and SD (Figure 6D). This pattern supports the hy-
pothesis that substantial co-regulation of outlier genes results in
more significant trans-effects for the ETH pair (Figure 6B).
Furthermore, the strong co-regulation in EF might be related to
the asymmetry observed in the ETH outliers (Figure 2). However,

Table 3 The relative prevalence of significant cis- and trans-regulatory differences for PST outliers vs nonoutliers varies among
population pairs

Pair Expression type Total tests Cis only Trans only Both co-dir Both anti-dir Neither

MED PST outliers 184 20 (11%) 74 (40%) 6 (3%) 14 (8%) 70 (38%)
Nonoutliers 4182 199 (5%) 2203 (53%) 99 (2%) 324 (8%) 1357 (32%)

ETH PST outliers 231 12 (5%) 136 (59%) 10 (4%) 14 (6%) 59 (26%)
Nonoutliers 4569 297 (7%) 2224 (49%) 137 (3%) 379 (8%) 1532 (34%)

SAF PST outliers 167 22 (13%) 47 (28%) 0 (0%) 15 (9%) 83 (50%)
Nonoutliers 3993 250 (6%) 691 (17%) 40 (1%) 738 (18%) 2274 (57%)

Numbers of gene expression abundance traits showing different regulatory effects for PST outliers and nonoutliers are shown. The percentage in parentheses
indicates the fraction of genes in each category relative to total genes in the tests. MED, Mediterranean; ETH, Ethiopian; SAF, South Africa pair.

Y. Huang et al. | 11

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab077#supplementary-data


the pattern could reflect variation in cell type content among

strains rather than co-regulation within cells (see Discussion).
To study the role of cis- and trans-regulatory effects on the par-

allel adaptation, we further focused on the outlier genes. We cate-

gorized the top 10% PST outliers based on whether they were

shared between two pairs with consistent expression changes

(parallel) or opposite changes (nonparallel). Because genes with

cis- (or trans-) effects in both population pairs in the parallel cate-

gory would indicate the contribution of cis- (or trans-) effects to

parallel adaptive evolution, we identified shared outlier genes with

cis- (or trans-) effects in any two pairs in both parallel and nonpar-

allel categories (excluding genes showing both significant cis- and

trans-effects in opposite directions). For cis-effects, only one gene

(CG42788) is significant in both ETH and SAF pairs (Figure 6E).

While for trans-effects, the numbers of genes showing trans-effect

are four for the MED and ETH pairs (CG8034, CG33981, kst, and

wdb), two for the MED and SAF pairs (scf and AP-2r) and four for

the ETH and SAF pairs (CG7766, Dlg5, larp, and Pink1). Of these, larp

had PST quantiles near or below 0.05 in all three population pairs

(Table 2); its functions include mitochondrial regulation (Zhang

et al. 2019). There are significant enrichments of trans-effect genes

in the parallel outlier category relative to the nonparallel category

in two out of three population pair comparisons (Figure 6F, MED

and ETH: P¼ 0.0097; MED and SAF: P¼ 0.014; ETH and SAF: P¼ 1;

Fisher’s Exact Tests). As a complementary analysis, we also in-

cluded the nonshared outliers in the nonparallel category, and we

found qualitatively similar patterns for cis- and trans-effects

(Supplementary Figure S9). Overall, there is stronger evidence of

trans-regulatory evolution contributing to parallel gene expression

changes between cold-adapted populations.

Cis- and trans-acting contributions to differential
intron usage at the adult stage
For all intron usage traits, we found the magnitude of trans-

effects on average to be higher than that of cis-effects (mean ab-

solute cis- and trans-effects are: MED pair, 0.13 vs 0.17, P¼ 0.0001;

ETH pair, 0.30 vs 0.32, P¼ 0.04; SAF pair, 0.17 vs 0.19, P¼ 0.0044.

“Mann-Whitney” paired test). Because of the limited diagnostic

SNPs with enough read depth located in the intron junction

regions, there are few outlier introns tested for cis- and trans-reg-

ulatory effects (Supplementary Table S12).

Elevated genetic differentiation at cis-regulated
expression outliers
Since the cis-regulatory mutations contributing to local adapta-

tion may show differentiation in allele frequency between

Figure 5 Population pairs show distinct patterns of cis- and trans-regulatory evolution for expression outliers. These plots depict evidence for cis- and
trans-regulatory evolution based on the relative expression proportion of cold strain alleles in parental and F1 datasets. (A) Conceptual depiction of cis-
and trans-effects. Cis-effects change the F1 allele-specific expression and the parental expression proportion concordantly (along the one-to-one ratio
line). Trans-effects only change the parental expression proportion but not the F1 allele-specific expression (vertical line y¼ 0.5). Co-directional cis- and
trans-effects (CisTransCodir) locate in the two spaces within the 45� angle between the Cis vector and the Trans vector. Anti-directional cis- and trans-
effects (CisTransAntidir) locate in the two spaces within 135� angle between Cis vector and Trans vector. (B–D) Evidence for cis- and trans-regulatory
evolution of putatively adaptive expression differences between warm- and cold-derived populations (expression PST outliers).
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populations, we examined genetic differentiation for expression
outliers with cis-effects (including cis-only genes and genes with
both cis- and trans-effects to increase sample sizes). We examined
whether each of these cis-outliers shows high FST between that
pair of cold- and warm-adapted populations—for both window
FST (FST_winmax) and maximum SNP FST (FST_SNPmax). A gene showing
both significant cis-effect and higher FST quantile (here, the top
5% vs comparable genomic regions) could reflect adaptive regula-
tory evolution targeting the surveyed sequences or nearby sites.
We first confirmed that there is little chromosomal scale differ-
entiation between populations (aside from known moderate X-
autosome differences for the MED pair; Lack et al. 2015) by plot-
ting window FST across the major chromosome arms
(Supplementary Figure S8). We observed no obvious clustering of
PST outliers along the chromosome arms. For window FST (Figure

7A), high FST is enriched in cis-effect outliers relative to the non-
outliers for the MED pair (P¼ 0.022. Fisher’s Exact Test) and the
other two pairs show the same trend (ETH: P¼ 0.22; SAF: P¼ 0.23).
Although the MED result would be only marginally significant if
correcting for the three tests performed, a clearer result is
obtained when considering the three population pairs together.
In this analysis, the fractions of genes with high window FST were
significantly higher in cis-outliers than that in nonoutliers (likeli-
hood ratio test, P¼ 0.0056). For maximum SNP FST (Figure 7B), the
MED and SAF pairs showed significant enrichments of high FST in
cis-effect outliers vs the nonoutliers, while the ETH pair showed a
weak trend in that direction (MED: P¼ 0.012; ETH: P¼ 0.49; SAF:
P¼ 0.030). Similar analysis combining the three pairs found that
the fractions of high maximum SNP FST were significantly higher
in cis-outliers than that in nonoutliers (likelihood ratio test,

Figure 6 The prevalence of cis- vs trans-regulatory PST outliers differs between population pairs, while trans changes show greater parallelism. The upper
panels show the fractions of genes with cis regulatory effects (A) and those with trans-effects (B) for PST outliers and nonoutliers in each population pair.
The middle panels show the proportion of co-regulated pairs among all pairwise outliers (C) and the numbers of co-regulatory partners for outlier
genes (D) in each cold-derived population. The lower panels show the fractions of parallel outlier genes (i.e., shared and codirectional between
population pairs) and nonparalleled outlier genes (i.e., shared and anti-directional between population pairs) showing cis-effects (E) and trans-effects (F)
in different population pairs. The number above the bar shows the denominator of the fraction (A,B,E,F). The denominators for cis- and trans-effects are
the same. *Indicates the fractions are significantly different between two categories (P< 0.05).
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P¼ 0.0045). These results reflected more than twofold enrich-
ment of FST outliers among cis-regulated PST outliers across popu-
lation pairs.

We further examined potential targets of cis-regulatory local
adaptation, excluding genes with cis- and trans-effects in the op-
posite directions. For the cis-genes of the MED pair, Ciao1 and
Cyp6a22 showed high window FST, CG42565 showed high
FST_SNPmax, and CG8034 and Cyp6a17 showed both. CG8034 (a pre-
dicted monocarboxylic acid transporter) was also cited above as
having parallel trans-regulatory evolution between the MED and
ETH pairs, and this gene’s cis- and trans-effects were both upregu-
lated in FR relative to EG in MED. CG42565 represents a differen-
tially spliced product of a transcript that alternatively yields an
isoform of CG13510, which is upregulated in response to cold (Qin
et al. 2005). Interestingly, Cyp6a22 and Cyp6a17 belong to the cyto-
chrome P450 protein family (Cyp6a22 is 248 bp upstream of
Cyp6a17). This region harbors a polymorphic deletion of Cyp6a17
which is associated with both colder temperature preference
(Kang et al. 2011; Chakraborty et al. 2018) and lower insecticide re-
sistance (Duneau et al. 2018). Based on the diagnostic SNPs for
Cyp6a17 (Good et al. 2014), we found the France-enriched allele
for Cyp6a22 is likely linked to the Cyp6a17 deletion. Likewise, at
the population level, the frequency of intact Cyp6a17 copy is 0.44
in France and 0.95 in EG. Hence, adaptive expression differences
may sometimes be driven by gene copy number differentiation
between populations. For the cis-genes of ETH, RpL24 showed
high window FST and KrT95D showed high FST_SNPmax. For SAF,
GXIVsPLA2 showed high FST_SNPmax, while AGO2 showed both high
window FST and high FST_SNPmax. AGO2 is involved with antiviral
defense and developmental regulation (Deshpande et al. 2005;
Nayak et al. 2010) and was previously found to contain fixed dif-
ferences between European and African populations (Pool 2015).
For the genes showing high FST_SNPmax in any pair, we plotted the
SNP FST along the gene region and nearby 20 kb to show the sites
that may be the most likely targets of selection (Figure 8). For
CG42565, CG8034 and KrT95D, we observed that the highest FST

sites were located within the gene regions. While for GXIVsPLA2,
the highest SNP FST was 1758 bp downstream of the gene. For
AGO2, the highest SNP FST was 6359 bp downstream but the third
highest SNP FST was within the gene. Overall, the genetic differen-
tiations between cold- and warm-derived populations around
these candidate genes can be quite local, but the linked signal of
natural selection can extend further, and there are often multiple
SNPs that could represent plausible targets of local adaptation
within and outside a given gene region.

Discussion
Parallel evolution has often been studied at the population ge-
netic and trait levels, but it has less frequently been analyzed at
the transcriptome level (Stern 2013; Juneja et al. 2016). In this
study, we used three recent instances of adaptation to colder cli-
mates in D. melanogaster to study the evolution of gene expression
and alternative splicing. We found a unique pattern of transcrip-
tomic evolution in the high altitude EF sample, involving elevated
expression of highly expressed muscle proteins and many other
genes. We found the locations of differentially expressed genes
on the X chromosome vs the autosomes varies among develop-
mental stages, with the adult female stage having relatively more
differentially expressed X-linked genes than the larval stage. We
then saw signals of parallel evolution in expression that were
higher for larval and adult stages than for pupa. Furthermore, we
studied cis- and trans-regulatory evolution in the context of this
ecological adaptation, finding that the relative roles of these reg-
ulatory mechanisms differ strongly among population pairs. And
we found a signal of trans-regulation contributing more predict-
ably to the parallel evolution between population pairs. Finally,
those outliers showing cis-effects were enriched for high genetic
differentiation between populations, suggesting that some of
them were the direct targets of selection in cold environments.

Previous comparative transcriptomic studies on multiple pairs
of Drosophila populations/species have found parallel gene ex-
pression differences between high and low latitude populations
(Zhao et al. 2015; Juneja et al. 2016). However, because both clines
in Australia and North America came from admixtures between
European and African ancestry and tropical populations in both
clines have a greater proportion of African ancestry (Bergland
et al. 2016), it is hard to disentangle adaptive divergence between
high and low latitude populations from demographic effects. The
demographic influences may be smaller when comparing clines
between species pairs (Zhao et al. 2015). Interestingly, the latter
study found 10–20% differential expressed genes between high-
and low-latitude populations were shared and changed co-direc-
tionally between two species D. melanogaster and D. simulans. The
percentages are even higher than what we found between popu-
lation pairs at adult stages (3–10%).

One important reason for the milder patterns of parallelism
among our population pairs may be the different selection agents
in their unique habitats. In Zhao et al. (2015), samples from
the high and low latitude populations from both species were
collected in the same areas. While for us, the cold-derived FR
population from the MED pair colonized a higher latitude

Figure 7 Enrichment of cis-outliers for genes with high window FST (A) and high SNP FST (B) for each population pair. The number above the bar shows
the denominator of the fraction. *Indicates the fractions are significantly different between cis-effect outliers and nonoutliers (P< 0.05, Fisher’s Exact
Test).
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environment than the related warm population, whereas the
other two cold-derived populations colonized higher altitude
environments where the selection agents may include air pres-
sure, desiccation, and ultraviolet radiation (Pool et al. 2017).
Although EF and SD have both adapted to higher altitudes (EF at
3070 meters above sea level, SD at 2000), SD is seasonally cold
(like FR) whereas EF is perpetually cool. We should also note that
the standing variation available for adaptation may have differed

between our cold-derived populations due to their distinct demo-
graphic histories, including the trans-Saharan bottleneck affect-
ing the MED pair and a milder bottleneck in the history of the
ETH pair, but no meaningful bottleneck involving the SAF pair
(Sprengelmeyer et al. 2018). Hence, although we do find signifi-
cant evidence of parallel gene regulatory adaptation, we suggest
that there are both ecological and population genetic reasons to
expect substantial nonparallel adaptation as well.

Figure 8 Local peaks of FST between warm- and cold-derived populations are observed at some candidate genes for adaptive cis-regulatory evolution.
SNP FST along the candidate genes with flanking regions of 20 kb is shown. The top diagram depicts the coding (orange) and noncoding (gray) exon,
captured from GBrowse 2 of D. melanogaster (R5.57) from FlyBase (St Pierre et al. 2014). Cyp6a17 is not plotted because of the known gene-scale
polymorphic deletion.

Y. Huang et al. | 15



Notably, the EF population exhibits distinct phenotypic evolu-
tion such as darker pigmentation (Bastide et al. 2014), larger body
size (Pitchers et al. 2013; Lack et al. 2016b), and reduced reproduc-
tive rate (Lack et al. 2016b). This distinct evolution in the EF popu-
lation may explain the strong directionality in gene expression
changes between EF and EA for the outliers (Figure 2), the greater
abundance of trans-regulatory outliers, and the elevated levels of
co-regulation among outliers (Figure 6). Therefore, the underlying
transcriptomic evolution for EF may partly reflect its unique phe-
notypic evolution, not just adaptation to lower temperature. For
example, the upregulation of muscle proteins could reflect the
differential abundance of tissues between these Ethiopian popu-
lations that differ in size. This size evolution may have also al-
tered the relative proportions of different cell types, which may
have driven some of the population differences in gene regulation
observed from our whole-organism samples. Future tissue-spe-
cific or cell type-specific expression studies involving the EF pop-
ulation can help to examine these possibilities.

We found some evidence of parallel expression evolution be-
tween our cold-adapted populations. Developmental stage has a
strong effect on the levels of this parallelism, with adult and
larva showing significant parallelism while pupa showed a much
weaker pattern (Table 1; Figure 4). This is consistent with the
observations that larval and adult stages show local adaptation
to native temperature but not the pupal stage (Austin and
Moehring 2019). It is possible that pupal metamorphosis might
reflect a relatively constrained developmental program that lim-
its opportunities for thermal adaptation. The high level of
detected parallelism in larvae could also reflect a higher detec-
tion power due to less tissue diversity and hence broader spatio-
temporal expression of relevant differences. The intriguing
pattern of anti-parallelism for some combinations of the pupal
stages might suggest that other selective agent is more important
than cold (e.g., oxygen level, ultraviolet radiation) for certain pop-
ulation pairs and the direction of selection on gene expression is
opposite to the cold. Furthermore, the anti-directional pattern at
the pupal stage could be caused by different rates of development
for cold-derived populations relative to the warm-derived ones in
different pairs. Evidence for such differences is mixed: rates were
found to differ between high and low latitude populations in
Australia (James and Partridge 1995) but not between our EF and
ZI populations (Lack et al. 2016b). Because tissues at different
days can generate a wide range of gene expression difference
(Hsu et al. 2019), if the cold-derived population develops faster
than the warm-derived one in one pair but in another pair the
cold-derived population develops slower than the respective
warm-derived one, many of the expression differences will be
anti-directional between the two pairs. Moreover, because the
pupal and larval samples were mixed sex, different rates of de-
velopment for males and females could led to a biased sex ratio
in a sample, especially for pupae (Testa et al. 2013). If the sex ratio
bias happened in the cold-derived population in one pair but the
warm-derived population in another, it could conceivably result
in anti-directional patterns for sex-biased genes.

Compared to the expression abundance, the pattern of paral-
lelism is much weaker for intron usage (Supplementary Figure
S7), which may partly stem from lower power to detect intron us-
age change (only a small proportion of reads are informative for
exon junctions). However, we still found the MED pair and SAF
pair show more parallel changes than the combinations with the
ETH pair, which is consistent with results for expression abun-
dance. Given the increasing evidence for alternative splicing con-
tributing to environmental response and adaptation (e.g., Singh

et al. 2017; Signor and Nuzhdin 2018; Smith et al. 2018), we need to
study both expression abundance and splicing to fully under-
stand the evolution at the transcriptome level. The development
of sequencing approaches with long reads that cover the entire
transcripts (e.g., Iso-Seq) will enable us to quantify isoforms fre-
quency directly and broaden the scope of alternative splicing var-
iation that can readily be quantified. Since splicing changes
during development and among tissues (Brown et al. 2014;
Gibilisco et al. 2016), a detailed sampling throughout development
of different tissues will also be necessary to understand the role
of splicing on ecological adaptation.

We found trans-effects on expression were more common
than the cis-effects across the transcriptome (Table 3), which is
consistent with some previous studies (e.g., McManus et al. 2010;
Coolon et al. 2014; Albert et al. 2018; Glaser-Schmitt et al. 2018) but
not with others (e.g., Lemmon et al. 2014; Mack et al. 2016). The
transcriptome-wide prevalence of trans-effects may be caused by
random regulatory changes biased toward trans-regulation be-
cause of the larger trans-mutational target size (Landry et al. 2007;
Metzger et al. 2016). Or, trans-regulatory changes may have higher
potential for coordinate regulation of multiple genes in networks
(Metzger et al. 2016; Liu et al. 2019). To focus on the evolved
changes potentially related to adaptation, we compared the pro-
portion of genes with cis-/trans-effects for PST outliers and to those
for nonoutliers and saw both effects were enriched in outliers in
certain pairs (Figure 6, A and B). These results indicate that the
mechanisms of adaptive gene regulatory evolution are highly
population-specific, and that either regulatory mechanism has
the potential to play a disproportionate role in ecological adapta-
tion.

Moreover, we found a predominance of trans-effects associ-
ated with parallel outliers than the nonparallel outliers (Figure 6,
E and F). In part because of the larger mutational target size of
trans-regulatory variation for a given target gene, the standing ge-
netic variation for trans-regulatory variants may be higher than
the cis-ones in the ancestral population and therefore the trans
variants can respond to selection in different population pairs.
However, studies in Arabidopsis thaliana and Capsella grandiflora
find that trans-eQTLs tend to have lower minor allele frequencies
than cis-eQTLs (Zhang et al. 2011; Josephs et al. 2020) but it is
unclear whether these populations represent the ancestral state
before experiencing environmental changes. Also, the potential
capacity of trans-regulatory factors to co-regulate many genes
may amplify the probability of parallel changes between popula-
tion pairs. Furthermore, since we used whole-body adult sam-
ples, it is possible that some trans-acting factors regulated genes
similarly across tissues while the some cis-effects were tissue-
specific and were undetected in our mixed-tissue samples.
Finally, we emphasize that our study focuses on regulatory
changes that may have relatively larger effects (in focusing on PST

outliers, and in basing cis/trans analysis on strains showing
clearer differences); but small changes may be important for reg-
ulatory evolution as well, and may be differentially represented
between categories (e.g., cis vs trans, parallel vs nonparallel).

When we considered genes/introns showing both cis- and
trans-effects, we observed that the two types of effects were gen-
erally in opposite directions (anti-directional; Table 3). This is
consistent with the idea that gene regulation is under stabilizing
selection in general and gene regulatory networks evolve nega-
tive feedback to buffer effects of regulatory changes (Denby et al.
2012; Coolon et al. 2014; Bader et al. 2015; Fear et al. 2016). With re-
gard to our PST outliers, it is possible that cis-acting changes might
have evolved to compensate for unfavorable pleiotropic impacts
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of adaptive trans-regulatory evolution (or possibly vice-versa).
However, negative correlations between cis- and trans-effects can
also be an artifact coming from the measurement error on F1 ex-
pression data. Because the F1 data was used to estimate ASE and
compared it to 0.5 (cis-effect null) and to parental expression pro-
portion (trans-effect null), measurement error will introduce arti-
factual negative correlation between cis- and trans-acting
changes. Therefore, whether the opposing effects between cis-
and trans-acting changes are biologically meaningful will require
further study. As Fraser (2019) and Zhang and Emerson (2019)
proposed, using independent F1 replicates or other approaches
such as eQTL mapping to infer cis- and trans-effects separately is
necessary to affirm evidence of compensatory evolution.

We expect that the adaptive expression divergence caused by cis-
regulatory changes should leave a signal in the genetic variation of
the nearby genomic region. Therefore, we used FST statistics to quan-
tify genetic differentiation for the region around the focal genes.
Window FST is sensitive to classic hard sweeps, and relatively useful
for incomplete sweeps and moderately soft sweeps, but it is less use-
ful for soft sweeps with higher initial frequencies of the beneficial al-
lele (Lange and Pool 2016), for which SNP FST may be more sensitive.
Indeed, a previous genomic study on these same populations found
a stronger signal of parallel change for SNP FST than for window FST

genome-wide (Pool et al. 2017). Here, we found genes with outlier cis-
effects are enriched for those that show high FST, especially those
with high SNP FST (Figure 7, A and B). Hence, standing genetic var-
iants may have contributed importantly to the cis-regulatory changes
for adaptation in our populations. Genes with both significant cis-
effects and high FST are likely to be the direct targets of the environ-
mental selection and good candidates for future mechanistic studies.

Using three natural fly population pairs with recent adaptive di-
vergence, our study found intriguing patterns of parallel evolution in
gene expression and provided new insights on the underlying regu-
latory effect. In the future, using other approaches to study cis- and
trans-effects in these populations would be necessary, such as eQTL
mapping, which can provide more genetic information about the
trans-regulatory loci. Also, studying the gene expression in different
tissues, including different organs from males and females, would
provide us a clearer and more comprehensive picture about parallel
gene expression evolution. It would also be informative to study
other phenotypes besides gene expression that are more related to
thermotolerance such as the metabolic pathways identified in this
study or nervous system function related to chill coma. Moreover,
studying the phenotypic plasticity at different developmental stages
could help to explain the different patterns of parallelism in expres-
sion evolution across stages and allow us to better understand the
importance of local adaptation vs plasticity in thermotolerance.
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