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Szeged, Hungary, 3 Biomi Ltd., Gödöllő, Hungary, 4Agricultural Genomics and Bioinformatics Group, Agricultural Biotechnology Center, Gödöllő, Hungary, 5Department
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Abstract

Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is
one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about
the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In
order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish
embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and
embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed
candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed
shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general
enrichment for the binding sites of early acting transcription factors, most of these genes carry ‘‘bivalent’’ epigenetic histone
modifications at the time when zygotic transcription is initiated, suggesting a ‘‘poised’’ transcriptional status. Our results
reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated
genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
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Introduction

The development of bilaterian embryos from a single-celled,

fertilized egg into complex, multicellular, three-dimensional

structure (the embryo) involves not only several rounds of cell

divisions, but also a series of well-coordinated morphogenetic

movements and patterning events, such as the establishment of the

anteroposterior (AP) and dorsoventral (DV) axes.

Ever since the pioneering work of Hans Spemann and Hilde

Mangold in the 1920s, it has been well known that during the

formation of the DV-axis a specialized tissue with organizing

properties is established in the future dorsal side of the embryo [1].

This tissue, called the Spemann organizer in amphibians, secretes

signals that can instruct neighboring cells to form an axis. The

molecular nature of these signals remained elusive for decades but

with the introduction of molecular tools in developmental biology

it became clear that several genes with organizing properties

encode proteins that can antagonize BMP-signaling [2–7]. A

parallel discovery of the ‘‘neural default model’’, the property of

BMP-signaling to suppress neural fate in ectodermal cells [8,9] led

to the recognition of the BMP-pathway as a major component of

DV-axis patterning.

Zebrafish (Danio rerio) has become a widely used model

organism, due to its fast development, high progeny number,

transparency and ease of use. These advantages made it the

subject of multiple extremely successful genetic screens, which

have identified many key genes in diverse developmental

processes, DV patterning being one of these [10]. From these

screens, mutations that lead to DV patterning defects have often

turned out to occur in genes that encode elements of the BMP

signaling pathway (see [11] and references therein). However,

some other key factors of early DV patterning have also been

identified both by these screens and by other reverse genetic

approaches [12–15]. The picture that emerges from these studies

suggests that early zebrafish DV patterning is following a similar

logic to that observed in the African clawed frog, Xenopus laevis

[16].

A major similarity between the two anamniote model organisms

is the pivotal early role of the canonical Wnt/b-catenin signaling

pathway in dorsal determination. After fertilization, a dorsal

determinant, Wnt11 in frogs [17,18] and wnt8 mRNA in fish [19],

is transferred from the vegetal part of the oocyte to the future

dorsal side. In zebrafish this process is mediated by an active,

microtubule-dependent process [19–21] and results in the
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activation of canonical Wnt/b-catenin signaling on the presump-

tive dorsal side. Consequently, the dorsal transcriptional network is

activated, which will ultimately lead to the expression of BMP-

antagonists and the formation of the BMP-signaling gradient

across the DV-axis. This activity gradient will have powerful

patterning effects across the ectoderm and the mesoderm [22,23].

The recessive, maternal-effect ichabod (ich) mutation causes

severe ventralization due to an impairment in the early Wnt/b-
catenin signaling pathway in embryos derived from mothers

homozygous for the mutation (ich embryos) [24]. This defect is the

result of the decreased accumulation of maternal b-catenin-2
mRNA in the oocytes, caused most likely by a regulatory mutation

[25].

Ventralized ich embryos lack a ‘‘shield’’ (the zebrafish equivalent

of the Spemann organizer) during gastrulation and do not express

any of the genes characteristic for organizer formation [24]. BMP-

activity is also uniform across the ectoderm [26]. As the mutation

can be completely rescued by the introduction of ectopic b-catenin-
2 mRNA, ich embryos provide an excellent paradigm to study the

formation of the early organizer and to identify genes involved in

this process. Using this experimental logic, previously we were able

to discern the epistatic relationship between the Fgf-, Nodal- and

BMP-signaling pathways [27].

In order to obtain a genome-wide view on the transcriptional

changes related to the specification of the dorsal side in the early

zebrafish embryos and to identify novel components of early DV

patterning, we have sequenced full transcriptomes of untreated

and rescued ich embryos at sphere stage (shortly after the

midblastula transition – MBT –, the onset of zygotic transcription

[28]) using RNA-Seq.

After mapping and analyzing one hundred million tags per

sample and validating our results by in situ hybridization, we

identified 32 genes differentially upregulated in rescued embryos,

many of them implicated by prior studies in DV patterning and/or

axial mesoderm formation. Our analysis shows that the largest

group of activated genes are modulators of canonical Wnt-

signaling. This suggests the existence of a robust self-regulatory

network, to coordinate the dynamic changes in canonical Wnt

activity during early stages of development.

Results and Discussion

Identification of Genes Expressed during Early Dorsal
Induction using RNA-Seq
The ability to completely rescue the severely ventralized ich

embryos created the prospect to analyze the early induction of the

dorsal organizer in a completely unbiased manner using next

generation sequencing methods. As the earliest molecular mani-

festation of the future dorsal organizer occurs around MBT, we

decided to compare rescued and untreated embryos at this early

stage, so we can identify the most upstream components of the

dorsal induction network (Figure 1A). In order to avoid false

positive hits arising from forced expression of Wnt-target genes, we

injected b-catenin-2 mRNA at concentrations that create overtly

normal looking (non-dorsalized) embryos.

Using sequencing-by-ligation on the SOLiD V4 platform, we

sequenced over one hundred million tags per sample. We first

filtered and mapped the reads to the zebrafish genome (Zv9–

Ensembl) using Genomics Workbench ver4.6. Next, in order to

identify genes showing significantly altered expression level in

‘‘rescued’’ over untreated mutant (ich) sample we used a dual

approach. On the one hand, we employed DESeq [29], a package

developed to analyse count data from high-throughput sequencing

(Figure S1A). For positive hits the alignments were manually

analyzed in order to filter out false positive results. This

conservative approach identified 32 genes, 17 of which have been

implicated in organizer and/or axial mesoderm formation by

previous studies.

In parallel we also used TopHat [30] splice junction mapper

and Cufflinks [30], a package that assembles transcripts, estimates

their abundances, and tests for differential expression in RNA-Seq

samples (Figure S1B). After manual curation this approach

resulted in 25 hits, with 12 of them previously known for their

role in dorsal mesoderm formation.

The fact that established ‘‘dorsal’’ genes were overrepresented

in our datasets underscored the strength of this approach and

suggested that other genes on the list would prove to be bona fide

components of the early DV patterning network.

The two datasets (DESeq and Cufflinks) only partially

overlapped: just 15 genes were found in both lists (Figure 1B),

with prominent dorsally-expressed genes missing from both (e.g.

gsc in the case of DESeq and dharma for Cufflinks). As both datasets

produced only conservative estimates, this was not surprising and

showed the complementarity of the two approaches. Consequently

for further analysis we used the combination of the two datasets.

To further test if our results consist of truly zygotic, early

expressed genes, we compared our results against an independent

dataset. Using data from a recent study of maternal-to-zygotic

transition in zebrafish [31] (GEO database, accession number

GSE22830), we found that most of the identified genes are indeed

upregulated during MBT (Figure S2). Two genes, map2k6 and

tmem68 had to be excluded from the combined dataset, as they

showed, respectively, decreased and unchanged expression after

MBT.

Validation of the Results with in situ Hybridization
A further validation of our in silico dataset came from a series of

in situ hybridization experiments, where we tested the expression

pattern of the examined genes in both wild type and ich embryos at

sphere stage and at 30% epiboly stage. In our previous studies we

already performed such comparative expression studies for a small

subset of key organizer-specific genes, such as dharma, gsc and chd

[25]. We were able to obtain specific probes for 36 genes out of

our 39 tested genes (the only exceptions being arrdc3b, clec19a and

rbl2).

On the basis of the expression data, we observed two major

phenotypic classes. Most genes showed early dorsal expression in

wild type embryos, followed by circumferential upregulation in the

germ ring at 30% epiboly stage (Figure 2). In ich embryos, while

the early dorsal wave of expression was absent, the later

circumferential expression was present (Figure 2). Other genes,

similar to the dorsal-specific gsc, kept an ‘‘all dorsal’’ expression

profile in wild type controls and showed restricted expression even

at 30% epiboly (Figure 3). Such genes, as expected, were absent in

ich embryos even at the onset of gastrulation. An interesting

exception was rasl11b, which had an early dorsal expression

domain (Figure 3Fi), but by mid-gastrula stages it was restricted to

the ventral side of wild type embryos (Figure 3Fiii). In ventralized

ich embryos, the early expression domain was missing (Figure 3Fii),

while in later stage embryos the gene was expressed ubiquitously

(Figure 3Fiv).

Two genes, LOC100334443 and dnase1l3 were upregulated only

at MBT, but no significant difference between expression in wild

type and ich embryos could be detected for either of them prior to

late stages of gastrulation, when both were found to be specifically

expressed in the dorsal forerunner cells (DFCs) of control embryos

(Figure 4 and not shown).

Zebrafish Dorsal Transcriptome
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Other genes, such as aplnrb and isg15 completely lacked dorsal

expression during the earliest stages of post-MBT development,

and were present right after MBT in ich embryos, too. Both of

these genes showed an apparently randomized expression before

30% epiboly, and later became restricted to the germring (Figure

S3A-N and [32,33]). As the expression pattern after MBT for these

two genes ranged from a few cells to larger clusters, it is likely that

the expression level differences detected by DESeq and Cufflinks

were genuine, yet they reflected a stochastic difference only, thus

these genes could be classified clearly as false positives.

We also observed foxo3b expression showing a similar, stochastic

dynamic during blastula and gastrula stages (Figure S3O–H’). This

is in contrast with the quasi-ubiquitous expression described before

[34], however, repeated experiments yielded the same results. Of

note, though expression seemed stochastic both in wild type and

ich embryos, the overall expression appeared higher in wild types

during early stages of development.

All three genes manifesting stochastic expression were previ-

ously associated with cellular and physiological stress [35–37], thus

their collective post-MBT expression suggests that the blastomeres

are particularly prone to stress at this stage.

Promoter Analysis and Histone Modifications in Dorsal
Genes
Previous work has established the core of the gene regulatory

network (GRN) responsible for establishing the DV axis after the

onset of the zygotic transcription [38]. While on the dorsal side

canonical Wnt/b-catenin signaling, directly or indirectly, induces

Figure 1. Experimental design and results of the comparative transcriptome analysis. (A) Total RNA samples were isolated from untreated
(ventralized) ich embryos, and from ‘‘rescued’’ (b-catenin mRNA injected) counterparts. The samples were used for RNA-Seq, and the resulting
datasets were compared to uncover genes upregulated during early dorsal specification. (B) Two independent in silico approaches were used to
identify differentially expressed genes: DESeq and Cufflinks. The two scripts resulted in overlapping, but not identical gene-sets, which were
combined for further analysis. (Grey demarks genes where differential dorsal expression could not be confirmed– see text for details.).
doi:10.1371/journal.pone.0070053.g001

Zebrafish Dorsal Transcriptome
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Figure 2. Expression of pan-mesodermal candidate genes. The majority of the identified genes show early dorsal expression in wild type
embryos and lack thereof in ich controls. This is followed by a second wave of circumferential, mesodermal expression, which could be detected in
both genetic backgrounds. An interesting exception is flh, which shows a somewhat counterintuitive expression dynamics: a very strong
circumferential expression (complemented by strong dorsal signal in wild type embryos) can be detected as early as late sphere stage (Ei, Eii), but this
expression becomes significantly weaker by 30% epiboly, except in the dorsal side of wild type embryos (Eiii, Eiv). Sphere stage embryos are shown
from a lateral view, whereas ,30% epiboly stage embryos are presented from an animal view (dorsal to the right in both cases).
doi:10.1371/journal.pone.0070053.g002
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Figure 3. Expression of other candidate genes. The majority of genes in this category can be characterized by a ‘‘dorsal-only’’ expression
pattern: they are expressed both at sphere and at 30% epiboly stages in the dorsal side of wild type controls and are absent from ich embryos. The
exception is rasl11b which shows a strong dorsal, and a fainter ubiquitous expression at sphere stage in wild types (Fi), but by 30% epiboly it is absent
from the dorsal side and expression can be detected only ventrally (Fiii). Accordingly, in ich embryos lacking dorsal induction, faint ubiquitous
expression (Fii) becomes progressively stronger during development (Fiv). Sphere stage embryos are shown from a lateral view, whereas ,30%
epiboly stage embryos are presented from an animal view (dorsal to the right in both cases).
doi:10.1371/journal.pone.0070053.g003
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Figure 4. Expression patterns of newly characterized genes. (A) ier2 expression starts early in the future dorsal side, persists until early mid-
gastrulation, then fades away, and becomes detectable only during somitogenesis in a stripe in the hindbrain area, and in the tailbud. (B) rnd1l
expression is weakly upregulated in all the blastomeres after MBT, and it is expressed at higher levels in a few dorsal precursors. Later the expression
becomes restricted in the mesoderm (both axial and non-axial), where it is progressively downregulated. During somitogenesis two prominent neural
expression domains appear: in the eyefield and in the hindbrain. (C) ppp1r3ca expression starts at the dorsal edge of the embryo, and later it is
upregulated in a narrow stripe around the germring. Expression weakens during late gastrula stages, but it will be upregulated during somitogenesis
in the anterior forebrain and in the posterior tailbud regions. (D) LOC100334443 expression is strongly upregulated after the onset of zygotic
transcription. During gastrulation it becomes restricted to the ectoderm, where it is gradually downregulated, except in the dorsal forerunner cells.
During somitogenesis expression is also prominent in the neurectoderm, especially in the hindbrain. All embryos are shown from lateral view, dorsal
to the right.
doi:10.1371/journal.pone.0070053.g004
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the expression of typical dorsal genes, on the ventral side maternal

and then zygotic Pou5f1/Spg (the zebrafish homolog of mamma-

lian Oct4), in combination with the homeobox repressors Vox,

Vent and Ved inhibits the activation of the same dorsal genes

(Figure 5A).

We wanted to test if the promoter regions of the candidate genes

show enrichment for the binding sites of the aforementioned

ventral transcription factors, or for recognition motifs of TcfLef,

the transcriptional effectors of canonical Wnt-signaling. Therefore,

using the Transcription Element Search System (TESS) script [39]

we counted the number of such binding sites in the putative

regulatory genomic regions of the analyzed genes. As transgenic

reporter lines mimicking the expression of early transcribed

developmental regulators often use 1–3 kb of the upstream

genomic sequence [40–43], we decided to concentrate our efforts

to the upstream 4 kb region.

Compared with a random set of zebrafish genes, we could not

detect a statistically significant difference in the number of Pou5f1

and TcfLef binding sites (Figure 5B). When examining only the

promoter regions of previously confirmed Wnt target genes in our

gene-set, we did observe a significant enrichment in TcfLef sites,

suggesting that our approach was sound. It appears then that the

majority of dorsal genes detected by our transcriptome comparison

are not direct targets of canonical Wnt-signaling. We also note that

a tendency for enrichment for XVent1 binding sites can also be

Figure 5. Promoter analysis and histone methylation patterns of candidate genes. (A) Previous work has identified the gene regulatory
network (GRN) involved in the DV patterning of the zebrafish embryo. While in the dorsal side canonical Wnt signaling activates directly or indirectly
the genes involved in the induction of the organizer, ventrally Vox/Vent/Ved and Pou5f1 represses the expression of these genes. (B) We tested the
upstream 4 kb genomic region of the candidate genes for a possible enrichment in the binding sites of key transcription factors. There was no
significant difference between the validated genes and a random gene set. (As expected, significant difference in the number of TcfLef binding sites
could be detected between the promoter region of the confirmed Wnt-target subset of our gene-set, and the randomized set of genes (p,0.05).) (C)
Using a previously published dataset we were able to demonstrate that the histones associated to our candidate genes often show a ‘‘bivalent
status’’, carrying activating (H3K4me3) and repressing (H3K27me3) methylation marks at the same time. This is in stark contrast with the histone-
methylation patterns of randomly selected genes.
doi:10.1371/journal.pone.0070053.g005
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seen in the data, yet this difference was not large enough to be

statistically significant (Figure 5B).

Of note, the enrichment of the TcfLef sites could not observed

when we analyzed genomic regions that covered the first introns,

or the 28 to 24 kb upstream regions or the downstream 4 kb

genomic sequences of the validated and random genes (Figure S4).

Interestingly, the analysis of the downstream 4 kb regions

suggested a statistically significant difference in the number of

Pou5f1 binding sites between the validated set and the random set

of genes (Figure S4). This result, however, should be interpreted

cautiously, as when the respective genomic regions of the validated

genes known to be regulated by Pou5f1 [44] were compared with

the rest of the validated dataset, no difference could be observed in

the number of the Pou5f1 binding sites (not shown).

Recent results suggest that the nucleosomes at the promoters of

developmentally important genes often acquire activating tri-

methylation marks on the lysine at position four (K4) in histone 3

(H3), or a ‘‘bivalent’’ mark of both activating K4 and inhibiting

H3 lysine 27 (K27) trimethylation during transcriptional activation

in zebrafish [45–47]. Using the recently published data of

Lindeman and coworkers [46], we tested if our validated genes

show similar patterns of epigenetic modifications.

Our validated ‘‘dorsal’’ gene set show an increase in the

activating H3 K4 trimethylation marks in the promoter region,

compared with the random set of genes, and an overabundance of

‘‘bivalent’’ histone-marks at the onset of zygotic transcription

(Figure 5C), showing that dorsal genes are epigenetically marked

prior to transcriptional activation. (Of note, according to the

Lindeman et al. dataset [46] dharma, one of the earliest transcribed

genes in the zebrafish genome [48], carries only H3K27

trimethylation during the time of its transcription. This could be

an error in the dataset, but could also suggest a peculiar epigenetic

regulatory mechanism at this genomic locus.)

Many of the Dorsal Genes are Modulators of Wnt-
signaling
We performed a manual literature search to assign biological

function to the validated dataset. The results showed that the

single biggest class of genes (11/32) was associated with

modulation of Wnt-signaling, followed by regulators of cell

motility (5/32) and modulators of Fgf-signaling (4/32) (Table 1).

The enrichment in Wnt modulators is not surprising, as

previous studies already demonstrated that several direct targets

of Wnt-signaling are at the same time feed-back regulators of the

pathway [49,50]. Indeed, given the importance of Wnts during

early zebrafish development a tight regulation can be expected.

The close relationship between the pathway and its regulators is

also underscored by an apparent enrichment in TcfLef binding

sites in the promoter regions of the respective genes (Figure 5B).

Furthermore, the ‘‘bivalent’’ epigenetic status observed at the

majority of the Wnt-modulators (Figure 6) also suggests a tight and

efficient regulation of this regulatory module.

Regulation of Wnt-signaling can happen at the transcriptional

level (by inhibiting/activating the expression of specific compo-

nents of the canonical pathway) or at the translational level (by

modulating the function of proteins). Interestingly, Wnt-modula-

tors associated with transcriptional repression showed an elevated

dorsal (foxa3) or dorsal-only (dharma, gsc) expression pattern, while

the majority of post-translational repressors (dkk1b, notum1a, zic2.1,

zic3) were upregulated circumferentially in the germ-ring at the

onset of gastrulation (Figure 6).

These differences can be explained in the context of the

changing role of Wnt-signaling during early development. While

the early activation of the canonical Wnt/b-catenin pathway is

indispensable for the formation of the organizer and the

specification of dorsal cell fates, at the onset of gastrulation Wnt

(specifically Wnt8) becomes a potent morphogen with ventralizing

and posteriorizing effects [11]. Due to this later role, pathway

activation has to be completely excluded from the dorsal side.

The second wave of Wnt-signaling is driven by the activation of

wnt8 in the germring, by Nodal-signaling emanating from the yolk

syncitial layer (YSL) [51–53]. As this signal is circumferential,

dorsal transcriptional repressors counteract its effects by inhibiting

the activation of wnt8 in this region.

When Wnt-signaling becomes a potent posteriorizer during

gastrulation, its levels have to be tightly regulated. Too much Wnt

activity results in the expansion of posterior tissues at the expense

of anterior ones, while reduced Wnt-signaling has the opposite

effect. To achieve such a fine-tuning of Wnt activity, post-

translational modulation is an ideal tool. While not interfering with

the source of Wnt-signaling, the circumferentially expressed Wnt-

suppressors can set the level of Wnt activity through well

characterized negative feed-back mechanisms.

Conclusions
Using an unbiased full transcriptome sequencing approach we

generated a comprehensive list of post-MBT dorsally induced

genes in the zebrafish embryo (Figure 1B). Our results suggest that

the majority of these genes are epigenetically marked during the

activation of zygotic transcription, often with ‘‘bivalent’’ H3 K4/

K27 trimethylation (Figure 5C). Given that in Xenopus dorsal b-
catenin has a role in establishing a ‘‘poised‘‘ chromatin state prior

to MBT [54], we propose that ich embryos, due to insufficient b-
catenin-2 levels [25], lack these chromatin modifications and

consequently fail to induce their dorsal developmental programs.

We also show that many of the dorsally activated genes are

modulators of the Wnt-pathway, but components of the Fgf- and

Nodal-signaling pathways are also induced together with genes

important for cell motility and adhesion (Table 1).

Of note is the absence of sqt/ndr1 from our list, as it was

previously shown to be an early essential component of the dorsal

induction pathway [27]. This finding is most likely explained by

the maternal component of ndr1, also observed in ich embryos [55],

wich will buffer the changes occurring during MBT at the dorsal

side. The activation of the Fgf-signaling pathway, itself dependent

on Nodal-signaling [27] is also indicative that the dorsal activation

of ndr1 in fact occurs.

It is also noteworthy that several genes on our list are not direct

targets of Wnt-signaling. As mentioned above, the transcription of

Fgf ligands requires prior activation of Nodal-signaling. Further-

more, other genes, such as the Fgf-signaling feedback inhibitors

spry2 and spry4, and the BMP-antagonist chd are dependent on the

activation of Fgf-pathway [27,56,57]. Taken together, this suggests

that several levels of the dorsal GRN are activated promptly and

quickly after MBT.

Finally, although most of the examined genes showed an early

dorsal activity, followed by a later, pan-mesodermal expression in

the germ-ring, a couple of genes were restricted to the dorsal side.

It will be interesting to understand the transcriptional logic

regulating the expression of the latter genes, as it might reveal how

context-dependent gene activation can be encoded on genomic

level.

Our analysis also determined the expression pattern during

early development for several, previously uncharacterized genes,

such as ier2, rnd1l, ppp1r3ca and LOC100334443 (Figure 4).

Although not all of them show restricted dorsal expression during

blastula and early gastrula stages, for those that do, it will be

Zebrafish Dorsal Transcriptome
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interesting to determine how they fit into the established genetic

network of dorsal induction in zebrafish embryos.

Materials and Methods

Fish Care
Wild-type ekwill (ekw) and mutant ichp1/p1 fish stocks were

maintained in the animal facility of Eötvös Loránd University. All

protocols used in this study were approved by the Hungarian

National Food Chain Safety Office (Permit Number: XIV-I-001/

515-4/2012).

RNA Preparation
Rescue experiments were performed as described before [27].

Total RNA was isolated from 50–50 uninjected and b-catenin-2
mRNA injected embryos with TRIZOL (Invitrogen), using the

manufacturer’s protocol. An extra round of ethanol precipitation

was applied in order to eliminate residual TRIZOL contamina-

tions.

Whole Transcriptome Sequencing
RNA quality and quantity measurements were performed on

Bioanalyzer (Agilent Technologies) and Qubit (Life Technologies).

High quality (RIN .8.5) total RNA samples from three biological

replicates were pooled and processed using the SOLiD total RNA-

Seq Kit (Life Technologies), according to the manufacturers

Table 1. Known function(s) of confirmed candidate genes.

Gene name Function References

Wnt-signaling modulators

dharma Suppresses wnt8 expression in the organizer precursor cells. [74]

dkk1b Extracellular Wnt-antagonist, which binds to Lrp6. [60,75,76]

foxa3 Inhibits dorsal activation of wnt8 transcription. [77]

mst1 Tumor suppressor; homologue of Drosophila hippo. [78,79]

foxd3 Suppresses dkk1 activation in the mesendoderm. [80]

fzd8b A putative receptor of Wnt-signaling.

gsc Homeodomain TF, which suppresses dorsal wnt8 activation. [77,81]

notum1a Inhibitor of canonical Wnt/signaling, which modifies glypicans. [49,82]

ntla T-box trancription factor that regulates wnt gene expression. [83]

zic2a Inhibits transcriptional activation by b-catenin. [84,85]

zic3 Inhibits transcriptional activation by b-catenin. [85]

Fgf-signaling modulators

fgf8a Fgf-receptor ligand important for dorsal- and isthmic organizers. [27,86]

fgf17b Fgf-receptor ligand, with roles in early embryonic patterning. [62]

spry2 Negative feedback modulator of MAPK activation. [87,88]

spry4 Negative feedback modulator of MAPK activation. [87]

Nodal-signaling modulators

bon Associates to phosphorylated Smad2 to modulate Nodal signaling. [89]

lft1 Feedback antagonist of Nodal signaling. [90,91]

Regulation of cell motility

arl4ab Small GTPase promoting actin cytoskeleton remodeling. [92]

dact2 A modulator of the Wnt/PCP pathway that interacts with Dvl. [93]

ier2 Involved in left-right patterning and CE movements. [94,95]

rasl11b Small GTPase regulating mesendoderm development. [96]

rnd1l Rho family small GTPase modulating cell adhesion. [97]

Other

chd Extracellular BMP antagonist. [4,98]

flh Homeobox gene involved in notochord development. [63]

foxb1.2 Forkhead family transcription factor. [64]

foxd5 Specifier of neurectodermal fates. [99]

hnf1ba Regulates hindbrain and endocrine b-cell development idownstream of RA- and Fgf-signaling. [100,101]

ism1 Secreted angiogenesis inhibitor in mice. [102]

osr1 STE20-kinase that regulates ion homeostasis. [103]

ppp1r3ca Regulatory subunit of protein phosphatase 1.

sp5l Transcription factor involved in mesendoderm and neurectoderm patterning. [104]

doi:10.1371/journal.pone.0070053.t001
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suggestions. Briefly, 5 mg of pooled RNA was DNaseI treated and

the ribosomal RNA depleted using Eukaryote RiboMinus rRNA

Removal Kit (Life Technologies). The leftover was fragmented

using RNaseIII, the 50–200 nt fraction size-selected, sequencing

adaptors ligated and the templates reverse transcribed using

ArrayScript RT. The cDNA library was purified with Qiagen

MinElute PCR Purification Kit (Qiagen) and size-selected on a

6% TBE-Urea denaturing polyacrylamide gel. The 150–250 nt

Figure 6. A plurality of early dorsal genes are modulators of the Wnt-signaling pathway. A close examination revealed that in our
validated dataset genes that modulate Wnt-signaling are overrepresented. Interestingly, genes that are solely expressed in the dorsal side act usually
as transcriptional repressors, while those genes that are also expressed in the ventrolateral mesodermal domains interact with the Wnt signaling
pathway post-translationally. (Although foxa3 and mst1 both show circumferential expression, the dorsal expression domain is much more prominent
for both genes, therefore we treated them as intermediates.) The most likely reason for this difference is that while dorsally Wnt-signaling has to be
completely abolished to avoid its later ventralizing effects, in other domains the role of feedback repressors is just to ensure that Wnt-signaling is not
overactivated. The majority of the Wnt-modulators carries ‘‘bivalent’’ H3K4/H3K27 histone trimethylation marks, suggesting they are in a ‘‘poised’’
status during MBT, which could also enhance the tight temporal and spatial control of the pathway. (In the case of zic2.1 the ‘‘bivalent’’ status could
be detected only prior MBT, and not during MBT, indicated by the lighter orange color.).
doi:10.1371/journal.pone.0070053.g006
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cDNA fraction was amplified using AmpliTaq polymerase and

purified by AmPureXP Beads (Agencourt). Concentration of each

library was determined using the SOLiD Library TaqMan

Quantitation Kit (Life Technologies). Each library was clonally

amplified on SOLiD P1 DNA Beads by emulsion PCR (ePCR).

Emulsions were broken with butanol, and ePCR beads enriched

for template-positive beads by hybridization with magnetic

enrichment beads. Template-enriched beads were extended at

the 39 end in the presence of terminal transferase and 39 bead

linker. Beads with the clonally amplified DNA were deposited onto

sequencing slide and sequenced on SOLiD V4 Instrument using

the 50-base sequencing chemistry.

Data Availability
Short-read data of the two sequenced transcriptomes were

deposited in NCBI’s Short Read Archive at http://www.ncbi.nlm.

nih.gov/sra/under accession SRA075737.

Bioinformatics
Bioinformatic analysis of the whole transcriptome sequencing

was performed in color space using Genomics Workbench ver4.6

(CLC Bio). Raw sequencing data were trimmed by removal of low

quality, short sequences so that only 50 nucleotide long sequences

were used in further analysis. Sequences were mapped in a strand

specific way onto the Danio rerio Zv9 (Ensembl) reference genome,

using default parameters. In order to avoid possible false positive

hits, genes where the mapped reads showed a highly skewed

distribution in the ‘‘rescued’’ dataset were removed from further

analysis. DESeq results were manually curated, to remove (further)

false positive hits, which showed highly skewed mapping of reads.

Only genes where a 1.5 fold upregulation was detected after

normalization were considered for further analysis.

As an alternative approach, the 50 nucleotide long color-space

RNA-Seq data were mapped onto the Danio rerio Zv9 reference

using TopHat v1.3.2 [58], which, by allowing for recognition of

splice junctions, facilitates correct mapping of sequencing reads

that span multiple exons. Assembly of transcripts and estimation of

their relative abundance between the two samples was carried out

using Cufflinks v1.1.0 [59]. For candidate genes the alignments in

the rescued dataset were manually checked to avoid false positive

arising from uneven distribution of reads. (In a typical false positive

sample more than half of the reads mapped to a short, 20–30 bp

long segment.).

For promoter analysis the indicated genomic sequences were

downloaded from Ensembl both for our validated gene set and a

randomized set of genes, and analyzed using TESS (http://www.

cbil.upenn.edu/tess) [39] for TcfLef, XVent1 and Pou5f1 binding

sites. Only hits with a log-odd score better than 8.0 were counted.

The number of such binding sites for each gene was recorded

(Table S1) and analyzed with the R program package (http://

www.r-project.org).

Histone modification status for the validated and random genes

was determined using the dataset of Lindeman and coworkers

[46]. Data visualization was performed with the ggplot2 package

(http://ggplot2.org).

The random gene-set was generated using the corresponding

application of the RSA-tools package (http://rsat.ulb.ac.be/rsat/

random-genes_form.cgi) and can be found in Table S1.

In situ Hybridization
Whole mount in situ hybridization stainings were performed as

described before [25]. The plasmids used for probe synthesis were

as follows: pCS2+aplnrb [32], pZL-dkk1 [60], pCS2+fgf8 [61],

pcDNA3.0-fgf17b [62], pBS-flh [63], pBS-foxa3 [64], pBS-

foxb1.2 [64], pBS-foxd3 [64], pGEMT-foxd5 [65], pSPORT1-

ism1 [66], pBS-lft1 [67], pGEMT-mixer [68], pBS-ntl [69], osr1

[70], pCRII-TOPO-sp5l [66], pBS-zspry2 [71], pBS-spry4 [56],

pBS-zic2.1 [72], zic3 [73]. The remainder genes were cloned

through nested PCRs and cloned into pCRII-TOPO-Blunt

(Invitrogen) or pGEM-T-Easy (Promega) vectors. PCR primers

were designed based on the available annotations in the Ensembl

database, and their sequences can be found in the Methods S1 file.

Supporting Information

Figure S1 Identification of candidate genes. Genes

showing a significant (more than 1.5 fold in the case of DESeq)

upregulation after normalization were considered for further

analysis. Two complementary approaches, DESeq ([29] in the

Main Text) (A) and Cufflinks ([30] in the Main Text) (B) packages

were used to identify differentially regulated genes. Positive hits are

colored red.

(TIF)

Figure S2 Majority of the candidate genes are upregu-
lated after MBT. Using a previously published dataset ([31] in

Main Text), we tested whether the expression of our candidate

genes is upregulated at MBT, as expected. Our results show that

indeed, this is the case for all, except two genes: map2k6 and

tmem68. The former showed a weak maternal expression, which

was downregulated after MBT, whereas the latter showed no

change in expression during and after MBT.

(TIF)

Figure S3 Genes with stochastic early expression. Genes

belonging to this class show stochastic expression at the onset of

the zygotic transcription. We could detect clusters of cells both in

wild type and ich embryos that upregulated these particular genes,

but no clear pattern emerged. For aplnrb (A–F) and isg15 (G–N),

the expression pattern later became more coherent, and localized

around the germring. Interestingly, although no clear expression

pattern emerged, foxo3b expression in general appeared higher in

wild type embryos (O–V). Later stages of foxo3b expression in wild

type embryos also showed stochastic and varying expression

patterns (A’–H’). All sphere and 30% epiboly stage embryos are

shown from an animal view. Shield, 70% epiboly and bud stage

embryos are shown from a lateral view, with dorsal to the right.

(TIF)

Figure S4 Extended genomic region analysis of validat-
ed genes. (A) For multi-exon genes, statistical analysis of the first

introns for enrichment in putative TcfLef, XVent1 or Pou5f1

binding sites yielded negative results. (B) In the 4 kb downstream

genomic regions, we could not detect significant differences

between the random and validated gene-sets in the number of

TcfLef and XVent1 sites. The validated gene-set was enriched

however in putative Pou5f1 sites (p,0.05). However, this result

has to be interpreted with caution, as proven Pou5f1-targets [44]

within the validated set have about the same number of potential

Pou5f1 binding sites as non-target counterparts (not shown). (C)

Analysing the 28 kb to 24 kb upstream genomc region no

differences were observed in the number of TcfLef, XVent1 and

Pou5f1 sites between our validated and random data-sets.

(TIF)

Table S1 In silico binding site analysis for candidate
and randomly selected genes.

(XLS)

Methods S1 Sequence of PCR primers used for the
nested PCR reactions.
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