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The transcriptome and proteome change dynamically as cells respond to environmental stress;
however, prior proteomic studies reported poor correlation between mRNA and protein, rendering their
relationships unclear. To address this, we combined high mass accuracy mass spectrometry with
isobaric tagging to quantify dynamic changes inB2500 Saccharomyces cerevisiae proteins, in biological
triplicate and with paired mRNA samples, as cells acclimated to high osmolarity. Surprisingly, while
transcript induction correlated extremely well with protein increase, transcript reduction produced
little to no change in the corresponding proteins. We constructed a mathematical model of dynamic
protein changes and propose that the lack of protein reduction is explained by cell-division arrest, while
transcript reduction supports redistribution of translational machinery. Furthermore, the transient
‘burst’ of mRNA induction after stress serves to accelerate change in the corresponding protein levels.
We identified several classes of post-transcriptional regulation, but show that most of the variance in
protein changes is explained by mRNA. Our results present a picture of the coordinated physiological
responses at the levels of mRNA, protein, protein-synthetic capacity, and cellular growth.
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Introduction

Yeast cells remodel a large fraction of their transcriptome to
acclimate to the new conditions following environmental
shock. Such stressful conditions trigger a common expression
program called the environmental stress response (ESR),
which includes increased expression of stress-defense genes
and reduced expression of protein-synthesis and growth-
related messages (Gasch et al, 2000; Causton et al, 2001) that
are synthesized at high levels during active growth (Lipson
et al, 2009). Increased abundance of stress-defense genes is
important for surviving subsequent stressful insults (Berry and
Gasch, 2008), while the role of transcript reduction in the ESR
is less clear. It has been observed that the abundance of stress-
reduced transcripts correlates with growth rate under some
(Jorgensen et al, 2002, 2004; Regenberg et al, 2006; Brauer
et al, 2008) but not all (Gasch et al, 2000, 2001) conditions,
leading to the hypothesis that transcript reduction contributes
to resource conservation during stress defense. However, the
precise function of mRNA reduction during environmental
transition remains enigmatic.

Stress responses have been extensively studied at the
transcript level because mRNA measurement is robust and
broadly accessible, while protein analysis is considerably less

well developed. This technology gap has prompted the
assumption that changing transcripts mediate proportional
protein alterations; however, most recent proteomic studies
report poor correlation. For example, many studies comparing
absolute abundance (Gygi et al, 1999; Ideker et al, 2001a;
Ghaemmaghami et al, 2003; Greenbaum et al, 2003; Washburn
et al, 2003) or abundance changes (Ideker et al, 2001a; Griffin
et al, 2002; Li et al, 2003; Washburn et al, 2003; de Godoy et al,
2008; Soufi et al, 2009; Fournier et al, 2010) of protein versus
mRNA reported only modest correlation between the two.
Several smaller investigations cited higher agreement
(R2B0.7), but these were limited to a few hundred mRNA–
protein pairs (Futcher et al, 1999; Lu et al, 2007). Many of these
studies did not collect mRNA from the same cells from which
proteins were measured, and all but a few (Li et al, 2003;
Picotti et al, 2009; Soufi et al, 2009; Fournier et al, 2010)
neglected temporal changes or did not perform biological
replicates. Hence, the true relationship between mRNA and
protein levels remains an open question.

To understand the dynamic relationship between transcript
and protein, we developed a strategy for large-scale, multi-
plexed quantitation by way of isobaric tags and high mass
accuracy mass spectrometry (o5 p.p.m.) (Figure 1A). This
platform allowed for the expedient collection of time-course
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data (response to 0.7 M sodium chloride (NaCl) at six time
points over 4 h) at the protein level (two technical replicates
of each biological sample in B5 days instrument analysis).
In contrast to metabolic labeling approaches (Jiang and English,
2002; Ong et al, 2002), which permit up to three-way sample
comparisons and require specific growth conditions, this
multiplexed method enables practical acquisition of biological
data over many samples and in any conditions. Here, we reveal
the quantitative and temporal relationships between changes
in mRNA and protein levels in cells acclimating to a sudden
change in osmolarity.

Results

We followed the response of actively growing Saccharomyces
cerevisiae to an osmotic shock of 0.7 M NaCl. This dose of salt

provides a robust physiological response but results in high
viability and eventual resumption of cell growth. Samples
were collected before and at 30, 60, 90, 120, and 240 min after
NaCl treatment (measuring the peak transcript changes that
occurs at or after 30 min (Berry and Gasch, 2008)), in
biological triplicate time courses that captured cells acclimated
to both environments and their transition between states. After
lysing cells harvested from each time point, we digested the
proteins with trypsin, generating peptides to be labeled with
one of the six isobaric tags. Tagged samples were then pooled
and fractionated via strong-cation exchange (SCX) for LC–MS/
MS analysis on an LTQ Orbitrap Velos mass spectrometer
(Figure 1). Performing our experiment in biological triplicate
generated a total of 454 755 peptide–spectral matches (PSMs),
35 828 unique peptides, and 2965 proteins (1% false discovery
rate (FDR); see Materials and methods). We wrote custom
software, TagQuant (Wenger et al, 2011), to extract reporter ion
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Figure 1 Experimental workflow and mass spectrometry identification summary. (A) Yeast cells were grown to mid-log phase and exposed to 0.7 M NaCl; culture
volumes were removed at 30, 60, 90, 120, and 240 min after stress, as well as from unstressed cells (0 min), for microarray and quantitative MS proteomic analysis. Each
proteomic sample was lysed, followed by protein extraction and enzyme digestion. Peptides were labeled with isobaric TMT and mixed in equal rations. The labeled mix
was then subjected to an orthogonal first-dimension separation: SCX. Fractions were subsequently analyzed on an LTQ Orbitrap Velos mass spectrometer coupled with
nano-RP HPLC. Biological replicates were performed in triplicate. Spectra were analyzed with in-house developed software. (B) Peptide and protein identifications
across the three biological replicates (BR) are outlined in the above table with the overlap depicted in the Venn diagrams. Of the protein identifications, 60% overlap was
observed across all biological replicates. On average, 81.5% of all identifications were quantifiable with an overlap of 55% across all biological replicates. Numbers in
each colored circle represent the correspondingly colored sector in the Venn diagrams.
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intensities and exclude tandem mass spectra containing
interference resulting from cofragmentation of multiple pre-
cursors. Removal of precursors having X25% interference
greatly improved quantitative accuracy, precision, and dy-
namic range. To obtain maximal noise reduction across all
time courses and biological replicates, we used PSMs of
unambiguous provenance and required at least two unique
peptides per protein. This approach is much more conserva-
tive than most proteomic analyses but provides maximal
accuracy in peptide quantitation. Following this conservative
analysis, we confidently measured the relative abundances of
35 000 unique peptides mapping to 2451 proteins with 60%
overlap across biological replicates (Figure 1B). Of the 1814
proteins quantified in at least biological duplicate, 780 (43%)
showed statistically significant changes in abundance (5%
FDR, modified t-test (Storey and Tibshirani, 2003; Smyth,
2004)). Quantitative western blotting validated these large-
scale results for several selected proteins (Supplementary
Figure S1).

Relationships between changing mRNA and
proteins

We next generated time-course transcriptome data from the
same biological samples and compared maximal changes in
mRNA with changes in corresponding protein abundance
during NaCl acclimation (Figure 2). For transcripts that
increase in abundance, the log–log linear correlation between
mRNA change and protein change was significantly higher
than previously reported (R2¼0.77), indicating that on a global
scale nearly 80% of the variance in changing protein
abundance is explained by increases in mRNA (Figure 2B
and C). Variation in this correlation revealed that some groups
of functionally related genes showed even higher agreement
while others were unrelated (Supplementary Figure S2;
Supplementary Table S1). This result expands on previous
studies demonstrating that the correlation between mRNA and
protein abundance varies by gene functional group (Washburn
et al, 2003). Many of the proteins with the largest changes in
abundance function in processes known to be important for
NaCl survival, including glycerol and trehalose metabolism
and stress defense (Supplementary Figure S3).

In stark contrast to the high correlation between protein
abundance and increased mRNAs, the poor correlation
between protein changes and transcripts that decrease in
abundance (R2¼0.09; Figure 2B and C) reflects the overall lack
of protein reduction over time. Although the decreased
abundance of some proteins was statistically significant, the
magnitude of change was far less than that of the mRNA (e.g.
B1.1-fold reduction of ribosomal proteins (RPs) compared
with 1.5- to 2-fold reduction of transcripts). Quantitative
western blotting validated the lack of protein reduction
(Supplementary Figure S1), and furthermore the proteomic
results did not suffer from technical inability to measure
protein reduction (Supplementary Figure S4). Importantly, the
observation was true irrespective of protein abundance or half-
life as measured under standard conditions (Supplementary
Figure S5). The lack of reduction over this time frame is
predicted for long-lived proteins; however, this was not
expected for the many proteins with short half-lives (Belle

et al, 2006). While the measured changes in mRNA abundance
may be influenced by untranslated mRNAs, prior evidence
suggests that the majority of most transcripts are associated
with ribosomes (Arava et al, 2003), indicating that our
measurements largely reflect the translated pool of mRNAs
in the cell. Regardless, we conclude that the NaCl-activated
reduction in transcript abundance serves another role besides
mediating changes in protein abundance.

Dynamic modeling suggests alternate roles of
transcript reduction

We devised a mass-action kinetic model to describe dynamic
protein changes, in which protein abundance is a function of
new synthesis and of disappearance through degradation and
cell division. To calculate translation rates for each protein, we
used global measurements of basal protein abundances and
protein half-lives as reported by Ghaemmaghami et al (2003)
and Belle et al (2006), respectively, along with our own
measurements of mRNA and growth rate changes (see
Materials and methods). Using this model, we predicted
changes in protein abundance based on observed changes in
mRNA levels. The model’s successful performance in both
training and test data sets (Supplementary Appendix) allowed
us to use it to test various hypotheses through simulations.

Since cell growth was arrested for B45 min after NaCl
addition before resuming at roughly half the initial rate
(Supplementary Figure S6), we first used the model to test
the effect of cell-division arrest. The model suggested that the
transient growth arrest maintained protein levels despite
transcript reduction. As expected, when the model assumed
a constant growth rate, it predicted an B1.5-fold decrease for
virtually all proteins from reduced transcripts (Figure 3, blue
trace).

We next tested the consequences of transcript reduction. We
reasoned that, if reduced transcript abundance is critical for
reducing synthesis of these proteins, then simulating tran-
scripts without a decrease in abundance would lead to
increased protein levels during growth arrest. Surprisingly,
however, the model predicted little increase in protein
abundance in the absence of transcript reduction; most
proteins were calculated with only B1.2-fold weaker reduc-
tion than that predicted from measured mRNA levels (Figure 3,
purple trace). Indeed, polysome analysis showed that the
maximal reduction in translation initiation (represented by the
increase in monosome versus polysome complexes) peaked at
5 min after NaCl exposure (Figure 4A), whereas transcript
reduction did not occur until 30 min after treatment. These
results strongly suggest that the translational repression, well
known to occur during the NaCl response (Uesono and Toh,
2002; Melamed et al, 2008; Warringer et al, 2010), is
independent of transcript reduction and is counteracted by
transient cell-division arrest, such that corresponding protein
levels do not change appreciably.

Although the reduced levels of these transcripts did not
influence abundance of the encoded proteins, it may be critical
for proper protein levels in the cellular system if translational
capacity is limited. To explore this, we characterized the
aspects of the NaCl response in a mutant lacking the
transcriptional repressors Dot6p and Tod6p (Lippman and
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Broach, 2009; Zhu et al, 2009). In the absence of stress, the
dot6Dtod6D mutant grew indistinguishably from wild-type
cells (Supplementary Figure S6C) and displayed similar
polysome profiles (Figure 4B). However, in response to NaCl
treatment, the mutant failed to properly repressB250 genes in
the yeast ESR (Supplementary Dataset S3). Over 90% of these
genes (P¼10�66, hypergeometric distribution) contain up-
stream Dot6p/Tod6p binding elements (GATGAG; Hughes
et al, 2008; Zhu et al, 2009), consistent with direct repression
by the proteins. The mutant also resumed growth at a slower

rate after NaCl treatment (Supplementary Figure S6C), and
showed delayed resumption of normal translation profiles
(Figure 4B), indicating a specific defect in acclimating to the
stress.

We followed the polysome association of transcripts
encoded by Dot6pTod6p targets, focusing on ARX1 (Figure 4).
In unstressed wild-type cells, ARX1 transcript was associated
with polysomes, as expected (Arava et al, 2003). We observed
an B7-fold reduction in ARX1 levels 30 min after NaCl
treatment—most of the remaining transcript was found in
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the monosome peak, suggesting reduced or stalled translation
initiation. In contrast, the mutant showed only a 2-fold
reduction in ARX1 levels at 30 min after shock. As in wild-
type cells, there was a substantial increase in monosome-
bound ARX1 mRNA after NaCl exposure, reflecting regulated
translation initiation. Surprisingly, however, a large fraction of
the remaining mRNA was associated with polysomes at
30 min. We obtained virtually the same result for another
Dot6p/Tod6p target, NOP2, which also showed a repression
defect in the mutant (data not shown). In contrast, polysome
profiles were indistinguishable at induced transcript HSP104
(Figure 4D), although our analysis would miss subtle
differences. Unfortunately, we were unable to quantify
changes in the corresponding proteins using several available
antibodies. Nonetheless, these results show that, although the
mutant dramatically reduced global translation initiation
immediately after stress, failure to repress high-abundance
transcripts led to their continued polysome association as
translation was resuming.

mRNA dynamics affect protein acclimation time

Seventy-four percent of transcripts with increased abundance
after NaCl treatment showed a transient ‘burst’ of change
before acclimating to final levels (Figures 2D and 5A),
consistent with prior studies (Gasch et al, 2000). The majority
peaked at 30 min, coincident with the maximal reduction in
reduced transcripts. In contrast, only 15% of proteins showed
transient change, while most gradually adjusted to final levels.
As expected, there was a delay between mRNA changes and
protein adjustments; however, we observed a wide range of
protein acclimation times, even for those encoded by
transcripts peaking at 30 min.

We found that the degree of transient mRNA induction
largely determines the time to protein acclimation. Transcripts
with the greatest ‘overshoot,’ compared with their final,
steady-state level, produced proteins that acclimated quicker
than average (P¼8.5�10�7 for top quartile, t-test), whereas
transcripts without the transient burst led to delayed protein
acclimation (P¼2�10�3 for bottom quartile; Figure 5A and B).
Our mathematical model confirmed these results—simulated
transcripts lacking the transient induction burst produced
slower protein changes (Figure 5C) that were predicted to
acclimate 53 min later on average than proteins from
transiently altered mRNAs (Figure 5D). This confirms our
original hypothesis (Gasch et al, 2000) that gene expression
dynamics follow a second-order process in which the transient
burst serves as a ‘loading dose’ to accelerate protein change
before mRNA adjusts to ‘maintenance’ levels at the new
growth state. Transcripts with the largest transient increase
were enriched for those in the yeast ESR (P¼6�10�8);
however, we found no relationship between the degree of
transience and the importance of the protein for NaCl survival
(see Supplementary Figure S3).

Pervasive post-transcriptional regulation

We next sought to define the impact of post-transcriptional
regulation (PTR). We identified five distinct protein classes,
together implicating 440% the proteome as affected by PTR
(Supplementary Table S2). The first class contained 85
proteins (11% of 791 significantly altered proteins) whose
abundance changed in the absence of significant mRNA
changes. Another 70 (9%) changed in the opposite direction
of their mRNAs—this group was enriched for protein folding
chaperones (FDR¼0.035), which are known to be regulated at
the level of mRNA export (Saavedra et al, 1996). A further 34
proteins changed with greater magnitude than their under-
lying mRNAs in at least two replicate time courses, unlike most
other proteins whose abundance change was well below the
mRNA change. This group was enriched for transcripts that are
translationally upregulated in response to stress (P¼0.016)
(Law et al, 2005; Melamed et al, 2008; Halbeisen and Gerber,
2009) and includes several genes encoding signaling proteins.

Capitalizing on biological replicate analysis and the preci-
sion of our measurements, we identified a fourth mode of
regulation—post-transcriptional noise reduction that buffered
protein change against variation in mRNA levels (Figure 6A
and B). We identified 138 proteins (24%) whose biological
variability was below the corresponding mRNAs (95th
confidence level, see Materials and methods). These were
heavily enriched for several functional categories, including
stress-defense proteins, translation factors, and RPs (Supple-
mentary Table S3). Indeed, several RPs are regulated through
protein degradation in proportion to subunit stoichiometry
(Warner et al, 1985; Tsay et al, 1988), a mode that likely
extends to most if not all RPs. Newman et al (2006) previously
showed that RPs and translational regulators display low cell-
to-cell variation within actively growing yeast cultures, likely
due to PTR rather than tight transcriptional control. In contrast
to that study, which found high within-culture ‘noise’ for
stress-defense proteins, our results reveal that these proteins
are targeted for noise reduction under the stressful conditions
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used here (P¼4�10�5, hypergeometric distribution). Thus,
the level of ‘noise’ in protein abundance is condition specific.
Our conservative estimates indicate that post-transcriptional
noise reduction affects at least a quarter of yeast proteins. The
prevalence of this mode of regulation raises major implications
for gene expression studies, as it may dampen the effects of
transcript variation observed within and across individuals.

Discussion

Our results highlight the importance of quantitative, dynamic,
and replicated measurements in understanding the true
relationship between changing mRNA and protein. The high
mass accuracy mass spectrometry used here in combination
with isobaric tags allowed us to make a number of observa-

tions: (1) The magnitude of transcript induction is significantly
more predictive of changes in protein level than previously
thought, at least during the response to NaCl. (2) Transcript
reduction did not reduce levels of the corresponding proteins;
this result has not been reported before and the breadth of the
effect came as a surprise. (3) The temporal relationship
between transcript and protein changes is not linear but rather
determined by a more complicated function. (4) There is
evidence for pervasive PTR, even though the magnitude of that
PTR is small. The biological implications of these observations
are discussed below.

The correlation between increased transcripts and their
encoded proteins during NaCl acclimation is significantly
higher than previously measured, due not only to increased
measurement precision but also to dynamic considerations
that allowed comparison of the appropriate time points. The
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high protein–mRNA correlation for increased transcripts
confirms that the purpose of transcript elevation is to modulate
protein abundance. Although we find evidence for pervasive
PTR, most of the variance in observed protein increase
remains explained by mRNA changes (Figure 6C). Notably,
however, nearly 20% of all changing proteins do not correlate
with underlying mRNA changes. Thus, while increases in
mRNA are a good predictor of protein change under the
conditions studied here, the absence of mRNA induction is not
necessarily conclusive.

In stark contrast, transcript reduction did not alter protein
levels under these conditions. This result has not been widely
reported previously, although analysis of available data sets
generally shows fewer and smaller changes in reduced
proteins compared with those increasing in abundance, across
several different environmental comparisons (Blomberg,
1995; Ideker et al, 2001b; Griffin et al, 2002; Li et al, 2003;
Washburn et al, 2003; Picotti et al, 2009; Soufi et al, 2009;

Fournier et al, 2010). However, Fournier et al (2010) observed a
decrease in RPs after rapamycin treatment that was signifi-
cantly delayed (B6 h) compared with the reduction in RP
transcripts. In that case, the late protein decrease may be due
to ribosome consumption through ribophagy (Kraft et al,
2008), rather than translational repression. The lack of RP
reduction soon after rapamycin-dependent transcript reduc-
tion is therefore consistent with our results, and suggests that
the lack of correlation between transcript reduction and
protein abundance may be common to other stress conditions.
This raises major implications for the interpretation of
transcriptomic data, since reduced mRNA abundance is often
used to infer protein reduction and dispensability.

Reduced levels of abundant transcripts, particularly those
affecting ribosome biogenesis, has been proposed to reduce
the costly synthesis of encoded proteins in proportion to
growth demand (Waldron and Lacroute, 1975; Kief and
Warner, 1981; Nomura, 1999; Jorgensen et al, 2002, 2004;
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Materials and methods). The percentage with the indicated acclimation times is shown by quartile. (C) Average log2 change of measured mRNA, simulated mRNA
without the transient burst, and corresponding calculations of protein change, for GPD1. (D) Percentage of proteins shown in (B) with different acclimation times, for
proteins measured (‘M’) or calculated (‘C’) from original or simulated (‘S’) mRNAs.
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Rudra and Warner, 2004; Regenberg et al, 2006; Brauer et al,
2008). Indeed, our mathematical modeling revealed that
changes in growth rate explain the lack of protein change,
not just for long-lived RPs but for all proteins from reduced
transcripts. However, our results strongly suggest that
transcript reduction is not the driving force behind decreased
protein synthesis. Reduced translation initiation (inferred from
the increased monosome:polysome ratio) occurs much before
transcripts drop in abundance (Figure 4B; Uesono and Toh,
2002). We also observed that final levels of most RP transcripts
were at or above unstressed levels, even though division
occurred at half the initial rate. This observation underscores
the discordance between RP transcript abundance and growth
rate during osmotic stress.

Instead, the reduced abundance of these transcripts may
serve to redirect translational capacity to newly made mRNAs.
The timing of transcript reduction occurs when translation
profiles begin to recover as cells resume growth and coincides
with maximal levels of increasing transcripts. The temporal
relationship between increasing and decreasing transcripts
holds across many environmental shocks, even though the
kinetics of transcript change is not well correlated with the
duration of cell-division arrest during these transitions (Gasch
et al, 2000, 2001). We suggest that the coordination of
transcript reduction with transcript induction avoids competi-
tion for translational machinery, simply through the tempor-
ary removal of high-abundance transcripts when translation is
resuming.

In this model, cells may be limited for translation factors,
particularly initiation factors that regulate translation in
response to stress (Proud, 2007; Gandin et al, 2008; Park
et al, 2011), but another possibility is competition for
translating ribosomes. Nearly 90% of ribosomes in growing
cells are actively translating proteins (Warner, 1999; Arava
et al, 2003; von der Haar, 2008), leaving little capacity to
synthesize new proteins during adversity. Under this scenario,
the level of transcript reduction might be tuned to ribosome
demand at increased mRNAs. A simple calculation (Figure 7)
based on the number of ribosome per cellular transcript (Arava
et al, 2003), transcript counts per cell (Lipson et al, 2009), and
our own measurements of mRNA fold-change suggests that at
30 min after NaCl treatment, the fraction of ribosomes
available solely due to transcript reduction (24±5% of
translating ribosomes) is approximately the estimated max-
imum needed to translate the increased transcripts (32±6%
translating ribosomes). Although our estimate does not
capture known translational regulation at specific transcripts
(Uesono and Toh, 2002; Law et al, 2005; Melamed et al, 2008;
Halbeisen and Gerber, 2009; Warringer et al, 2010), it supports
the hypothesis that transient transcript reduction is linked to
translational capacity. Our polysome analysis is consistent
with this model, since failure to repress transcripts in the
dot6Dtod6D mutant led to continued polysome association of
aberrantly abundant mRNAs. These results support a recent
theoretical study by Scott et al (2010), suggesting that the
relationship between continuous growth rate and nutrient
quality in Escherichia coli is due to ribosome allocation.

Our model is also consistent with the observed dynamics of
gene expression change. Through direct observations and
mathematical modeling, we demonstrate that the transient

burst in transcript abundance serves to accelerate protein
change. It is likely not a coincidence that this response peaks as
resuming translational machinery is available to new tran-
scripts. The mRNA response follows a second-order dynamic
system, resulting in a pulse of gene expression change before
cells acclimate. This pulse is likely due in part to the interplay
between transient alterations in transcription and mRNA
stability during stress response and acclimation (Garcia-
Martinez et al, 2007; Shalem et al, 2008; Molin et al, 2009).
In addition, feed-forward signaling loops can also produce
pulse-like responses (Mangan and Alon, 2003; Alon, 2007;
Kaplan et al, 2008), and such signaling motifs likely contribute
here as well (Gasch, 2002a). The outcome of transient
transcript changes is rapid alteration in protein changes, with
larger mRNA pulses producing faster protein acclimation.
More broadly, the complex relationships between these
processes highlight the importance of considering dynamic
observations in the study of living systems.

Materials and methods

Cell growth and RNA preparation

Strain BY4741 was grown47 generations to an optical density (OD600)
B0.3 at 301C in YPD medium. A sample of unstressed cells was
removed as the ‘time 0’ reference and pre-warmed medium was added
for a final concentration of 0.7 M NaCl. Samples were removed at 30,
60, 90, 120, and 240 min after addition of NaCl (the culture was diluted
1:1 with fresh medium after the 120-min collection to maintain log-
phase growth). The majority of transcript changes peak at or after
30 min (Berry and Gasch, 2008; data not shown). At each time point,
one sample was recovered for microarray analysis and another was
recovered for proteomic analysis by 3 min room temperature spin at
3500 r.p.m. after which time the cells were flash frozen in liquid
nitrogen and maintained at �801C until use.
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Figure 7 Estimated fraction of translating ribosomes made available due to
transcript reduction. The fraction of 171 000 translating ribosomes before stress
that becomes available due solely to transcript reduction (blue bars) was
estimated as described in Materials and methods. The estimated maximum
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The dot6Dtod6D mutant was constructed by replacing TOD6 with
the hygromycin-MX cassette in the BY4741-dot6DHKANMX strain
(Open Biosytems), through homologous recombination. Both dele-
tions were verified by diagnostic PCRs.

Proteomic lysis and digestion

Cells were lysed by three passages through the French press at 41C in
3 ml of lysis buffer consisting of 50 mM Tris pH 8, 4 M urea, 75 mM
NaCl, 1 mM DTT, complete mini EDTA-free protease inhibitor (Roche
Diagnostics, Indianapolis, IN), and phosSTOP phosphatase inhibitor
(Roche Diagnostics). The lysate was centrifuged at 14 000 r.p.m. for
10 min. Cysteine residues were reduced and alkylated by incubating
lysate with 3 mM DTT (final concentration) for 45 min at 371C followed
by incubation in 15 mM IAA for 1 h at room temperature in the dark.
The alkylation reaction was capped by incubating the reaction with
DTT for 15 min at room temperature. Proteins from each time point
were digested overnight at 371C after the addition of 1 mM CaCl2,
50 mM Tris (to decrease urea to 1 M) and adjusting to pH 8 at an
enzyme:substrate ratio of 1:50 of trypsin (Promega, Madison, WI).
Each digest was quenched by the addition of TFA to a final concen-
tration of 0.5% (pH p2), desalted via solid phase extraction on a
50-mg tC18 SepPak cartridge (Waters, Milford, MA), and the eluent
was lyophilized.

TMT labeling

Each TMT (Tandem Mass Tag) was resuspended in 41 ml of pure ACN.
Lyophilized peptides were resuspended in 18 MO H2O to a final
concentration of 5ml/ml, with the addition of 200 mM TEAB bringing
the final volume of 132.5ml. Resuspended peptides were mixed with
each respective tag as follows: 30 min, TMT126; 60 min, TMT127;
90 min, TMT128; 120 min, TMT129; 0 min, TMT130; 240 min, TMT131.
Each reaction was allowed to incubate at room temperature with
intermittent mixing for 1 h. Tagging was quenched with the addition of
8ml 5% hydroxylamine for 15 min. The differentially labeled TMT
samples were pooled in equal amounts and dried down.

Fractionation

Labeled peptides were fractionated using SCX chromatography as
described previously (Swaney et al, 2010). Each TMT 6-plex peptide
mixture was resuspended in 500ml of SCX buffer A (5 mM KH2PO4,
30% ACN, pH 2.65) and loaded onto a polysulfoethyl apartamide
column (9.4� 200 mm2, Poly LC, Columbia, MD) connected to a
Surveyor LC quaternary pump (Thermo Electron, San Jose, CA)
running at 3.0 ml/min. Peptides were detected via a PDA detector
(Thermo Electron). A total of 16 fractions were collected in 3 min
intervals over the course of the SCX gradient. The following gradient
was used: 2 min of isocratic buffer A, followed by a linear gradient of
0–10% buffer B (5 mM KH2PO4, 30% ACN, 350 mM KCl, pH 2.65) from
5 to 35 min. Buffer B was ramped up to 100% over the next 6 min.
Then, a 7-min transition from buffer B to 100% C (50 mM KH2PO4,
500 mM KCl, pH 8) and buffer D (18 MO water) were used to wash
the column. Each fraction was lyophilized and desalted on 50 mg
tC18 SepPak cartridges. Desalted eluants were lyophilized and stored
at �801C.

LC–MS/MS

SCX fractions were resuspended in 30 ml of 0.2% formic acid. AWaters
nanoAquity HPLC and auto-sampler was used to load samples onto an
8-cm, 75mm i.d. pre-column packed with 5 mm C18 particles, and
separated across a 25-cm, 50 mm i.d. analytical column packed with
5mm C18 particles. Samples were loaded onto the pre-column in
98% A (0.2% formic acid in water), 2% B (0.2% formic acid in CAN).
Buffer B was increased to 5% over the first 3 min of the separation
followed by an increase in B by 0.25% per min over 120 min, followed
by a quick ramp up to 70% B over 10 min and held for 5 min. The
gradient was dropped back to 2% over a period of 5 min and allowed

to re-equilibrate for 20 min. Eluent was detected on an LTQ Orbitrap
Velos (Thermo Fisher Scientific, Bremen, Germany) via an integrated
electrospray emitter operating at 2.2 kV. Experiments consist of MS1

analysis in the obitrap mass analyzer followed by 10 data-dependent
high energy collision cell dissociation MS/MS events with a precursor
isolation width of 2 Th and mass analysis in the orbitrap as well. Each
fraction was run twice. For all experiments, an AGC target value of
1000 000 charges was used for MS1 and 45 000 charges for MS2. A mass
resolution of 30 000 was used for MS1 and 7500 for MS2. Precursors
were dynamically excluded for 45 s, and only peptides with assigned
charge states of two or greater were selected for MS/MS interrogation.
All proteomic data are available on our website (http://www.chem.
wisc.edu/~coon/Downloads/Lee_MSB_2011/) and in the Proteome
Commons Tranche repository under accession hash 8P18X
wqHFqQkþNZ5TJj4DR0e5qLcOYvmhFfHwlyNaK9SWrkO93CYbKok
485Hw/ud8Lz/5�CjvVwNf5yVCMclx5zNvc0AAAAAAABuKg¼¼

Proteomic data analysis

Spectral reduction was performed by DTA Generator. The OMSSA
(Open Mass Spectrometry Search Algorithm) (Geer et al, 2004) was
used to search spectra against a concatenated target-decoy version of
the Saccharomyces Genome Database (http://www.yeastgenome.org)
with fully tryptic enzyme specificity, allowing up to three missed
cleavages. Static modifications of carbamidomethylation (þ 57 Da) on
cysteine residues, TMT 6-plex on N-termini, and TMT 6-plex on lysine
residues, and variable modifications of oxidation of methionine
residues (þ 16 Da) and TMT 6-plex on tyrosine residues were
specified. An average mass tolerance of ±4.5 Da was used for
precursors, while a monoisotopic mass tolerance of ±0.01 Da was
used for fragments with orbitrap detection. Identifications were
filtered to a FDR of 1% using in-house software that iteratively
checked combinations of expectation value (e-value) score and
precursor mass error to find thresholds that maximize unique peptide
identifications. Proteins were reduced for parsimony and filtered to 1%
FDR as well. Protein quantitation was evaluated with custom software
that corrects for isotopic impurities, normalizes reporter ion inten-
sities, and coalesces peptide quantitation into protein quantitation
(Wenger et al, 2011). Peptide and protein summaries are available in
Supplementary Datasets S1 and S2, respectively. Reproducibility
across biological replicates is summarized in Supplementary Table S4.

Microarray sample preparation and data
acquisition

Total RNA was recovered by hot phenol extraction as previously
described (Gasch, 2002b) and purified with a Qiagen RNeasy column.
cDNA synthesis and microarray labeling was performed as described
(Berry and Gasch, 2008), except that total RNA was labeled with a
mixture of oligo-dT and random hexamer at a 1.7:1 molar ratio.
Labeled cDNA from each RNA sample was hybridized against genomic
DNA labeled as previously described (Pollack et al, 1999), swapping
dye orientations for each time course. Samples were hybridized to
custom Nimblegen tiled arrays and incubated on a Maui Hybridization
Chamber at 421C for 16 h. Arrays were scanned and analyzed with a
GenePix4000 scanner (Molecular Devices, Sunnyvale, CA), and signal
from both channels was extracted with the program NimbleScan.
Signal intensity from the RNA-sample channel was quantile normal-
ized for all 18 arrays using the Bioconductor package quantile.norma-
lize() (Bolstad et al, 2003). The log2 ratio was calculated for each gene
from the median intensity of gene probes at each time point compared
with that of the unstressed cells.

The response of wild-type and dot6Dtod6D cells to 0.7 M NaCl was
conducted in biological duplicate, as described above, comparing
transcript abundance at 30 min after NaCl addition to the unstressed
sample from each strain. Relative basal transcript abundance in wild-
type and dot6Dtod6D cells was performed by extracting the signal
intensity corresponding to the unstressed samples and comparing
across arrays as described for the NaCl time course. Genes affected by
DOT6TOD6 deletion were identified as those whose expression was
41.5-fold different between strains in both replicates: of the 323 genes
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identified, 244 displayed a repression defect in the dot6Dtod6Dmutant.
Nearly all of these showed B1.5� higher basal levels in the
unstressed mutant compared with wild type. All microarray data are
available under GEO accession GSE23798 and in Supplementary
Dataset S3.

Quantitative western blotting

Cells were lysed in cracking buffer and incubated at 951C for 5 min with
glass beads. Lysate from equivalent number of cells was analyzed by
western analysis, using a mixture of mouse anti-actin (MAB1501,
Millipore, Billerica, MA) and a second rabbit polyclonal antibody
(Hsp104 antibody (Novus Biologicals, NB120-20547), and gifts of the
Elizabeth Craig laboratory) to simultaneously detect Act1 and a second
protein of interest. IRDDye680-conjugated anti-rabbit IgG and
IRDye800-conjugated anti-mouse IgG (LiCor, Lincoln, NE) were used
as secondary antibodies at 1:20 000 dilutions in Odyssey blocking
buffer. Signal intensities were analyzed by using the Odyssey infrared
image system (LiCor).

Polysome profiling and qPCR

Polysome profiles were collected as described in Arava et al (2003)
using a 5–50% continuous sucrose gradients analyzed on a Teledyne
Isco Fractionation unit. Fractions of B60ml were collected and pooled
to capture peaks indicated in Figure 4. Synthetic control RNA (Agilent,
Santa Clara, CA) was added to each pool as a normalization control at
15�106 copies and RNA from the pool was purified over an RNeasy
column (Qiagen, Valencia, CA). Quantitative PCR was done in at least
technical duplicate using iQSYBR Green Supermix (Bio-Rad, Hercules,
CA) on a MyiQ2 Bio-Rad Cycler. Primers spanned a 30 100–200 bp
region of each ORF. Cycle numbers were normalized to the doped
synthetic RNA (Figure 4) or to SEC21 as controls (Supplementary
Figure S7). Relative log2 mRNA abundance in each polysome fraction
was normalized to mRNA abundance measured in the trough between
polysome peaks 1 and 2, to adjust to baseline levels.

Statistical analysis

Significant mRNA and protein changes were determined for all
molecules measured in at least biological duplicate using an ANOVA
test in the limma Bioconductor package (Smyth, 2004) with a Q-value
(Storey and Tibshirani, 2003) FDR o0.05 taken as significant
(Supplementary Dataset S3). In all cases, correlations were assessed
based on the average values for fully triplicated data to minimize
effects of technical noise. Transcripts that increased or decreased in
abundance were defined based on the direction of the largest absolute
change in abundance—in most cases, increases or decreases in
abundance were largely consistent across all time points. Molecules
subject to transient abundance changes were determined in limma by
comparing each time point to the final 240 min sample, with FDR
o0.05 taken as evidence of transience. Timing of peak levels for
transient changes and of acclimation for gradual changes were also
identified by a t-test in limma comparing adjacent time points, taking
the earliest statistically differentiated time point as the peak/acclima-
tion time. Times were manually inspected and corrected in some cases
where subtle but consistent differences were not scored correctly.
Transcripts whose change in expression at 15 min was greater than the
change at 30 min (Berry and Gasch, 2008; unpublished data) were
removed from this analysis (amounting to 13 of 140 genes for
Figure 5). The magnitude of the transient burst was measured for
RNAs peaking at 30 min by calculating the average difference in
changes at 30 min versus 240 min.

Estimates of ribosome redistribution were calculated as follows.
Measures of mRNA abundance per cellular mRNA pool from Lipson
et al (2009) were converted to copies per cell, based on 60 000
transcripts per actively growing yeast cell (Zenklusen et al, 2008). The
number of ribosomes per transcript, as measured by Arava et al (2003),
was multiplied by the number of transcripts for each gene; the total
number of engaged ribosomes was scaled to 171000 (90% of 190 000
ribosomes; Warner et al, 2001). To estimate the number of ribosomes

released at each time point in each time course, we multiplied the
number of ribosomes per gene sequence by the fraction of mRNA that
disappeared or appeared relative to starting levels. At each time point,
all transcripts for which the average log2 value was o0 were taken as
reduced, and the inverse was true for increased transcripts. The
average and s.d. of the number of ribosomes released across all three
time courses is shown in Figure 7.

Proteins subject to PTR were defined as follows: proteins whose
maximal change was in the opposite direction of the maximal mRNA
change were defined as opposing mRNA changes. Proteins changing
greater than mRNA were identified if their steady-state differences at
240 min were greater than the corresponding mRNA differences in at
least two of the three time courses. This is in contrast to most proteins
that reach o50% the fold-change in mRNA (data not shown). Proteins
subject to noise reduction were identified as follows: the Pearson
correlation was calculated for each replicate profile for mRNA or
protein, for all triplicated pairs where both mRNA and protein changed
significantly. The average and s.d. of the three pairwise correlations
was identified; mRNAs with an average correlation outside the average
protein correlation plus two s.d. (95th confidence level) were
identified. Functional enrichment was determined by testing the
hypergenomic distribution using FDR o0.05 (Storey and Tibshirani,
2003) as significant in all cases.

Mathematical modeling overview

A detailed discussion of the modeling and results is presented in
Supplementary Appendix. We developed a mass-action model in
which:

d

dt
½Pr� ¼ kt;r½mRNAr� � ðkd;r þ mÞ½Pr�

where kt,r represents the translation rate for protein r at time t, and kd,r

represents the protein degradation rate (fixed over time) as measured
by Belle et al (2006), m represents the dilution rate due to cell division,
and ½Pr� represents the concentration of the protein at time t.
Experimental evidence suggested little change in cell volume during
the experiment (Supplementary Figure S6B), allowing us to assume a
constant cell volume.

We suspected that the translation rate changed with time,
particularly during cell-division arrest (Uesono and Toh, 2002),
requiring us to create a model that allowed the ‘constants’ in the
above equation to vary. These considerations changed our formula to
the following form:

P
0

r ¼ ks;rðtÞmrðtÞ � ðkd;r þ mðtÞÞPrðtÞ�

where Pr is the amount of protein r per cell, ks,r(t) is the translation
rate for protein r at time t, mr (t) is the mRNA amount for the
transcript encoding protein r, kd,r is the decay rate of protein r, and
m(t) is the diffusion of proteins caused by cell growth at time t.

Because we made measurements at specific, discrete time points,
we described time as having specific values (although they need not be
uniformly distributed, as in many simulations): t0¼0; t1¼30, t2¼60,
t3¼90, t4¼120, and t5¼240 min. We assumed for simplicity that
translation rate and cell growth rate change instantly and only at the
time points at which we have taken measurements (namely, at 30 min
after NaCl treatment). We tested three models of translation. The first
(model 1) calculated a single ks,r based on the t0¼0 to t1¼30 min
transition. The second (model 2) calculated a single ks,r based on a
regression across all time points. Because we expected that translation
rates may vary during and after cell-division arrest (Uesono and Toh,
2002), we calculated a third model (model 3) in which two ks,r values
were used: ks,r0 estimated translation rates between 0–30 min and ks,r1

estimated rates based on a regression across the 60–240 min time
points. The model was developed on replicate 1 as the training set and
validated on replicates 2 and 3 as test sets. In all cases, model 3
outperformed the other models (Supplementary Table S5; Supplemen-
tary Figure S8).

Simulations described in the main text were performed using model
3 on the training set. To test the effects of dilution, protein abundance
was calculated with m¼80 min throughout the time course instead of
only after t¼30 min. To test the effect of increased-mRNA dynamics,
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the mRNA level at 30 min was replaced with the average values of the
remaining time points to remove the transient burst, for all transcripts
whose transcript increase peaked at 30 min. The effect of mRNA
reduction was tested by calculating protein abundance when transcript
levels were held at the median fold-change across the entire
transcriptome (log2B0). Mathematical models used in the analysis
(Supplementary Dataset S4) have also been made available for
analysis with COPASI (Supplementary Dataset S5). COPASI code was
not used for the analysis described here, but was validated for several
candidate mRNAs and made available for public use.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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