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Abstract: The design and optimization of new-generation solid-state quantum hardware absolutely
requires reliable dissipation versus decoherence models. Depending on the device operational
condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic-
like) to quantum-kinetic approaches. The primary goal of this paper is to review in a cohesive way
virtues versus limitations of the most popular approaches, focussing on a few critical issues recently
pointed out (see, e.g., Phys. Rev. B 90, 125140 (2014); Eur. Phys. J. B 90, 250 (2017)) and linking
them within a common framework. By means of properly designed simulated experiments of
a prototypical quantum-dot nanostructure (described via a two-level electronic system coupled
to a phonon bath), we shall show that both conventional (i.e., non-Lindblad) Markov models
and density-matrix-based non-Markov approaches (i.e., quantum-kinetic treatments) may lead to
significant positivity violations. While for the former case the problem is easily avoidable by choosing
genuine Lindblad-type dissipation models, for the latter, a general strategy is still missing.

Keywords: semiconductor nanodevices; electronic phase coherence; dissipation models; Markov
limit; quantum technologies; density-matrix formalism

1. Introduction

Quantum-mechanical state superposition and correlation (i.e., entanglement) are the key players
for the concrete realization of quantum information processing devices [1,2]. In particular, the pivotal
ingredient for many solid-state implementations is electronic phase coherence [3,4]. The latter is,
however, strongly hindered by dissipation and/or decoherence phenomena [5]. For the design and
optimization of new-generation electronic quantum devices [6,7], it is then imperative to employ
reliable dissipation versus decoherence models. The most popular quantum-mechanical picture
for the description of phase coherence versus dissipation/decoherence in open quantum systems
is the well-known density-matrix formalism [8], recalled and applied to the case of semiconductor
nanodevices in Section 2. Within this picture, the simplest example is a two-level system, described by
the following (two-by-two) density matrix:(

ρbb ρba
ρab ρaa

)
=

(
fb p
p∗ fa

)
(1)

in terms of the ground- and excited-level populations, fa and fb respectively, as well as of the interlevel
phase coherence (or polarization) p. In this case, the simplest dissipation model is the well-known
T1/T2 scheme [7]. This fully phenomenological approach accounts for dissipation versus decoherence
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processes via bare relaxation-time approximations: the evolution of the density matrix in Equation (1)
is described by the following set of coupled equations:

d fa/b
dt

= −
fa/b − f ◦a/b

T1
,

dp
dt

=
∆c

ıh̄
p − p

T2
(2)

(∆c = εb − εa denoting the interlevel energy splitting), for which the solution is simply given by

fa/b(t) = f ◦a/b + ( fa/b(0)) e−
t

T1 , p(t) = p(0)e
∆ct
ıh̄ e−

t
T2 . (3)

At long times, the level populations fa/b tend to their thermal-equilibrium values f ◦a/b with a relaxation
time T1, while the interlevel polarization p decays to zero with another relaxation time, T2. In spite of
its success in the interpretation of many ultrafast optical experiments [9], the T1/T2 model may lead to
totally unphysical results when the two relaxation times are treated as independent parameters.

Indeed, as discussed below, a crucial prerequisite of any reliable dissipation model is to preserve
the positivity of the density matrix, namely the positive-definite character of its eigenvalues. For the
case of our two-level system, such basic requirement translates into the condition that the eigenvalues

Λ± =
1
2

(
( fa + fb)±

√
( fa − fb)2 + 4|p|2

)
(4)

of the density matrix in Equation (1) are nonnegative or, equivalently, that the determinant fa fb − |p|2
is nonnegative. Positivity violation therefore does not necessarily correspond to a negative value
of either fa or fb, as it may also occur in the presence of nonnegative level populations. This is
the case, for example, of the T1/T2 solution in Equation (3) for particular combinations of the two
phenomenological parameters, as shown in Figure 1. This pathological behavior is well known and is
ascribed to the fact that the two relaxation times T1 and T2 are not physically independent quantities;
indeed, by adopting more refined descriptions [7], they may be expressed in terms of microscopic
scattering rates corresponding to the various interaction processes. The first obvious conclusion drawn
from the above scenario is the potential inadequacy of barely phenomenological models and therefore
the need for fully microscopic treatments.

Figure 1. Time evolution of the eigenvalues Λ± of the density matrix in Equation (1) corresponding
to a two-level system treated within the T1/T2 model in Equation (3) in the low-temperature limit,
that is, f ◦a = 1, f ◦b = 0: Here, the system is initially prepared in a so-called Bell state, fa(0) = fb(0) =
p(0) = 1

2 , and the two relaxation times are T1 = 1 ps and T2 = 20 ps. For this particular parameter
choice, the lowest eigenvalue becomes negative, which implies that the density matrix becomes not
positive-definite.
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The microscopic derivation of reliable scattering superoperators is one of the most challenging
problems in quantum physics. For purely atomic and/or photonic systems, dissipation and
decoherence phenomena may successfully be treated via adiabatic-decoupling schemes [8] in terms
of extremely simplified models based on a few key parameters; within such effective treatments,
the main goal is to derive a suitable form of the system-environment Liouville superoperator, able to
preserve the positivity of the system density matrix [10]. This is typically accomplished by identifying
so-called Lindblad superoperators [11] expressed in terms of a few crucial system–environment
coupling constants. In contrast, for solid-state materials and related devices, the complex many-body
quantum evolution results in a highly nontrivial interplay between electronic phase coherence and
dissipation/decoherence [12–16], thus requiring the adoption of microscopic treatments.

Generally speaking, the microscopic derivation of solid-state dissipation models within the
density-matrix picture may involve one or more of the following three key steps: (i) mean-field
approximation, (ii) adiabatic or Markov limit, and (iii) semiclassical or diagonal approximation.

When all these three steps/approximations are performed, the collision term familiar from the
Boltzmann theory is obtained; the latter, when applicable, constitutes a robust/reliable particle-like
description in purely stochastic terms, thus providing in any case physically acceptable results.

In contrast, the combination of the first two steps only, namely mean-field approximation
and adiabatic limit, allows one to derive so-called Markovian scattering superoperators, for which
action may lead again to positivity violations [17]. Indeed, as originally pointed out by Spohn and
coworkers [18], the choice of the adiabatic decoupling strategy is definitely not unique. Only the case
studied by Davies [10], namely a “small” subsystem interacting with a thermal environment, could be
shown to preserve positivity. However, such result was restricted to finite-dimensional subsystems
(e.g., few-level atoms) and to the particular projection scheme of the partial trace. Thus, as such,
it cannot be straightforwardly extended to the study of solid-state systems.

To overcome this severe limitation, a few years ago, an alternative and more general Markov
procedure has been proposed [19]; the latter allows for a microscopic derivation of Lindblad-type
scattering superoperators [11], thus preserving the positive-definite nature of the electronic density
matrix. More recently, such an alternative Markov scheme combined with the conventional mean-field
approximation has allowed for the derivation of a positive-definite nonlinear equation for the
single-particle density matrix [20,21], able to describe both carrier–phonon and carrier–carrier
interaction; the latter has been recently applied to the investigation of scattering nonlocality in
GaN-based materials [22] and carbon nanotubes [23] as well as to the study of carrier capture
processes [24,25].

For strong (i.e., non-perturbative) system–environment couplings combined with extremely short
excitation and/or detection timescales, the adoption of the adiabatic or Markov schemes just recalled
becomes questionable, and memory effects may be investigated within the density-matrix formalism
via so-called quantum-kinetic schemes [12,15]. Indeed, stimulated by the pioneering papers by Haug
and coworkers [26] as well as by Kuhn and coworkers [27], over the last decade, several groups have
routinely employed such non-Markovian techniques to study a wide spectrum of ultrafast coherent
phenomena in semiconductor bulk and nanostructures [28–61]. In spite of the undoubted success,
these quantum-kinetic treatments, based on the mean-field approximation only, may lead once again
to positivity violations. Indeed, such potential limitation, originally pointed out in the early days of
electron-phonon quantum kinetics by Zimmermann and coworkers [62], has been recently investigated
in more detail [63,64].

The primary goal of this paper is to review in a cohesive way virtues versus limitations of the
most used dissipation quantum models employed in the simulation of state-of-the-art electronic and
optoelectronic nanodevices, focussing on a few critical issues recently pointed out in Reference [21] as
well as in Reference [64] and linking them within a common framework. More specifically, by means
of properly designed simulated experiments of a prototypical quantum-dot nanostructure (described
via an electronic two-level system coupled to a phonon bath), we shall show the following:
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(i) conventional (i.e., non-Lindblad) Markov models may lead to significant positivity violations;
(ii) such intrinsic limitations may be avoided adopting properly designed Lindblad-type Markov

schemes;
(iii) density-matrix-based non-Markov models, namely quantum-kinetic treatments, may lead to

positivity violations as well.

The most important conclusion of our investigation is that the presence of positivity violations is
ascribed not only to the adiabatic approximation but also to the mean-field approximation. Indeed,
while for the case of Markov treatments (based on both adiabatic and mean-field approximations),
the problem is easily avoidable by employing genuine Lindblad-type dissipation models, for the case
of non-Markov treatments (based on the mean-field approximation only), a general strategy is still
missing. As a result, the unusual conclusion is that, in this case, two approximations work better
than one.

The paper is organized as follows: In Section 2, we shall focus on Markovian models,
comparing the conventional adiabatic-decoupling scheme with the Lindblad-type one and generalizing
the latter to the nonlinear (i.e., degenerate) regime. In Section 3, we shall discuss virtues versus
limitations of density-matrix-based non-Markovian models, namely quantum-kinetic treatments,
pointing out specific conditions/regimes which may lead to positivity violations. Finally, in Section 4,
we shall summarize and draw a few conclusions.

2. Markovian Dissipation Models

Within the spirit of the usual perturbation theory, the global solid-state Hamiltonian (electrons
plus various crystal excitations, e.g., phonons, plasmons, etc.) may be schematically written as

Ĥ = Ĥ◦ + ∑
s

Ĥ′s , (5)

where the first term is the unperturbed contribution that can be treated exactly and the
second term describes a number of perturbations Ĥ′s, corresponding to various interaction
mechanisms (e.g., carrier–phonon, carrier–carrier, etc.), which are typically treated within some
approximation scheme.

2.1. Conventional Adiabatic-Decoupling Scheme

Following the fully operatorial approach originally proposed in Reference [17]) and described in
more detail in Reference [7], the second-order (or incoherent) contribution to the time evolution of the
global (e.g., carriers plus phonons) density-matrix operator ρ̂ obtained via the conventional adiabatic
limit can be written as

dρ̂

dt

∣∣∣∣
inco

=
1
2 ∑

s

(
âsρ̂b̂s† − âs†b̂sρ̂

)
+ H.c. , (6)

where

âs =
Ĥ′s
h̄

, b̂s =
1
h̄

∫ +∞

−∞
e−

Ĥ◦ t′
ıh̄ Ĥ′se

Ĥ◦ t′
ıh̄ dt′ , (7)

and H.c. denotes the Hermitian conjugate.
The above Markov evolution is definitely non-Lindblad and therefore does not necessarily

preserve the positivity of the global density matrix ρ̂ [19]. The scattering superoperator in Equation (6)
may suitably be expressed in terms of generalized scattering rates. More specifically, denoting with |i〉
the generic eigenstate of the noninteracting Hamiltonian Ĥ◦ and with εi the corresponding energy
level, one gets

dρi1i2
dt

∣∣∣∣∣
inco

=
1
2 ∑

s,i′1i′2

(
P s

i1i2,i′1i′2
ρi′1i′2
−P s∗

i′1i′1,i1i′2
ρi′2i2

)
+ H.c. (8)
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with generalized scattering rates
P s

i1i2,i′1i′2
= as

i1i′1
bs∗

i2i′2
. (9)

It is possible to show [7] that their diagonal (i.e., semiclassical) elements (i1i′1 = i2i′2) coincide with the
standard Fermi’s-golden-rule prescription:

P s
ii,i′i′ =

2π

h̄
∣∣〈i|Ĥ′s|i′〉∣∣2 δ(εi − εi′) . (10)

Since the study of electro-optical processes in solid-state systems mainly relies on physical
quantities that depend on the electronic-subsystem coordinates only, it is customary to introduce a
many-body density-matrix operator

ρ̂c = tr{ρ̂}p , (11)

where the nonrelevant phononic (p) degrees of freedom have been traced out of the global
density-matrix operator ρ̂. It is worth stressing that such treatment of carrier–phonon interaction
applies to other bosonic degrees of freedom as well (e.g., photons, plasmons, etc.).

More specifically, by denoting with ρ̂◦p the equilibrium density-matrix operator of the
phononic subsystem and by adopting a carrier–phonon mean-field approximation via the following
state factorization

ρ̂ = ρ̂c ⊗ ρ̂◦p , (12)

it is possible to show [7] that the reduced dynamics dictated by the global evolution in Equation (6) is
still of the same form:

dρ̂c
dt

∣∣∣∣
inco

=
1
2 ∑

s

(
âs

cρ̂cb̂s†
c − âs†

c b̂s
cρ̂c

)
+ H.c. . (13)

Here, the explicit form of the reduced or electronic operators âs
c and b̂s

c can be derived starting from the
global scattering operators âs and b̂s in Equation (7). We stress that, in spite of their very same formal
structure, Equations (6) and (13) describe the system dynamics at different levels. This is confirmed
by the fact that, while the global operators in Equation (7) are always Hermitian, the electronic ones,
âs

c and b̂s
c, are generally non-Hermitian, a clear fingerprint of dissipation-versus-decoherence processes

induced by the phononic subsystem on the carrier one.
Within the above description, although a statistical average over the phononic degrees of

freedom has been performed, the electronic subsystem is still treated via a many-body picture.
Nevertheless, in the investigation of solid-state quantum materials and related devices, many of
the physical quantities of interest are described via single-particle electronic operators. This suggests
to treat the electronic subsystem via an additional mean-field (or Hartree–Fock) approximation.
When applicable [7], this last approximation step allows one to get nonlinear single-particle dissipation
models (see Section 2.3). In the low-density limit/regime, however, carrier–carrier interaction as
well as Pauli-blocking effects can safely be neglected, and the many-body Hartree–Fock scheme just
mentioned can conveniently be replaced by a simple one-electron model, i.e., the properties of a system
of noninteracting electrons are fully described by one electron only. This amounts to treating the carrier
subsystem in terms of a one-electron density matrix ρα1α2 , i.e.,

ρ̂c = ∑
α1α2

|α1〉ρα1α2〈α2| , (14)

where |α〉 denotes the generic one-electron eigenstate.
In the particular yet physically relevant case of a low-density carrier gas (c) interacting with a

phonon bath (p), the explicit form of the global Hamiltonian in Equation (5) is given by

Ĥ = Ĥ◦ + Ĥ′ =
(
Ĥc + Ĥp

)
+
(
Ĥcp

)
, (15)
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where
Ĥc = ∑

α

|α〉εα〈α| (16)

is the one-electron term,
Ĥp = ∑

q
εq b̂†

q b̂q (17)

describes the system of noninteracting phonons with wavevector q and energy εq, and

Ĥcp = ∑
αα′
|α〉
[
∑
q

(
gq,−

αα′ b̂q + gq,+
α′α b̂†

q

)]
〈α′| (18)

is the (one-electron) carrier–phonon interaction term. Here, εα is the energy level corresponding to the
generic one-electron eigenstate |α〉; − and + refer, respectively, to phonon absorption and emission;
while the explicit form of the coupling matrix elements gq,±

αα′ = gq,∓∗
αα′ depends on the particular phonon

branch (acoustic, optical, etc.) as well as on the coupling mechanism considered (deformation potential,
polar coupling, etc.).

Adopting the one-electron picture in Equation (14) and employing the explicit form of the global
(carrier plus phonon) Hamiltonian in Equation (15), it is possible to derive the following scattering
superoperator acting on the one-electron density matrix ρα1α2 [7]:

dρα1α2

dt

∣∣∣∣
inco

=
1
2 ∑

α′1α′2

(
P cp

α1α2,α′1α′2
ρα′1α′2

−P cp ∗
α′1α′1,α1α′2

ρα′2α2

)
+ H.c. (19)

with generalized carrier–phonon scattering rates

P cp
α1α2,α′1α′2

= ∑
q,±

aq,±
α1α′1

bq,±∗
α2α′2

, (20)

where

aq,±
αα′ =

√√√√2π
(

n◦q + 1
2 ±

1
2

)
h̄

gq,±
αα′ , bq,±

αα′ = aq,±
αα′ δ

(
εα − εα′ ± εq

)
, (21)

and n◦q denotes the equilibrium phonon distribution.
It is worth stressing that the diagonal elements (α1α′1 = α2α′2) of the generalized rates in

Equation (20) coincide once again with the usual Fermi’s-golden-rule prescription applied to
carrier–phonon interaction [7]:

Pα→α′ ≡ P
cp
α′α′ ,αα =

2π

h̄ ∑
q,±

∣∣∣gq,±
α′α

∣∣∣2 δ
(
εα′ − εα ± εq

)
. (22)

To investigate the impact of possible positivity violations induced by the conventional (i.e.,
non-Lindblad) adiabatic treatment reviewed so far, we consider a prototypical quantum-dot
nanostructure described again via the simple two-level system introduced in Section 1. The latter
is characterized by two electronic states only (α ≡ {a, b}) with an energy splitting ∆c = εb − εa and
is described by the two-by-two density matrix in Equation (1). Moreover, regardless of the specific
phonon mode considered, we shall adopt q-independent coupling matrices of the following form:(

gq,±
bb gq,±

ba
gq,±

ab gq,±
aa

)
=

(
0 g
g 0

)
. (23)



Entropy 2020, 22, 489 7 of 28

This corresponds to neglecting diagonal coupling terms (a→ a and b→ b); the related phonon-induced
energy renormalizations are relatively small in conventional solid-state systems and have negligible
impact on energy dissipation and decoherence phenomena.

As anticipated in Section 1, in this particular case, the basic positivity requirement amounts to
asking that whether the eigenvalues Λ± in Equation (4) or, equivalently, the determinant fa fb − |p|2
are nonnegative. In order to check the positivity of the density matrix, its eigenvalue analysis is
therefore imperative; more specifically, since Λ+ ≥ Λ−, it is enough to check the nonnegativity of the
eigenvalue Λ−.

For the simulated experiments presented here below, we are assuming as an initial condition a
low-density Bell state, namely fa(0) = fb(0) = p(0) � 1, and investigating energy dissipation and
decoherence induced on the two-level system by an acoustic-like phonon mode, i.e., a linear-dispersion
mode characterized by a bandwidth 0 ≤ εq ≤ ∆p much greater than the interlevel splitting ∆c.

Figure 2 shows the results obtained via the Markovian dissipation model in Equation (19)
equipped with the non-Lindblad scattering rates in Equation (20) in the low-density and
low-temperature limit for ∆c = 4 meV and for a relatively strong carrier–phonon interaction.
More specifically, in order to mimic carrier-acoustic phonon scattering in GaN-based nanomaterials,
the coupling coefficient g in Equation (23) and the phonon velocity have been chosen such to produce
a semiclassical scattering time P−1

b→a = 0.3 ps (see Equation (22)), which corresponds to an effective
interlevel coupling energy ∆cp ≡ h̄Pb→a of about 2 meV. For the above system parameters, we deal
with a dimensionless coupling coefficient η = ∆cp/∆c = 0.5. Such a relatively strong carrier–phonon
coupling is indeed typical of GaN-based quantum-dot structures. As we can see, in spite of the
typical energy relaxation versus decoherence scenario reported in the upper (population) and middle
(polarization) panels, here, the lower panel unequivocally displays negative values (though extremely
small) of the density-matrix eigenvalue Λ−.
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0 0.2 0.4 0.6 0.8 1
time (ps)
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0 0.2 0.4 0.6 0.8 1
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0
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0.04
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Figure 2. Energy dissipation and decoherence for an electronic two-level system (∆c = 4 meV)
coupled to an acoustic-like phonon mode (∆cp ' 2 meV) in the low-temperature and low-density limit:
Excited-level relative population fb/( fa + fb) (upper panel), relative interlevel-polarization modulus
|p|/( fa + fb) (middle panel), and relative eigenvalue Λ−/( fa + fb) (lower panel) as a function of time
obtained via the Markovian dissipation model in Equation (19) equipped with the non-Lindblad rates
in Equation (20).
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To show that the small/negligible positivity violations reported in Figure 2 may also become
much larger and thus highly problematic, we have repeated the simulated experiment in Figure 2,
reducing the interlevel energy splitting by a factor of four, ∆c = 1 meV, which amounts to increasing
the coupling coefficient η up to 2. The results are reported in Figure 3. As one can see, in spite of a very
similar population dynamics (compare upper panels in Figures 2 and 3), we deal with a significant
slowdown of the polarization decay (middle panels). Moreover the density-matrix eigenvalue Λ− is
negative (lower panel) and is an absolute value, now nearly comparable with the typical population
and polarization ones. The new simulated experiment in Figure 3 constitutes a non-ambiguous
proof that positivity violations, typical of non-Lindblad Markov models, may constitute a severe
limitation in the study of solid-state quantum materials and related devices characterized by a strong
carrier–phonon coupling, like, e.g., GaN-based quantum-dot nanostructures.
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Figure 3. Same as in Figure 2 but for a smaller interlevel energy splitting (∆c = 1 meV).

A closer inspection shows that the physical origin of the above positivity violations is an
anomalous underestimation of decoherence processes, leading to a slowdown of the polarization
decay. This, in turn, leads to negative values of the density-matrix determinant ( fa fb − |p|2) and thus
to negative eigenvalues. This limitation is indeed a peculiar feature of the non-Lindblad Markov
treatments reviewed so far, and can be easily avoided adopting the alternative (Lindblad-type)
adiabatic-decoupling scheme presented below.

2.2. Lindblad-Type Adiabatic-Decoupling Scheme

As anticipated, the choice of the adiabatic-decoupling scheme is definitely not unique.
Compared to the conventional approach recalled so far, the alternative adiabatic scheme proposed
in Reference [19], based on a time symmetrization between microscopic and macroscopic scales,
enables one to replace the non-Lindblad incoherent contribution in Equation (6) with the following
Lindblad superoperator [7]:

dρ̂

dt

∣∣∣∣
inco

= ∑
s

(
Âsρ̂Âs† − 1

2

{
Âs†Âs, ρ̂

})
(24)
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with

Âs = lim
ε→0

(
2ε2

πh̄6

) 1
4 ∫ +∞

−∞
e−

Ĥ◦ t′
ih̄ Ĥ′se

Ĥ◦ t′
ih̄ e−

(
εt′
h̄

)2

dt′ . (25)

As discussed in Reference [19], here, ε plays the role of an energy broadening induced by a finite
collision duration and/or to a finite single-particle life-time [19].

The new dissipation model in Equation (24) can still be expressed via the global density-matrix
superoperator in Equation (8) provided to replace the non-Lindblad rates in Equation (9) with the
following (Lindblad-type) version:

P s
i1i2,i′1i′2

= As
i1i′1

As∗
i2i′2

. (26)

While their diagonal (i.e., semiclassical) elements (i1i′1 = i2i′2) coincide again with the standard
Fermi’s-golden-rule prescription in Equation (10), the new (Lindblad) version in Equation (26) exhibits
a more symmetric structure, a clear fingerprint of the time symmetrization previously mentioned.

Starting from the Lindblad-type global superoperator in Equation (24) and adopting once again
the carrier–phonon mean-field approximation via the factorization scheme in Equation (12), it is
possible to get an effective dissipation model for the reduced density-matrix operator ρ̂c, which is still
of Lindblad type [7]:

dρ̂c
dt

∣∣∣∣
inco

= ∑
s

(
Âs

cρ̂cÂs†
c −

1
2

{
Âs†

c Âs
c, ρ̂c

})
. (27)

The explicit form of the new electronic operators Âs
c can be derived starting from the global Lindblad

operators Âs in Equation (25). Once again, in spite of their very same formal structure, Equations (24)
and (27) describe the system dynamics at different levels.

Adopting once again the one-electron picture previously introduced (see Equation (14)) and
applying the Lindblad treatment recalled so far to the case of the carrier-plus-phonon system in
Equation (15), it is possible to get the very same density-matrix superoperator in Equation (19) provided
to replace the non-Lindblad carrier–phonon rates in Equation (20) with the following Lindblad-type
version [7]:

Pα1α2,α′1α′2
= ∑

q,±
Aq,±

α1α′1
Aq,±∗

α2α′2
, (28)

where

Aq,±
αα′ =

√√√√2π
(

n◦q + 1
2 ±

1
2

)
h̄

gq,±
αα′ Dq,±

αα′ (29)

and

Dq,±
αα′ = lim

ε→0

e−
( εα−ε

α′ ±εq
2ε

)2

(
2πε2) 1

4
. (30)

We stress that the diagonal elements (α1α′1 = α2α′2) of the new (Lindblad-type) carrier–phonon rates in
Equation (28) coincide once again with the usual Fermi’s-golden-rule prescription in Equation (22).

To concretely test the quality of the alternative adiabatic-decoupling scheme reviewed so far,
we have repeated the previous simulated experiments in Figures 2 and 3, replacing the non-Lindblad
carrier–phonon scattering rates in Equation (20) with the Lindblad ones in Equation (28). The new
results, reported in Figures 4 and 5, fully confirm the absence of positivity violations (see the
nonnegative eigenvalue profiles in the lower panels), as expected for any Lindblad-type scattering
model. A closer comparison between the former (non-Lindblad) and the present (Lindblad) simulations
shows that, in spite of a very similar population dynamics, the Lindblad-type dissipation model is
always characterized by a faster polarization decay, thus preventing in any case the positivity violations
of the non-Lindblad one reported in Figures 2 and 3.
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Figure 4. Same as in Figure 2 but replacing the non-Lindblad carrier–phonon scattering rates in
Equation (20) with the Lindblad ones in Equation (28).
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Figure 5. Same as in Figure 3 but replacing the non-Lindblad carrier–phonon scattering rates in
Equation (20) with the Lindblad ones in Equation (28).

2.3. Generalization to the Nonlinear Regime

As anticipated, while in the low-density limit, dissipation versus decoherence phenomena
can safely be described via the simple one-electron picture previously introduced, at high carrier
concentrations, a genuine many-body treatment is imperative [7]; this is typically accomplished
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via the so-called single-particle picture, based on a mean-field (or Hartree–Fock) treatment of our
many-electron system. Indeed, many of the physical quantities of interest in the study of solid-state
quantum devices are described via single-particle electronic operators of the following form:

Ĝc = ∑
α1α2

Gα1α2 ĉ†
α1

ĉα2
, (31)

where ĉ†
α and ĉα are the usual creation and destruction operators over the electronic single-particle

states |α〉. Recalling that, for any electronic operator, one has 〈Gc〉 = tr{ρ̂Ĝc} = tr{ρ̂cĜc}c,
the average value of the single-particle operator in Equation (31) can be written as

〈Gc〉 = ∑
α1α2

ρα1α2 Gα2α1 (32)

where
ρα1α2 = tr{ĉ†

α2
ĉα1

ρ̂c}c (33)

is the single-particle density matrix. It is worth stressing that, in the low-density limit, the single-
particle density matrix in Equation (33) is equivalent to the one-electron density matrix introduced in
Equation (14).

To study the time evolution of single-particle quantities, such as total carrier density, mean kinetic
energy, charge current, and so on, it is then vital to derive a closed equation of motion for the above
single-particle density matrix. Combining its definition in Equation (33) with the many-electron
Lindblad dynamics in Equation (27) and employing the cyclic property of the trace, one gets

dρα1α2

dt

∣∣∣∣
inco

=
1
2 ∑

s
tr
{[

Âs†
c , ĉ†

α2
ĉα1

]
Âs

cρ̂c

}
c
+ H.c. (34)

To derive a closed equation of motion for the single-particle density matrix, it is now crucial to
specify the form/structure of the many-electron Lindblad operators Âs

c in Equation (27), which, in turn,
is dictated by the specific interaction mechanism considered.

For the case of a generic carrier–phonon interaction mechanism, the corresponding (one-body)
Lindblad operator is always of the following form:

Âs
c = ∑

αα′
Acp

αα′ ĉ
†
α ĉα′ . (35)

Equation (35) describes the phonon-induced carrier transition from the initial state α′ to the final state
α. In this case, the label s = q,± corresponds to the emission (+) or absorption (−) of a phonon with
wavevector q. By inserting the carrier–phonon Lindblad operator in Equation (35) into Equation (34)
and by employing the fermionic anticommutation relations, it is easy to show [21] that the contribution
to the system dynamics due to the generic carrier–phonon interaction mechanism (s = cp) involves
average values of four fermionic operators of the following form:

hα3α4,α′3α′4
= tr

{
ĉ†

α3
ĉα4

ĉ†
α′3

ĉα′4
ρ̂c

}
c

. (36)

For the carrier–carrier interaction (s = cc), the Lindblad operator has the general two-body
structure:

Âs
c =

1
2 ∑

αα,α′α′
Acc

αα,α′α′ ĉ
†
α ĉ†

α ĉα′ ĉα′ , (37)

The latter describes the transition of the electronic pair from the initial (two-body) state α′α′ to the final
state αα. As shown in Reference [21], by inserting Equation (37) into Equation (34), the contribution
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to the system dynamics due to carrier–carrier interaction (s = cc) involves average values of eight
fermionic operators of the following form:

kα5α6α7α8,α′5α′6α′7α′8
= tr

{
ĉ†

α5
ĉ†

α6
ĉα7

ĉα8
ĉ†

α′5
ĉ†

α′6
ĉα′7

ĉα′8
ρ̂c

}
c

. (38)

As anticipated, the key step in getting a closed equation of motion for the single-particle
density matrix is to adopt the well-known mean-field (or correlation-expansion) approximation [65];
as discussed in Reference [21], employing this approximation scheme and omitting renormalization
terms [65], for both carrier–phonon and carrier–carrier scattering, the resulting single-particle equation
is given by

dρα1α2

dt

∣∣∣∣
inco

=
1
2 ∑

α′α′1α′2

((
δα1α′ − ρα1α′

)
P s

α′α2,α′1α′2
ρα′1α′2

−
(

δα′α′1
− ρα′α′1

)
P s∗

α′α′1,α1α′2
ρα′2α2

)
+ H.c. (39)

with generalized carrier–phonon scattering rates

P s=cp
α1α2,α′1α′2

= Acp
α1α′1

Acp∗
α2α′2

(40)

and generalized carrier–carrier scattering rates

P s=cc
α1α2,α′1α′2

= 2 ∑
α1α2,α′1α′2

(
δα2α1 − ρα2α1

)
Acc

α1α1,α′1α′1
Acc∗

α2α2,α′2α′2
ρα′1α′2

, (41)

where
Acc

αα,α′α′=
1
4

(
Acc

αα,α′α′−Acc
αα,α′α′−Acc

αα,α′α′+Acc
αα,α′α′

)
(42)

denote the totally antisymmetric parts of the two-body coefficients in Equation (37).
We stress that, opposite to the carrier–phonon rates in Equation (40), the generalized carrier–carrier

rates in (41) are themselves a function of the single-particle density matrix; this is a clear fingerprint of
the two-body nature of the carrier–carrier interaction (see below).

The single-particle scattering superoperator in Equation (39) is the result of positive-like
(in-scattering) and negative-like (out-scattering) contributions, which are nonlinear functions of
the single-particle density matrix. Indeed, in the semiclassical limit [7], namely ρα1α2 = fα1 δα1α2 ,
the density-matrix equation Equation (39) assumes the expected nonlinear Boltzmann-type form:

d fα

dt

∣∣∣∣
inco

= ∑
α′

((1− fα)Ps
αα′ fα′ − (1− fα′)Ps

α′α fα) (43)

with semiclassical carrier–phonon scattering rates

Ps=cp
αα′ = P s=cp

αα,α′α′ =
∣∣∣Acp

αα′

∣∣∣2 (44)

and semiclassical carrier–carrier scattering rates

Ps=cc
αα′ = P s=cc

αα,α′α′ = 2 ∑
αα′

(1− fα)
∣∣∣Acc

αα,α′α′

∣∣∣2 fα′ . (45)

The above semiclassical limit clearly shows that the nonlinearity factors (δα1α2 − ρα1α2) in Equation (39)
as well as in Equation (41) can be regarded as the quantum-mechanical generalization of the Pauli
factors (1− fα) of the conventional Boltzmann theory.

A closer inspection of Equations (39) and (41) as well as of their semiclassical counterparts
in Equations (43) and (45) confirms the two-body nature of the carrier–carrier interaction. Indeed,
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differently from the carrier–phonon scattering, in this case, the density-matrix equation describes the
time evolution of a so-called “main carrier” α interacting with a so-called “partner carrier” α.

Let us finally face the key issue related to the present single-particle treatment, namely the
positivity analysis of the nonlinear density-matrix equation in Equation (39). Indeed, for a physical
state, the eigenvalues of the single-particle density matrix ρα1α2 are necessarily nonnegative but also
smaller than one (i.e., Pauli exclusion principle); to preserve such physical nature, it is vital to verify that
the scattering-induced time evolution maintains the values of the eigenvalues within the interval [0, 1].

To this end, let us start from the case of carrier–phonon interaction previously discussed, for which
the nonlinear equation in Equation (39) (equipped with the generalized rates in Equation (40)) can also
be written in a more compact way via the one-electron operators:

ρ̂ = ∑
α1α2

|α1〉ρα1α2〈α2| (46)

and
Â = ∑

α1α2

|α1〉A
cp
α1α2〈α2| (47)

as
dρ̂

dt

∣∣∣∣
inco

=
1
2

(
(Î − ρ̂)Â ρ̂Â† − Â†(Î − ρ̂)Âρ̂

)
+ H.c. , (48)

where Î denotes the identity operator of the one-electron Hilbert space. We stress that, due to the
quantum-mechanical Pauli factors (Î − ρ̂), the above scattering superoperator in Equation (48) is
nonlinear in ρ̂ and thus is definitely non-Lindblad. Only in the low-density limit, i.e., Î − ρ̂ → Î ,
the nonlinear equation in Equation (48) reduces to the Lindblad superoperator

dρ̂

dt

∣∣∣∣
inco

= Âρ̂Â† − 1
2

{
Â† Â, ρ̂

}
, (49)

and the positive-definite character of ρ̂ is thereby ensured.
For high-density conditions, in contrast, no straightforward conclusion can be drawn about the

positive-definite character of the corresponding time evolution. Nevertheless, it is easy to show [21] that
the nonlinear single-particle equation in Equation (39) does preserve the positive-definite character of
ρ̂. To this end, let us consider the instantaneous (i.e., time-dependent) eigenvalues Λλ and eigenvectors
|λ〉 of the density-matrix operator, i.e.,

ρ̂|λ〉 = Λλ|λ〉 , (50)

which implies that
Λλ = 〈λ|ρ̂|λ〉 . (51)

As anticipated, the eigenvalues in Equation (50) corresponding to a physical state are necessarily
nonnegative as well as smaller than one. The scattering-induced time evolution should therefore
maintain the values of the Λλ within the physical interval [0, 1]; this can be verified by studying the
time derivative of the generic eigenvalue in Equation (51):

dΛλ

dt
=

d〈λ|
dt

ρ̂|λ〉+ 〈λ|dρ̂

dt
|λ〉+ 〈λ|ρ̂ d|λ〉

dt
. (52)

Thanks to the completeness of the basis set {|λ〉}, the time derivative in Equation (52) can also be
written as follows:

dΛλ

dt
= ∑

λ′

d〈λ|
dt
|λ′〉〈λ′|ρ̂|λ〉+ 〈λ|dρ̂

dt
|λ〉+ ∑

λ′
〈λ|ρ̂|λ′〉〈λ′|d|λ〉

dt
.
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Recalling that
〈λ|ρ̂|λ′〉 = Λλδλλ′ , (53)

the result in Equation (53) reduces to

dΛλ

dt
= Λλ

d〈λ|
dt
|λ〉+ 〈λ|dρ̂

dt
|λ〉+ Λλ〈λ|

d|λ〉
dt

. (54)

Taking into account that d〈λ|λ〉
dt = 0 , the first and third terms on the right hand side of Equation (54)

cancel out exactly, and one finally gets
dΛλ

dt
=

dρλλ

dt
. (55)

This tells us that the time variation of the eigenvalues Λλ coincides with the time variation of the
diagonal elements ρλλ of the operator ρ̂ within the instantaneous eigenbasis {|λ〉}.

To study the above time derivative, the key step is to examine the explicit form of the single-particle
scattering superoperator written in the density-matrix eigenbasis in Equation (50). Taking into account
that the generic density-matrix equation in Equation (39) is basis-independent, by replacing the original
single-particle basis {|α〉} with the density-matrix eigenbasis {|λ〉} and making use of Equation (53),
its diagonal elements turn out to be as follows:

dρλλ

dt
= ∑

λ′

[
(1−Λλ)Ps

λλ′Λλ′ − (1−Λλ′)Ps
λ′λΛλ

]
, (56)

where
Ps

λλ′ = P
s
λλ,λ′λ′ (57)

are positive-definite quantities given by the diagonal elements of the generalized scattering rates
(see Equations (40) and (41)) written in our instantaneous density-matrix eigenbasis. By inserting this
last result into Equation (55), we finally get

dΛλ

dt
= ∑

λ′

[
(1−Λλ)Ps

λλ′Λλ′ − (1−Λλ′)Ps
λ′λΛλ

]
. (58)

This result is highly nontrivial: it states that, in spite of the partially coherent nature of the carrier
dynamics in Equation (39), the time evolution of the eigenvalues Λλ is governed by a nonlinear
Boltzmann-type equation, formally identical to the semiclassical result in Equation (43).

We are then finally able to state that the physical interval [0, 1] is the only possible variation range
for the eigenvalues Λλ. Indeed, it is easy to show [21] that, when the latter approach the extremal
values, 0 or 1, their time derivatives do not allow them to exit the interval. In particular, a closer
inspection of the Boltzmann-like equation in Equation (58) shows the following:

(i) if one of the eigenvalues Λλ is equal to zero, the corresponding time derivative in Equation (58) is
always nonnegative;

(ii) if one of the eigenvalues Λλ is equal to one, its time derivative in Equation (58) is always
nonpositive.

This leads us to the important conclusion that, for both carrier–phonon and carrier–carrier
scattering, the nonlinear single-particle equation in Equation (39) preserves the positive-definite
character of the single-particle density matrix.
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3. Non-Markovian Dissipation Models

To investigate phonon-induced electronic dissipation versus decoherence via non-Markovian
approaches, we shall consider a many-body Hamiltonian of the following form:

Ĥ = Ĥc + Ĥp + Ĥcp , (59)

where
Ĥc = ∑

α

εα ĉ†
α ĉα (60)

is the many-body version of the one-electron Hamiltonian in Equation (16),

Ĥp = ∑
q

εq b̂†
q b̂q (61)

is again the phononic Hamiltonian introduced in Section 2.2 (describing the set of noninteracting
phonons of wavevector q and energy εq), while

Ĥcp = ∑
αα′ ,q

(
gq,−

αα′ ĉ†
α b̂q ĉα′ + gq,+

αα′ ĉ†
α′ b̂

†
q ĉα

)
(62)

is the many-body version of the one-electron carrier–phonon Hamiltonian in Equation (18).
According to the general quantum-kinetic treatment first proposed in Reference [27],

later reviewed in Reference [65], and then extended in Reference [44], we now introduce the set
of kinetic variables. In particular, the carrier subsystem is described by the single-particle density
matrix (see also Equation (33))

ρα1α2 = 〈ĉ†
α2

ĉα1
〉 (63)

and the phonon subsystem is described by the coherent-phonon amplitude Bq = 〈b̂q〉 and by the
phonon correlation function

nq = 〈b̂†
q b̂q〉 − B∗qBq , (64)

where 〈. . .〉 = tr{. . . ρ̂}.
Starting from the usual Heisenberg equations of motion for the carrier ĉα and phonon b̂q operators,

corresponding to the total many-body Hamiltonian in Equation (59), the dynamics of the coupled
carrier–phonon system is governed by the following set of coupled equations:

dρα1α2

dt
=

1
ıh̄

(εα1 − εα2) ρα1α2 +

[
1
ıh̄ ∑

α3,q

(
gq,−

α1α3 $
q
α3α2 + gq,+

α3α1 $
q∗
α2α3

)
+ H.c.

]
dBq

dt
=

1
ıh̄

(
εqBq + ∑

α1α2

gq,+
α1α2 ρα1α2

)
(65)

dnq

dt
= −

(
1
ıh̄ ∑

α1α2

gq,−
α1α2 $

q
α2α1 + c.c.

)
+

(
1
ıh̄ ∑

α1α2

gq,−
α1α2 ρα2α1 Bq + c.c.

)
,

where “c.c.” denotes the complex conjugate and

$
q
α1α2 = 〈ĉ†

α2
b̂q ĉα1

〉 , (66)
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are the so-called phonon-assisted density matrices, accounting for the quantum-mechanical phase
coherence between carriers and phonons [13,65]. Due to the presence of the latter, the above set of
equations is not closed. In particular, the corresponding equation of motion

d$
q
α1α2

dt
=

1
ıh̄
(
εα1 − εα2 + εq

)
$

q
α1α2 −

1
ıh̄ ∑

α3,q′

[
gq′ ,−

α3α2 〈ĉ
†
α3

ĉα1
b̂q′ b̂q〉+ gq′ ,+

α2α3 〈ĉ
†
α3

ĉα1
b̂†

q′ b̂q〉

− gq′ ,−
α1α3 〈ĉ

†
α2

ĉα3
b̂q b̂q′〉 − gq′ ,+

α3α1 〈ĉ
†
α2

ĉα3
b̂q b̂†

q′〉
]
+

1
ıh̄ ∑

α3α4

gq,+
α3α4〈ĉ

†
α2

ĉ†
α4

ĉα3
ĉα1
〉 , (67)

brings in supplementary, higher-order, kinetic variables given by expectation values of four operators,
namely carrier–phonon as well as carrier–carrier two-particle density matrices. The resulting infinite
hierarchy of equations may be truncated at some level via a mean-field approximation, assuming that
the role played by correlations gets less effective as the number of the involved carriers and/or phonons
increases [65]. Within this scheme, the generic phonon-assisted density matrix in Equation (66) is
decomposed into its mean-field factorization and a remaining correlation function:

$
q
α1α2 = ρα1α2 Bq + δ$

q
α1α2 . (68)

At first order, one replaces the phonon-assisted density matrix $
q
α1α2 in Equation (65) with just its

mean-field factorization ρα1α2 Bq. The dynamics of the carrier subsystem then turns out to be described
by a fully coherent (coh) term given by

dρα1α2

dt

∣∣∣∣
coh

=
1
ıh̄ ∑

α3

(εα1α3 ρα3α2 − ρα1α3 εα3α2) , (69)

where

εαα′ = εαδαα′ +

(
∑
q

gq,−
αα′ Bq + H.c.

)
(70)

indicates the single-particle energy spectrum renormalized by off-diagonal first-order carrier–phonon
contributions; in the absence of coherent phonons, Bq = 0 and such renormalization vanishes. As far
as the phonon subsystem is concerned, in the equation of motion for the correlation function nq,
the first-order dynamics is absent and

dnq

dt

∣∣∣∣
coh

= 0 , (71)

meaning that nq remains fixed to its initial value, typically the equilibrium distribution n◦q.
To account for incoherent (dissipation versus decoherence) processes, one needs to proceed one

step further in the correlation expansion. In particular, the set of kinetic variables has to be enlarged to
include also the carrier–phonon correlations δ$

q
α1α2 and the related dynamics. The latter is obtained

by applying a mean-field approximation to the two-particle (carrier–phonon and carrier–carrier)
density-matrices in Equation (67), which are factorized in terms of all possible lowest-order kinetic
variables. The resulting set of coupled kinetic equations describing both coherent (coh) and incoherent
(inco) carrier–phonon contributions is
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dρα1α2

dt
=

dρα1α2

dt

∣∣∣∣
coh

+
dρα1α2

dt

∣∣∣∣
inco

dδ$
q
α1α2

dt
= ∑

α3α4

Lq
α1α2,α3α4 δ$

q
α3α4 +

1
ıh̄ ∑

α3α4

gq,+
α4α3

(
nq + 1

)
ρα4α2 (δα1α3 − ρα1α3)

− 1
ıh̄ ∑

α3α4

gq,+
α4α3 nqρα1α3 (δα4α2 − ρα4α2) (72)

dBq

dt
=

1
ıh̄

(
εqBq + ∑

α1α2

gq,+
α1α2 ρα1α2

)
dnq

dt
=

dnq

dt

∣∣∣∣
inco

where
dρα1α2

dt

∣∣∣∣
inco

=
1
ıh̄ ∑

α3,q

(
gq,−

α1α3 δ$
q
α3α2 + gq,+

α3α1 δ$
q∗
α2α3

)
+ H.c. , (73)

dnq

dt

∣∣∣∣
inco

= − 1
ıh̄ ∑

α1α2

gq,−
α1α2 δ$

q
α2α1 + c.c. , (74)

while
Lq

α1α2,α3α4 =
1
ıh̄
(
εα1α3 δα2α4−δα1α3 εα4α2+εqδα1α3 δα2α4

)
(75)

is the effective Liouville superoperator acting on the correlation function δ$
q
α1α2 .

The dynamics of the carrier subsystem, described by the set in Equation (72) is non-Markovian,
that is, nonlocal in time. Indeed, by formally integrating the equation of motion for the phonon-assisted
correlation function, δ$

q
α1α2 , and inserting the result into the equation of motion for the electronic density

matrix, ρα1α2 , one gets an integrodifferential equation showing that the time-derivative of the latter at
a given time depends on its values at all previous times [65].

The third equation in Equation (72) describes the coherent-phonon dynamics and explicitly shows
that, in general, the carrier–phonon coupling itself may generate a finite coherent-phonon amplitude Bq

even when the latter is initially null. The excitation of coherent phonons in semiconductors,
first observed in the surface field of n-doped GaAs by optical excitation [66], is nowadays a
well-established phenomenon and can be realized in systems with sufficiently low symmetry via
a properly tailored ultrafast optical excitation.

Finally, the fourth equation in Equation (72), containing the incoherent term in Equation (74),
is often referred to as the hot-phonon equation, since it describes how the phonon distribution nq may
be driven out of its thermal-equilibrium value n◦q via the electron–phonon coupling. Such hot-phonon
effects are known to play a key role in specifically designed and optimized quantum-cascade
devices [67–69].

Applying to the coupled set of kinetic equations in Equation (72) of the alternative Markov
treatment recalled in Sections 2.2 and 2.3, the phonon-assisted correlation δ$

q
α1α2 can be adiabatically

eliminated, allowing for the derivation of the (positive-definite) nonlinear density-matrix equation in
Equation (39) equipped with the carrier–phonon scattering rates in Equation (28).

In the low-density limit, Pauli factors can be neglected (δαα′ − ραα′ → δαα′ ) and hot-phonon effects
are absent (nq → n◦q); the quantum-kinetic set in Equation (72) then assumes a much simpler form.
In addition to this, an initially null phonon amplitude (Bq(0) = 0) will remain zero at any later
time, implying that all first-order carrier–phonon energy renormalizations in Equation (70) vanish
(εαα′ → εαδαα′ ) and that the electron–phonon correlation function coincides with the phonon-assisted
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density matrix (δ$q
α1α2 → $

q
α1α2). Under these simplifying low-density conditions, the full set of

quantum-kinetic equations in Equation (72) reduces to

dρα1α2

dt
=

1
ıh̄

(εα1 − εα2) ρα1α2 +

[
1
ıh̄ ∑

α3,q

(
gq,−

α1α3 $
q
α3α2 + gq,+

α3α1 $
q∗
α2α3

)
+ H.c.

]
(76)

d$
q
α1α2

dt
=

1
ıh̄
(
εα1 − εα2

+ εq
)

$
q
α1α2 +

1
ıh̄ ∑

α3

[
gq,+

α3α1

(
n◦q+1

)
ρα3α2− gq,+

α2α3 n◦qρα1α3

]
.

Applying again the alternative adiabatic-decoupling scheme in Section 2.2 to the low-density coupled
set in Equation (76), the latter reduces to the linear scattering superoperator in Equation (19) equipped
again with the Lindblad-type carrier–phonon rates in Equation (28).

3.1. Low-Density Analysis

To focus on the comparison between the above recalled quantum-kinetic treatments and their
Markovian counterparts, let us consider again the two-level system previously introduced (see
Equations (1) and (23)). More specifically, for the simulated experiments presented in this section,
the initial condition of the electronic system is still a low-density Bell state, namely fa(0) = fb(0) =
p(0)� 1, with null coherent-phonon amplitudes, Bq(0) = 0, and phonon-assisted density matrices,
$

q
α1α2(0) = 0.

We start analysing energy dissipation and decoherence effects due to the very same acoustic-like
phonon mode considered in Section 2. Figure 6 compares the results of the Lindblad-type
Markovian approach (MA) and the quantum-kinetic approach (QKA) for the same cases considered in
Figures 2 and 4. Due to the relatively strong carrier–phonon coupling, the quantum-kinetic dynamics
shows significant differences from the Markovian one. In particular, the initial time derivative of
the QKA excited-level population (upper panel) is null, a well-known feature of non-Markovian
models, and the transient dynamics is heavily influenced by energy non-conserving transitions [7].
The combination of these two aspects initially causes a reduction of energy dissipation and decoherence,
which however tends to vanish at longer times. The results in the upper and middle panels of Figure 6
undoubtedly show the effectiveness of the QKA in describing a zero-dimensional electronic system
strongly coupled to acoustic phonon modes; a typical example, in this respect, is the phase-coherence
versus dissipation dynamics in quantum-dot-based nanodevices [3,7]. However, in spite of these
facts, positivity violations—albeit rather small—show up when looking at the eigenvalue behaviour
(lower panel).

We now move to the analysis of energy dissipation and decoherence effects when optical-like
phonon modes are considered. Indeed, in the case of a purely zero-dimensional electronic system
coupled to a dispersionless phonon mode (that is, a discrete electron-plus-phonon energy spectrum),
the Markov limit is inapplicable and more refined treatments, e.g., based on the polaronic
picture [70,71], are necessary. For this reason, we here assume a finite phonon bandwidth ∆p,
centered around the electronic interlevel excitation and much smaller than the interlevel splitting ∆c,
so that the Markov approach can be still well defined. In particular, in order to mimic electron-optical
phonon scattering in GaAs-based nanostructures, we shall employ the following system parameters:
∆c = 40 meV, ∆p = 4 meV and a semiclassical scattering time P−1

b→a = 0.3 ps, corresponding to
an effective interlevel coupling energy ∆cp of about 2 meV. The low-density and low-temperature
results for this prototypical system are reported in Figure 7, again comparing the Markovian and
the non-Markovian schemes. In spite of the weak-coupling regime (η = ∆cp/∆c ' 0.05), the QKA
dynamics now differs significantly from the MA counterpart. Indeed, the former displays an almost
dissipation-free oscillatory behaviour for the excited-level population and the interlevel polarization,
while the latter has the typical exponential decay (upper and middle panels). A more relevant
difference, however, is the fact that in the QKA evolution the excited-level population turns negative;
this fact matches with the positivity violation in the eigenvalue analysis, reported in the lower panel.
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Figure 6. Energy dissipation and decoherence for an electronic two-level system (∆c = 4 meV)
coupled to an acoustic-like phonon mode (∆cp ' 2 meV) in the low-temperature and low-density limit.
Excited-level relative population fb/( fa + fb) (upper panel), relative interlevel-polarization modulus
|p|/( fa + fb) (middle panel), and relative eigenvalue Λ−/( fa + fb) (lower panel) as a function of
time obtained via the low-density quantum-kinetic approach (QKA) in Equation (76) as well as
via the Markovian approach (MA) based on the Lindblad-type scattering rates in Equation (28).
Reprinted from Reference [64].
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Figure 7. Same as in Figure 6 but for a two-level system with increased energy splitting (∆c = 40 meV)
coupled to an optical-like phonon mode (∆p = 4 meV and ∆cp ' 2 meV) (see text). Reprinted from
Reference [64].
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Indeed, in this respect, the relatively small value of the optical-like phonon bandwidth is a critical
issue. To investigate this aspect in a deeper way, Figure 8 compares the present QKA population
and eigenvalue dynamics (dashed line in the upper and lower panel, respectively), corresponding to
∆p = 4 meV, with the results obtained for two different values of the phonon bandwidth. In particular,
∆p is set to 0 meV (solid line) and 8 meV (dash-dotted line). While, for null ∆p, one gets a
cosine-like behavior of the population and the eigenvalue, on increasing ∆p, the negative regions
in both the corresponding profiles are significantly reduced and the dissipation effects increased.
The quantum-kinetic dynamics displayed in Figures 7 and 8 claim some remarks, mainly on its
oscillatory character and positivity violations.
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Figure 8. Quantum-kinetic dynamics of the excited-level relative population fb/( fa + fb) (upper panel)
and of the relative eigenvalue Λ−/( fa + fb) (lower panel) corresponding to the same system considered
in Figure 7 for different values of the optical-phonon bandwidth: ∆p = 0 meV, 4 meV, and 8 meV.
Reprinted from Reference [64].

The oscillatory behavior is clear signature of a dissipation-free dynamics; this is a well known
effect [28,72] and not an artifact of the QKA: a dispersionless phonon mode, ∆p → 0, does not induce
any dissipation and decoherence in the electronic subsystem. Within the QKA, electronic dissipation
versus decoherence phenomena result from a complex interference process involving all different
electron and phonon energies. In the weak-coupling limit, all phonon-assisted density-matrix elements
are expected to rotate with different frequencies: $

q
α1α2 ∝ exp

[
−ı
(
εα1 − εα2 + εq

)
/h̄
]
; this implies that

the dynamics of the single-particle density matrix ρα1α2 (first equation in Equation (72)) is the outcome
of a purely coherent and reversible interference process involving all phonon-assisted correlations.
This scenario is analogous to the ultrashort temporal decay of the total polarization in a photoexcited
semiconductor [73,74] resulting from the coherent superposition of microscopic polarizations rotating
with different frequencies (inhomogeneous broadening), which is present also in the absence of genuine
decoherence processes (homogeneous broadening). However, in the case of a zero-dimensional
electronic system, the efficacy of the abovementioned interference process requires the presence
of a continuum of phonon-assisted density-matrix energies much larger than the typical interstate
energy splitting εα − εα′ . This requirement is always fulfilled in the case of the acoustic-phonon mode
(see Figure 6). However, the same does not apply to the case of the optical-phonon mode and this is
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the main origin of the almost dissipation-free results in Figures 7 and 8. It is crucial to stress once again
that the anomalous dissipation dynamics pointed out so far is ascribed to the dispersionless-phonon
limit only and is by no means related to the weak- versus strong-coupling regime; indeed, all the
optical-phonon results presented so far (see Figures 7 and 8) refer to the weak-coupling regime
(η ' 0.05).

The presence of unambiguous positivity violation in the QKA results in Figures 7 and 8 represents
a severe problem since it arises in the dispersionless regime, ∆p → 0, where quantum-kinetic
approaches are typically invoked as a reliable alternative to—inapplicable—Markov treatments.
Therefore, while on the one hand quantum-kinetic approaches have unquestionably proven to explain a
variety of ultrafast optical phenomena (like the phonon quantum beats observed, e.g., in Reference [75])
where the key role of uncompleted collisions could not be accounted for within a Markov treatment,
on the other hand, the present analysis points out that caution should be used in considering QKA
results as faultless overall.

To address this point more extensively, let us start noticing that, in the dispersionless limit
(∆p → 0), each phonon q is characterized by the very same energy, i.e., εq → εb − εa. The effect of
the whole phonon system can be therefore described via a single phonon q resonantly coupled to the
two-level system via an effective coupling constant g. Writing the phonon-assisted density matrix in
the following form (

$
q
bb $

q
ba

$
q
ab $

q
aa

)
=

(
Fb Pba
Pab Fa

)
(77)

and adopting the usual rotating-wave approximation, the original quantum-kinetic equations in
Equation (76) in the low-temperature limit (n◦q = 0) allow us to derive a set of coupled equations for fb
and Pab,

d fb
dt

= 2ω= (Pab)

dPab
dt

= −ıω fb , (78)

as well as for p, Fa, and Fb,

dp
dt

= −ıω◦p− ıω (Fa − Fb)

dFa

dt
= −ıω◦Fa − ıωp

dFb
dt

= −ıω◦Fb , (79)

where ω◦ = ∆c/h̄ and ω = g/h̄. The two sets in Equations (78) and (79) are independent and can
be solved analytically; in particular, assuming an initially null phonon-assisted density matrix in
Equation (77), the excited-level population evolves in time as

fb(t) = fb(0) cos
(√

2 ωt
)

. (80)

Such a cosine-like dynamics is in full agreement with the dispersionless-limit behavior depicted in
Figure 8, confirming once again the potential limitations of the quantum-kinetic treatment (76) in
describing a two-level system coupled to a single phonon q.

As a further step, we shall consider the dynamics of the global (electron-plus-one phonon) system
introduced above. In particular, the time evolution of its density matrix operator ρ̂ is dictated by the
following Liouville–von Neumann equation, corresponding to the total many-body Hamiltonian in
Equation (59):

dρ̂

dt
=

1
ıh̄
[
Ĥ, ρ̂

]
. (81)
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Figure 9 compares the dynamics of the excited-level population resulting from a numerical solution of
the exact global density-matrix equation in Equation (81) and the quantum-kinetic outcome obtained
in the case ∆p = 0 meV. Both curves show a fully coherent dynamics and the initial zero-derivative
behavior, typical of any genuine quantum-mechanical treatment. However, the QKA oscillation period
comes out to be a factor of

√
2 larger than the exact-model one and, more importantly, while the exact

result is always positive-definite, its quantum-kinetic counterpart is not.
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Figure 9. Time evolution of the excited-level relative population fb/( fa + fb) in the dispersionless case
∆p = 0: comparison between the quantum-kinetic approach and the exact numerical approach based
on the global density-matrix equation in Equation (81). Reprinted from Reference [64].

As final step of our low-density analysis, we shall now verify the possible role played by the
phonon-bath temperature, which has so far been assumed equal to 0 K. To answer this question,
we have therefore repeated the set of simulated experiments in Figure 8 at, e.g., room-temperature.
The results are reported in Figure 10 and show a significant suppression of the negative-value
regions; nevertheless, also at room temperature, in the dispersionless limit, we deal once again with a
dissipation-free cosine-like population dynamics. Its oscillations are faster than the zero-temperature
ones and are no more symmetric. Indeed, it is straightforward to show that the finite-temperature
generalization of the analytical (zero-temperature) result in Equation (80) is given by

fb(t) = f̃ + ( fb(0)− f̃ ) cos
(√

2 ω̃t
)

(82)

where

f̃ = ( fa(0) + fb(0))
n◦

2n◦ + 1
(83)

and ω̃ =
√

2n◦ + 1 ω, where n◦ ≡ n◦q denotes the thermal occupation number of the dispersionless
phonon mode resonantly coupled to our two-level system.
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Figure 10. Same as in Figure 8 but for a room-temperature phonon bath (see text). Reprinted from
Reference [64].

3.2. High-Density Analysis

The goal of this final section is to show if and to which extent the positivity violations encountered
in the previous low-density analysis are present at high carrier concentrations as well.

In genuine zero-dimensional systems like, e.g., semiconductor macroatoms [3,7], the presence
of a significant quantum-mechanical carrier confinement [76] determines a relevant interlevel energy
splitting ∆c between the two lowest electronic states. In equilibrium or quasiequilibrium conditions,
the carrier occupation of all the higher-energy states is therefore negligible, so that the latter may be
safely neglected and the electro-optical response of the quantum device may be properly described via
our prototypical two-level system. However, opposite to the low-density regime of Section 3.1, in the
high-density case, the impact of electronic degeneracy is expected to play an important role. For such
a class of quantum systems and related devices, it is then vital to account for Pauli-blocking effects;
to this end, the low-density quantum-kinetic set in Equation (76) should be replaced by the original
(nonlinear) set in Equation (72).

To investigate the impact of electronic degeneracy, we have repeated the low-temperature
simulated experiments of Figure 8, replacing the initial low-density Bell state with the
maximally-degenerate Bell state fa(0) = fb(0) = p(0) = 1

2 . The results for the excited-level population
and eigenvalue dynamics are reported in Figure 11 and clearly show that nonlinear effects have a strong
impact on the system time evolution; indeed, comparing the high-density (or maximally-degenerate)
results in Figure 11 to the low-density (or non-degenerate) results in Figure 8, we see that the inclusion
of the Pauli factors (δαα′ − ραα′) in Equation (72) leads to a suppression of the positivity-violation
signatures in the population dynamics. This is a clear indication that, in such a maximally-degenerate
regime, the initial-condition parameter space leading to positivity violations is significantly reduced
compared to its low-density counterpart.
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Figure 11. Same as in Figure 8 but including nonlinear effects via the quantum-kinetic set in
Equation (72) and choosing as initial condition the (high-density) maximally degenerate Bell state
fa(0) = fb(0) = p(0) = 1

2 (see text). Reprinted from Reference [64].

4. Summary and Conclusions

The aim of this paper was to provide a cohesive review of the most important dissipation/
decoherence models routinely employed for the design and microscopic simulation of solid-state
quantum devices, pointing out reciprocal virtues versus limitations. In particular, we focused on a few
critical issues related to conventional Markov models [21] as well as to quantum-kinetic treatments [64],
linking them within a common framework. More specifically, thanks to properly designed simulated
experiments of a prototypical quantum-dot nanostructure (described via an electronic two-level system
coupled to a phonon bath), we reached the following conclusions.

As far as Markov dissipation models are concerned, we have first shown that conventional
(i.e., non-Lindblad) adiabatic-decoupling schemes may lead to positivity violations, pointing out
regimes where such unphysical behaviours are particularly severe; we have then shown that these
limitations may be definitely avoided adopting an alternative (i.e., Lindblad-type) adiabatic-decoupling
scheme; the latter has been finally generalized to the nonlinear (i.e., degenerate) regime.

As far as dissipation models based on quantum-kinetic treatments are concerned, we have first
shown that, at low temperature and low carrier concentration, the mean-field approximation may
lead again to incongruous behaviors, characterized by anomalous decoherence suppression and/or
positivity violations; we have then shown that the inclusion of finite-temperature conditions and/or
high-density effects leads to a significant reduction of the anomalous behaviors just recalled. It is
finally vital to stress that these anomalous behaviours do not affect semiconductor nanostructures with
a continuous electron-plus-phonon spectrum; the latter include quantum wells and wires (where the
continuous electronic spectrum allows anyway for a proper treatment of dispersionless phonon modes)
as well as zero-dimensional electronic systems (quantum dots) coupled to acoustic phonons. In view
of the above, the potential limitations of non-Markovian dissipation models studied in this paper (i)
are expected to have negligible consequences on previous quantum-kinetic investigations and (ii) may
play a significant role in the theoretical modelling of new-generation quantum nanomaterials and
nanodevices operating at low carrier density and temperature and characterized by discrete electronic
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as well as phononic energy spectra. This concerns, in the first instance, conventional semiconductor
quantum-dot based nanodevices, particularly in the regime of strong coupling to nearly dispersionless
optical modes, as is typically the case for GaN-based nanostructures [77,78].

In summary, the most important conclusion of our investigation is that dissipation-induced
positivity violations are ascribed not only to the adiabatic approximation but also to the mean-field
approximation; indeed, while in the case of Markov treatments (based on adiabatic as well as mean-field
approximations) the problem is easily avoidable by employing Lindblad-type dissipation models,
for the case of non-Markovian treatments (based on the mean-field approximation only), a general
strategy is still missing.

Author Contributions: Investigation: R.C.I and F.R.; writing: R.C.I. and F.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information: 10th Anniversary Edition;
Cambridge University Press: Cambridge, UK, 2010.

2. Bouwmeester, D.; Ekert, A.; Zeilinger, A. The Physics of Quantum Information: Quantum Cryptography,
Quantum Teleportation, Quantum Computation; Springer: Berlin/Heidelberg, Germany, 2013.

3. Rossi, F., Ed. Semiconductor Macroatoms: Basic Physics and Quantum-device Applications; Imperial College Press:
London, UK, 2005.

4. Benson, O.; Henneberger, F., Eds. Semiconductor Quantum Bits; Pan Stanford: Stanford, CA, USA, 2009.
5. Weiss, U. Quantum Dissipative Systems; Series in modern condensed matter physics; World Scientific:

Singapore, 2012.
6. Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport; OUP Oxford: Oxford, UK, 2010.
7. Rossi, F. Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies; Springer:

Berlin, Germany, 2011.
8. Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems; OUP Oxford: Oxford, UK, 2007.
9. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures; Springer Series in Solid-State

Sciences; Springer: Berlin, Germany, 1999.
10. Davies, E. Quantum Theory of Open Systems; Academic Press: Cambridge, MA, USA, 1976.
11. Lindblad, G. Generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130.

doi:10.1007/BF01608499. [CrossRef]
12. Bonitz, M. Quantum Kinetic Theory; Teubner-Texte zur Physik, Teubner: Sonnewalde, Germany, 1998.
13. Haug, H.; Koch, S. Quantum Theory of the Optical and Electronic Properties of Semiconductors; World Scientific:

Singapore, 2004.
14. Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.
15. Haug, H.; Jauho, A. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin, Germany,

2007.
16. Jacoboni, C. Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium

Green Functions; Springer: Berlin, Germany, 2010.
17. Iotti, R.C.; Ciancio, E.; Rossi, F. Quantum transport theory for semiconductor nanostructures: A density-matrix

formulation. Phys. Rev. B 2005, 72, 125347. doi:10.1103/PhysRevB.72.125347. [CrossRef]
18. Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 1980,

52, 569–615. doi:10.1103/RevModPhys.52.569. [CrossRef]
19. Taj, D.; Iotti, R.C.; Rossi, F. Microscopic modeling of energy relaxation and decoherence in quantum

optoelectronic devices at the nanoscale. Eur. Phys. J. B 2009, 72, 305–322. doi:10.1140/epjb/e2009-00363-4.
[CrossRef]

20. Dolcini, F.; Iotti, R.C.; Rossi, F. Interplay between energy dissipation and reservoir-induced thermalization
in nonequilibrium quantum nanodevices. Phys. Rev. B 2013, 88, 115421. doi:10.1103/PhysRevB.88.115421.
[CrossRef]

https://doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevB.72.125347
http://dx.doi.org/10.1103/PhysRevB.72.125347
https://doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1103/RevModPhys.52.569
https://doi.org/10.1140/epjb/e2009-00363-4
http://dx.doi.org/10.1140/epjb/e2009-00363-4
https://doi.org/10.1103/PhysRevB.88.115421
http://dx.doi.org/10.1103/PhysRevB.88.115421


Entropy 2020, 22, 489 26 of 28

21. Rosati, R.; Iotti, R.C.; Dolcini, F.; Rossi, F. Derivation of nonlinear single-particle equations via
many-body Lindblad superoperators: A density-matrix approach. Phys. Rev. B 2014, 90, 125140.
doi:10.1103/PhysRevB.90.125140. [CrossRef]

22. Rosati, R.; Rossi, F. Scattering nonlocality in quantum charge transport: Application to semiconductor
nanostructures. Phys. Rev. B 2014, 89, 205415. doi:10.1103/PhysRevB.89.205415. [CrossRef]

23. Rosati, R.; Dolcini, F.; Rossi, F. Electron-phonon coupling in metallic carbon nanotubes: Dispersionless
electron propagation despite dissipation. Phys. Rev. B 2015, 92, 235423. doi:10.1103/PhysRevB.92.235423.
[CrossRef]

24. Rosati, R.; Reiter, D.E.; Kuhn, T. Lindblad approach to spatiotemporal quantum dynamics of phonon-induced
carrier capture processes. Phys. Rev. B 2017, 95, 165302. doi:10.1103/PhysRevB.95.165302. [CrossRef]

25. Rosati, R.; Lengers, F.; Reiter, D.E.; Kuhn, T. Spatial control of carrier capture in two-dimensional materials:
Beyond energy selection rules. Phys. Rev. B 2018, 98, 195411. doi:10.1103/PhysRevB.98.195411. [CrossRef]

26. Tran Thoai, D.B.; Haug, H. Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar
semiconductors. Phys. Rev. B 1993, 47, 3574–3581. doi:10.1103/PhysRevB.47.3574. [CrossRef] [PubMed]

27. Schilp, J.; Kuhn, T.; Mahler, G. Electron-phonon quantum kinetics in pulse-excited semiconductors: Memory
and renormalization effects. Phys. Rev. B 1994, 50, 5435–5447. doi:10.1103/PhysRevB.50.5435. [CrossRef]
[PubMed]

28. Fürst, C.; Leitenstorfer, A.; Laubereau, A.; Zimmermann, R. Quantum Kinetic Electron-Phonon Interaction
in GaAs: Energy Nonconserving Scattering Events and Memory Effects. Phys. Rev. Lett. 1997, 78, 3733–3736.
doi:10.1103/PhysRevLett.78.3733. [CrossRef]

29. Bányai, L.; Vu, Q.T.; Mieck, B.; Haug, H. Ultrafast Quantum Kinetics of Time-Dependent RPA-Screened
Coulomb Scattering. Phys. Rev. Lett. 1998, 81, 882–885. doi:10.1103/PhysRevLett.81.882. [CrossRef]

30. Gartner, P.; Bányai, L.; Haug, H. Two-time electron-LO-phonon quantum kinetics and the generalized
Kadanoff-Baym approximation. Phys. Rev. B 1999, 60, 14234–14241. doi:10.1103/PhysRevB.60.14234.
[CrossRef]

31. Vu, Q.T.; Haug, H.; Hügel, W.A.; Chatterjee, S.; Wegener, M. Signature of Electron-Plasmon Quantum
Kinetics in GaAs. Phys. Rev. Lett. 2000, 85, 3508–3511. doi:10.1103/PhysRevLett.85.3508. [CrossRef]
[PubMed]

32. Hannewald, K.; Glutsch, S.; Bechstedt, F. Quantum-Kinetic Theory of Hot Luminescence from Pulse-Excited
Semiconductors. Phys. Rev. Lett. 2001, 86, 2451–2454. doi:10.1103/PhysRevLett.86.2451. [CrossRef]
[PubMed]

33. Schmitt, O.M.; Thoai, D.B.T.; Bányai, L.; Gartner, P.; Haug, H. Bose-Einstein Condensation Quantum Kinetics
for a Gas of Interacting Excitons. Phys. Rev. Lett. 2001, 86, 3839–3842. doi:10.1103/PhysRevLett.86.3839.
[CrossRef]

34. Axt, V.M.; Haase, B.; Neukirch, U. Influence of Two-Pair Continuum Correlations Following Resonant
Excitation of Excitons. Phys. Rev. Lett. 2001, 86, 4620–4623. doi:10.1103/PhysRevLett.86.4620. [CrossRef]

35. Betz, M.; Göger, G.; Laubereau, A.; Gartner, P.; Bányai, L.; Haug, H.; Ortner, K.; Becker, C.R.;
Leitenstorfer, A. Subthreshold Carrier-LO Phonon Dynamics in Semiconductors with Intermediate Polaron
Coupling: A Purely Quantum Kinetic Relaxation Channel. Phys. Rev. Lett. 2001, 86, 4684–4687.
doi:10.1103/PhysRevLett.86.4684. [CrossRef] [PubMed]

36. Mieck, B.; Haug, H. Quantum-kinetic Langevin fluctuations for exciton Bose-Einstein condensation.
Phys. Rev. B 2002, 66, 075111. doi:10.1103/PhysRevB.66.075111. [CrossRef]

37. Wolterink, T.; Axt, V.M.; Kuhn, T. Role of exchange interaction in Coulomb quantum kinetics. Phys. Rev. B
2003, 67, 115311. doi:10.1103/PhysRevB.67.115311. [CrossRef]

38. Herbst, M.; Glanemann, M.; Axt, V.M.; Kuhn, T. Electron-phonon quantum kinetics for spatially
inhomogeneous excitations. Phys. Rev. B 2003, 67, 195305. doi:10.1103/PhysRevB.67.195305. [CrossRef]

39. Förstner, J.; Weber, C.; Danckwerts, J.; Knorr, A. Phonon-Assisted Damping of Rabi Oscillations in
Semiconductor Quantum Dots. Phys. Rev. Lett. 2003, 91, 127401. doi:10.1103/PhysRevLett.91.127401.
[CrossRef] [PubMed]

40. Seebeck, J.; Nielsen, T.R.; Gartner, P.; Jahnke, F. Polarons in semiconductor quantum dots and their role in
the quantum kinetics of carrier relaxation. Phys. Rev. B 2005, 71, 125327. doi:10.1103/PhysRevB.71.125327.
[CrossRef]

https://doi.org/10.1103/PhysRevB.90.125140
http://dx.doi.org/10.1103/PhysRevB.90.125140
https://doi.org/10.1103/PhysRevB.89.205415
http://dx.doi.org/10.1103/PhysRevB.89.205415
https://doi.org/10.1103/PhysRevB.92.235423
http://dx.doi.org/10.1103/PhysRevB.92.235423
https://doi.org/10.1103/PhysRevB.95.165302
http://dx.doi.org/10.1103/PhysRevB.95.165302
https://doi.org/10.1103/PhysRevB.98.195411
http://dx.doi.org/10.1103/PhysRevB.98.195411
https://doi.org/10.1103/PhysRevB.47.3574
http://dx.doi.org/10.1103/PhysRevB.47.3574
http://www.ncbi.nlm.nih.gov/pubmed/10006455
https://doi.org/10.1103/PhysRevB.50.5435
http://dx.doi.org/10.1103/PhysRevB.50.5435
http://www.ncbi.nlm.nih.gov/pubmed/9976886
https://doi.org/10.1103/PhysRevLett.78.3733
http://dx.doi.org/10.1103/PhysRevLett.78.3733
https://doi.org/10.1103/PhysRevLett.81.882
http://dx.doi.org/10.1103/PhysRevLett.81.882
https://doi.org/10.1103/PhysRevB.60.14234
http://dx.doi.org/10.1103/PhysRevB.60.14234
https://doi.org/10.1103/PhysRevLett.85.3508
http://dx.doi.org/10.1103/PhysRevLett.85.3508
http://www.ncbi.nlm.nih.gov/pubmed/11030933
https://doi.org/10.1103/PhysRevLett.86.2451
http://dx.doi.org/10.1103/PhysRevLett.86.2451
http://www.ncbi.nlm.nih.gov/pubmed/11289952
https://doi.org/10.1103/PhysRevLett.86.3839
http://dx.doi.org/10.1103/PhysRevLett.86.3839
https://doi.org/10.1103/PhysRevLett.86.4620
http://dx.doi.org/10.1103/PhysRevLett.86.4620
https://doi.org/10.1103/PhysRevLett.86.4684
http://dx.doi.org/10.1103/PhysRevLett.86.4684
http://www.ncbi.nlm.nih.gov/pubmed/11384314
https://doi.org/10.1103/PhysRevB.66.075111
http://dx.doi.org/10.1103/PhysRevB.66.075111
https://doi.org/10.1103/PhysRevB.67.115311
http://dx.doi.org/10.1103/PhysRevB.67.115311
https://doi.org/10.1103/PhysRevB.67.195305
http://dx.doi.org/10.1103/PhysRevB.67.195305
https://doi.org/10.1103/PhysRevLett.91.127401
http://dx.doi.org/10.1103/PhysRevLett.91.127401
http://www.ncbi.nlm.nih.gov/pubmed/14525398
https://doi.org/10.1103/PhysRevB.71.125327
http://dx.doi.org/10.1103/PhysRevB.71.125327


Entropy 2020, 22, 489 27 of 28

41. Butscher, S.; Förstner, J.; Waldmüller, I.; Knorr, A. Ultrafast electron-phonon interaction of intersubband
transitions: Quantum kinetics from adiabatic following to Rabi-oscillations. Phys. Rev. B 2005, 72, 045314.
doi:10.1103/PhysRevB.72.045314. [CrossRef]

42. Glanemann, M.; Axt, V.M.; Kuhn, T. Transport of a wave packet through nanostructures: Quantum kinetics
of carrier capture processes. Phys. Rev. B 2005, 72, 045354. doi:10.1103/PhysRevB.72.045354. [CrossRef]

43. Indlekofer, K.M.; Knoch, J.; Appenzeller, J. Quantum kinetic description of Coulomb effects in
one-dimensional nanoscale transistors. Phys. Rev. B 2005, 72, 125308. doi:10.1103/PhysRevB.72.125308.
[CrossRef]

44. Krügel, A.; Axt, V.M.; Kuhn, T. Back action of nonequilibrium phonons on the optically induced dynamics
in semiconductor quantum dots. Phys. Rev. B 2006, 73, 035302. doi:10.1103/PhysRevB.73.035302. [CrossRef]

45. Gartner, P.; Seebeck, J.; Jahnke, F. Relaxation properties of the quantum kinetics of carrier-LO-phonon
interaction in quantum wells and quantum dots. Phys. Rev. B 2006, 73, 115307.
doi:10.1103/PhysRevB.73.115307. [CrossRef]

46. Vu, Q.T.; Haug, H.; Koch, S.W. Relaxation and dephasing quantum kinetics for a quantum dot in an optically
excited quantum well. Phys. Rev. B 2006, 73, 205317. doi:10.1103/PhysRevB.73.205317. [CrossRef]

47. Nedjalkov, M.; Vasileska, D.; Ferry, D.K.; Jacoboni, C.; Ringhofer, C.; Dimov, I.; Palankovski, V.
Wigner transport models of the electron-phonon kinetics in quantum wires. Phys. Rev. B 2006, 74, 035311.
doi:10.1103/PhysRevB.74.035311. [CrossRef]

48. Zhou, J.; Cheng, J.L.; Wu, M.W. Spin relaxation in n-type GaAs quantum wells from a fully microscopic
approach. Phys. Rev. B 2007, 75, 045305. doi:10.1103/PhysRevB.75.045305. [CrossRef]

49. Shelykh, I.A.; Johne, R.; Solnyshkov, D.D.; Kavokin, A.V.; Gippius, N.A.; Malpuech, G. Quantum kinetic
equations for interacting bosons and their application for polariton parametric oscillators. Phys. Rev. B 2007,
76, 155308. doi:10.1103/PhysRevB.76.155308. [CrossRef]

50. Zhang, P.; Wu, M.W. Non-Markovian hole spin kinetics in p-type GaAs quantum wells. Phys. Rev. B 2007,
76, 193312. doi:10.1103/PhysRevB.76.193312. [CrossRef]

51. Rozbicki, E.; Machnikowski, P. Quantum Kinetic Theory of Phonon-Assisted Excitation Transfer in Quantum
Dot Molecules. Phys. Rev. Lett. 2008, 100, 027401. doi:10.1103/PhysRevLett.100.027401. [CrossRef] [PubMed]

52. Grodecka-Grad, A.; Förstner, J. Theory of phonon-mediated relaxation in doped quantum dot molecules.
Phys. Rev. B 2010, 81, 115305. doi:10.1103/PhysRevB.81.115305. [CrossRef]

53. Aeberhard, U. Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical
transitions. Phys. Rev. B 2011, 84, 035454. doi:10.1103/PhysRevB.84.035454. [CrossRef]

54. Daniels, J.M.; Papenkort, T.; Reiter, D.E.; Kuhn, T.; Axt, V.M. Quantum kinetics of squeezed
lattice displacement generated by phonon down conversion. Phys. Rev. B 2011, 84, 165310.
doi:10.1103/PhysRevB.84.165310. [CrossRef]

55. Thurn, C.; Axt, V.M. Quantum kinetic description of spin transfer in diluted magnetic semiconductors.
Phys. Rev. B 2012, 85, 165203. doi:10.1103/PhysRevB.85.165203. [CrossRef]

56. Papenkort, T.; Axt, V.M.; Kuhn, T. Optical excitation of squeezed longitudinal optical phonon states in an
electrically biased quantum well. Phys. Rev. B 2012, 85, 235317. doi:10.1103/PhysRevB.85.235317. [CrossRef]

57. Haug, H.; Doan, T.D.; Tran Thoai, D.B. Quantum kinetic derivation of the nonequilibrium Gross-Pitaevskii
equation for nonresonant excitation of microcavity polaritons. Phys. Rev. B 2014, 89, 155302.
doi:10.1103/PhysRevB.89.155302. [CrossRef]

58. Cygorek, M.; Axt, V.M. Comparison between a quantum kinetic theory of spin transfer dynamics in
Mn-doped bulk semiconductors and its Markov limit for nonzero Mn magnetization. Phys. Rev. B 2014,
90, 035206. doi:10.1103/PhysRevB.90.035206. [CrossRef]

59. Papenkort, T.; Axt, V.M.; Kuhn, T. Stationary Phonon Squeezing by Optical Polaron Excitation. Phys. Rev. Lett.
2017, 118, 097401. doi:10.1103/PhysRevLett.118.097401. [CrossRef] [PubMed]

60. Ungar, F.; Cygorek, M.; Axt, V.M. Quantum kinetic equations for the ultrafast spin dynamics of excitons
in diluted magnetic semiconductor quantum wells after optical excitation. Phys. Rev. B 2017, 95, 245203.
doi:10.1103/PhysRevB.95.245203. [CrossRef]

61. Ungar, F.; Cygorek, M.; Axt, V.M. Role of excited states in the dynamics of excitons and their spins in diluted
magnetic semiconductors. Phys. Rev. B 2019, 99, 195309. doi:10.1103/PhysRevB.99.195309. [CrossRef]

62. Zimmermann, R.; Wauer, J. Non-Markovian relaxation in semiconductors: An exactly soluble model.
J. Lumin. 1994, 58, 271–274. doi:10.1016/0022-2313(94)90413-8. [CrossRef]

https://doi.org/10.1103/PhysRevB.72.045314
http://dx.doi.org/10.1103/PhysRevB.72.045314
https://doi.org/10.1103/PhysRevB.72.045354
http://dx.doi.org/10.1103/PhysRevB.72.045354
https://doi.org/10.1103/PhysRevB.72.125308
http://dx.doi.org/10.1103/PhysRevB.72.125308
https://doi.org/10.1103/PhysRevB.73.035302
http://dx.doi.org/10.1103/PhysRevB.73.035302
https://doi.org/10.1103/PhysRevB.73.115307
http://dx.doi.org/10.1103/PhysRevB.73.115307
https://doi.org/10.1103/PhysRevB.73.205317
http://dx.doi.org/10.1103/PhysRevB.73.205317
https://doi.org/10.1103/PhysRevB.74.035311
http://dx.doi.org/10.1103/PhysRevB.74.035311
https://doi.org/10.1103/PhysRevB.75.045305
http://dx.doi.org/10.1103/PhysRevB.75.045305
https://doi.org/10.1103/PhysRevB.76.155308
http://dx.doi.org/10.1103/PhysRevB.76.155308
https://doi.org/10.1103/PhysRevB.76.193312
http://dx.doi.org/10.1103/PhysRevB.76.193312
https://doi.org/10.1103/PhysRevLett.100.027401
http://dx.doi.org/10.1103/PhysRevLett.100.027401
http://www.ncbi.nlm.nih.gov/pubmed/18232920
https://doi.org/10.1103/PhysRevB.81.115305
http://dx.doi.org/10.1103/PhysRevB.81.115305
https://doi.org/10.1103/PhysRevB.84.035454
http://dx.doi.org/10.1103/PhysRevB.84.035454
https://doi.org/10.1103/PhysRevB.84.165310
http://dx.doi.org/10.1103/PhysRevB.84.165310
https://doi.org/10.1103/PhysRevB.85.165203
http://dx.doi.org/10.1103/PhysRevB.85.165203
https://doi.org/10.1103/PhysRevB.85.235317
http://dx.doi.org/10.1103/PhysRevB.85.235317
https://doi.org/10.1103/PhysRevB.89.155302
http://dx.doi.org/10.1103/PhysRevB.89.155302
https://doi.org/10.1103/PhysRevB.90.035206
http://dx.doi.org/10.1103/PhysRevB.90.035206
https://doi.org/10.1103/PhysRevLett.118.097401
http://dx.doi.org/10.1103/PhysRevLett.118.097401
http://www.ncbi.nlm.nih.gov/pubmed/28306296
https://doi.org/10.1103/PhysRevB.95.245203
http://dx.doi.org/10.1103/PhysRevB.95.245203
https://doi.org/10.1103/PhysRevB.99.195309
http://dx.doi.org/10.1103/PhysRevB.99.195309
https://doi.org/http://dx.doi.org/10.1016/0022-2313(94)90413-8
http://dx.doi.org/10.1016/0022-2313(94)90413-8


Entropy 2020, 22, 489 28 of 28

63. Iotti, R.C.; Rossi, F. Electronic phase coherence vs. dissipation in solid-state quantum devices:
Two approximations are better than one. EPL 2015, 112, 67005. doi:10.1209/0295-5075/112/67005. [CrossRef]

64. Iotti, R.C.; Rossi, F. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian
versus non-Markovian treatments. Eur. Phys. J. B 2017, 90, 250. doi:10.1140/epjb/e2017-80462-3. [CrossRef]

65. Rossi, F.; Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 2002,
74, 895–950. doi:10.1103/RevModPhys.74.895. [CrossRef]

66. Cho, G.C.; Kütt, W.; Kurz, H. Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Phys. Rev.
Lett. 1990, 65, 764–766. doi:10.1103/PhysRevLett.65.764. [CrossRef] [PubMed]

67. Iotti, R.C.; Rossi, F.; Vitiello, M.S.; Scamarcio, G.; Mahler, L.; Tredicucci, A. Impact of nonequilibrium
phonons on the electron dynamics in terahertz quantum cascade lasers. Appl. Phys. Lett. 2010, 97, 033110.
doi:10.1063/1.3464977. [CrossRef]

68. Vitiello, M.S.; Iotti, R.C.; Rossi, F.; Mahler, L.; Tredicucci, A.; Beere, H.E.; Ritchie, D.A.; Hu, Q.;
Scamarcio, G. Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade
lasers. Appl. Phys. Lett. 2012, 100, 091101. doi:10.1063/1.3687913. [CrossRef]

69. Iotti, R.C.; Rossi, F. Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers:
A Monte Carlo analysis. New J. Phys. 2013, 15, 075027. doi:10.1088/1367-2630/15/7/075027. [CrossRef]

70. Verzelen, O.; Ferreira, R.; Bastard, G. Excitonic Polarons in Semiconductor Quantum Dots. Phys. Rev. Lett.
2002, 88, 146803. doi:10.1103/PhysRevLett.88.146803. [CrossRef]

71. Grange, T.; Ferreira, R.; Bastard, G. Polaron relaxation in self-assembled quantum dots: Breakdown of the
semiclassical model. Phys. Rev. B 2007, 76, 241304. doi:10.1103/PhysRevB.76.241304. [CrossRef]

72. Bányai, L.; Thoai, D.B.T.; Reitsamer, E.; Haug, H.; Steinbach, D.; Wehner, M.U.; Wegener, M.; Marschner, T.;
Stolz, W. Exciton-LO Phonon Quantum Kinetics: Evidence of Memory Effects in Bulk GaAs. Phys. Rev. Lett.
1995, 75, 2188–2191. doi:10.1103/PhysRevLett.75.2188. [CrossRef]

73. Leitenstorfer, A.; Lohner, A.; Rick, K.; Leisching, P.; Elsaesser, T.; Kuhn, T.; Rossi, F.; Stolz, W.; Ploog, K.
Excitonic and free-carrier polarizations of bulk GaAs studied by femtosecond coherent spectroscopy.
Phys. Rev. B 1994, 49, 16372–16380. doi:10.1103/PhysRevB.49.16372. [CrossRef]

74. Haas, S.; Rossi, F.; Kuhn, T. Generalized Monte Carlo approach for the study of the coherent
ultrafast carrier dynamics in photoexcited semiconductors. Phys. Rev. B 1996, 53, 12855–12868.
doi:10.1103/PhysRevB.53.12855. [CrossRef]

75. Wehner, M.U.; Ulm, M.H.; Chemla, D.S.; Wegener, M. Coherent Control of Electron-LO-Phonon Scattering
in Bulk GaAs. Phys. Rev. Lett. 1998, 80, 1992–1995. doi:10.1103/PhysRevLett.80.1992. [CrossRef]

76. De Rinaldis, S.; D’Amico, I.; Rossi, F. Intrinsic electric field effects on few-particle interactions in coupled
GaN quantum dots. Phys. Rev. B 2004, 69, 235316. doi:10.1103/PhysRevB.69.235316. [CrossRef]

77. Krummheuer, B.; Axt, V.M.; Kuhn, T.; D’Amico, I.; Rossi, F. Pure dephasing and phonon dynamics in GaAs-
and GaN-based quantum dot structures: Interplay between material parameters and geometry. Phys. Rev. B
2005, 71, 235329. doi:10.1103/PhysRevB.71.235329. [CrossRef]

78. Callsen, G.; Pahn, G.M.O.; Kalinowski, S.; Kindel, C.; Settke, J.; Brunnmeier, J.; Nenstiel, C.; Kure, T.;
Nippert, F.; Schliwa, A.; et al. Analysis of the exciton-LO-phonon coupling in single wurtzite GaN quantum
dots. Phys. Rev. B 2015, 92, 235439. doi:10.1103/PhysRevB.92.235439. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1209/0295-5075/112/67005
http://dx.doi.org/10.1209/0295-5075/112/67005
https://doi.org/10.1140/epjb/e2017-80462-3
http://dx.doi.org/10.1140/epjb/e2017-80462-3
https://doi.org/10.1103/RevModPhys.74.895
http://dx.doi.org/10.1103/RevModPhys.74.895
https://doi.org/10.1103/PhysRevLett.65.764
http://dx.doi.org/10.1103/PhysRevLett.65.764
http://www.ncbi.nlm.nih.gov/pubmed/10043013
https://doi.org/10.1063/1.3464977
http://dx.doi.org/10.1063/1.3464977
https://doi.org/10.1063/1.3687913
http://dx.doi.org/10.1063/1.3687913
https://doi.org/10.1088/1367-2630/15/7/075027
http://dx.doi.org/10.1088/1367-2630/15/7/075027
https://doi.org/10.1103/PhysRevLett.88.146803
http://dx.doi.org/10.1103/PhysRevLett.88.146803
https://doi.org/10.1103/PhysRevB.76.241304
http://dx.doi.org/10.1103/PhysRevB.76.241304
https://doi.org/10.1103/PhysRevLett.75.2188
http://dx.doi.org/10.1103/PhysRevLett.75.2188
https://doi.org/10.1103/PhysRevB.49.16372
http://dx.doi.org/10.1103/PhysRevB.49.16372
https://doi.org/10.1103/PhysRevB.53.12855
http://dx.doi.org/10.1103/PhysRevB.53.12855
https://doi.org/10.1103/PhysRevLett.80.1992
http://dx.doi.org/10.1103/PhysRevLett.80.1992
https://doi.org/10.1103/PhysRevB.69.235316
http://dx.doi.org/10.1103/PhysRevB.69.235316
https://doi.org/10.1103/PhysRevB.71.235329
http://dx.doi.org/10.1103/PhysRevB.71.235329
https://doi.org/10.1103/PhysRevB.92.235439
http://dx.doi.org/10.1103/PhysRevB.92.235439
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Markovian Dissipation Models
	Conventional Adiabatic-Decoupling Scheme
	Lindblad-Type Adiabatic-Decoupling Scheme
	Generalization to the Nonlinear Regime

	Non-Markovian Dissipation Models
	Low-Density Analysis
	High-Density Analysis

	Summary and Conclusions
	References

