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ABSTRACT
Objectives  We investigated machinelearningbased 
identification of presymptomatic COVID-19 and detection 
of infection-related changes in physiology using a 
wearable device.
Design  Interim analysis of a prospective cohort study.
Setting, participants and interventions  Participants 
from a national cohort study in Liechtenstein were 
included. Nightly they wore the Ava-bracelet that 
measured respiratory rate (RR), heart rate (HR), HR 
variability (HRV), wrist-skin temperature (WST) and skin 
perfusion. SARS-CoV-2 infection was diagnosed by 
molecular and/or serological assays.
Results  A total of 1.5 million hours of physiological 
data were recorded from 1163 participants (mean 
age 44±5.5 years). COVID-19 was confirmed in 127 
participants of which, 66 (52%) had worn their device 
from baseline to symptom onset (SO) and were included 
in this analysis. Multi-level modelling revealed significant 
changes in five (RR, HR, HRV, HRV ratio and WST) device-
measured physiological parameters during the incubation, 
presymptomatic, symptomatic and recovery periods 
of COVID-19 compared with baseline. The training set 
represented an 8-day long instance extracted from day 
10 to day 2 before SO. The training set consisted of 40 
days measurements from 66 participants. Based on a 
random split, the test set included 30% of participants 
and 70% were selected for the training set. The developed 
long short-term memory (LSTM) based recurrent neural 
network (RNN) algorithm had a recall (sensitivity) of 0.73 in 
the training set and 0.68 in the testing set when detecting 
COVID-19 up to 2 days prior to SO.

Conclusion  Wearable sensor technology can enable 
COVID-19 detection during the presymptomatic period. 
Our proposed RNN algorithm identified 68% of COVID-19 
positive participants 2 days prior to SO and will be further 
trained and validated in a randomised, single-blinded, two-
period, two-sequence crossover trial.
Trial registration number
ISRCTN51255782; Pre-results.

INTRODUCTION
One of the primary ways of controlling the 
spread of SARS-CoV-2 involves identification, 
tracing and isolation programmes imple-
mented in several countries.1 With multiple 
SARS-CoV-2 variant strains emerging, 
countries have prioritised vaccine rollouts, 
searches for alternatives to quarantine and 
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	⇒ Large sample size from a well-characterised and 
healthy national cohort.

	⇒ Wearable device technology combined with ma-
chine learning to monitor health parameters related 
to early detection of COVID-19 infections.

	⇒ Solely data from laboratory confirmed COVID-19 in-
fections were used.

	⇒ Data from one single study centre may limit the gen-
eralisability of our findings.
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sufficient high-quality data.
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identification of individuals with COVID-19. Reverse 
transcription-polymerase chain reaction (RT-PCR), sero-
logical testing, surveys, temperature measurements and 
symptom checks are used to detect COVID-19.2 However, 
these methods are usually unable to identify presymptom-
atic or asymptomatic individuals.

Recent studies have highlighted the need to identify 
potential cases prior to symptom onset (SO) to prevent 
virus transmission.2 3 Asymptomatic patients are likely to 
ignore safety precautions, leading to increased virus trans-
mission. Detection of COVID-19 during the asymptomatic 
or presymptomatic stage facilitates early isolation, thereby 
limiting contact with susceptible individuals. Commonly 
reported COVID-19 symptoms include fever, coughing, 
chest tightness, difficulty breathing, fatigue, dyspnoea, 
myalgia, sputum production, headache and gastrointes-
tinal symptoms.4 5 While molecular tests are continuously 
used to confirm infections, the logistics and costs of repeat 
tests across populations are prohibitive.6 Recently, scien-
tists have called for further research investigating whether 
wearable medical devices such as Ava-bracelets and direct-
to-consumer products such as Fitbit,7 8 smartwatches8 9 and 
other activity trackers10 could be used for such surveillance.11

Here, we assess the use of an existing regulated wear-
able medical device (Ava-bracelet) to analyse COVID-19-
related changes in various physiological parameters across 
four infection-related periods: incubation, presymptom-
atic, symptomatic and recovery. To our knowledge, this 
is the first prospective study to measure physiological 
changes in respiratory rate (RR), heart rate (HR), HR 
variability (HRV), wrist-skin temperature (WST) and skin 
perfusion to develop an algorithm to detect presymptom-
atic COVID-19 infection.

METHODS
Study design and participants
Participants from the ongoing observational population-
based prospective cohort study (Genetic and Phenotypic 
Determinants of Blood Pressure and Other Cardiovas-
cular Risk Factors (GAPP); n=2170) in the Principality of 
Liechtenstein were invited to participate in the current 
study (COVI-GAPP).11 Active since 2010, the GAPP study 
was designed to understand the development of cardio-
vascular risk factors in the general population better (ie, 
healthy adults aged 25–41 years).12 The exclusion crite-
rion regarding participation in the COVI-GAPP study 
was individuals who did not provide written informed 
consent. The first COVI-GAPP participants were enrolled 
in April 2020, and the data used for this interim analysis 
was collected through March 2021 (n=1163). This COVI-
GAPP interim analysis was preplanned as a pilot study to 
provide an initial algorithm for the COVID-RED project 
(n=20 000), a randomised, single-blinded, two-period, 
two-sequence crossover trial.13

Bracelet, app and participant compliance
The Ava-bracelet (version 2.0; Ava AG, Zurich, Switzer-
land) is an FDA-cleared and CE-certified fertility aid 

bracelet that complies with international regulatory 
requirements and applicable standards.14 15 The wrist-
worn tracker is commercially available at US$ 279 and 
consists of three sensors that measure five physiological 
parameters simultaneously: RR (breaths per minute), 
HR (beats per minute), HRV (ms), WST (°C) and skin 
perfusion (online supplemental figure S1). Although 
the Ava-bracelet measures multiple forms of HRV, we 
focused on two time-dependent and one frequency-
dependent measurements: SD of the normal-to-normal 
interval (SDNN), root mean square of successive differ-
ences (RMSSD) and HRV ratio (see online supplemental 
material). In addition to the physiological parameters 
of interest, the Ava-bracelet measures sleep quantity 
(duration) and sleep quality using a built-in accelerom-
eter. Prior studies have demonstrated how device data 
can inform a machine-learning algorithm that detects 
ovulating women’s most fertile days in real time with 
90% accuracy.16 Worn only while asleep, the Ava-bracelet 
saves data every 10 s and requires at least 4 hours of rela-
tively uninterrupted sleep. The participants synchronised 
their bracelets with a complementary smartphone app 
on waking, transferring data from the device to Ava’s 
backend system.

Although no study-specific adjustments were applied 
to the hardware of the Ava-bracelet, the complementary 
app had a customised user functionality developed by 
the manufacturer specifically for the COVI-GAPP study. 
Participants could still see and monitor changes in the 
physiological parameters in the app; however, they did not 
receive messages or algorithm-driven interpretations of 
their data (figure 1A). Participants recorded behaviours 
that may have interfered with the physiological parame-
ters of interest (eg, alcohol, medication and drug intake), 
as such substances can alter central nervous system func-
tioning (figure 1B).17 The daily diary in the custom app 
enabled participants to record COVID-19-related symp-
toms (figure 1C). To ensure the highest quality data, the 
study team reviewed a weekly compliance log that indi-
cated which participants had synced their Ava-bracelets 
with the app during the preceding week.18 The study team 
followed up with the participants individually to mitigate 
operational challenges or log in issues.

SARS-CoV-2 antibody testing and RT-PCR testing
SARS-CoV-2 antibody tests were assessed at baseline 
(starting April 2020) and during follow-up (starting 
December 2020) by the medical laboratory Dr. Risch 
Ostschweiz AG (Buchs SG, Switzerland). The tests were 
assessed with an orthogonal test algorithm that employed 
electrochemiluminescence assays. These assay test for 
pan-immunoglobulins directed against the N antigen and 
the receptor-binding domain of the SARS-CoV-2 spike 
protein.19 Seroconversion was assumed if the first blood 
sample was negative for SARS-CoV-2 antibodies and the 
second sample was positive.

If participants had any symptoms during the study 
period, they were encouraged to visit the Liechtenstein 
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National Testing Facility for RT-PCR testing. The testing 
facility was open daily allowing for higher testing frequen-
cies than that in other European countries.20 RT-PCR was 
performed on either the COBAS 6800 platform (Roche 
Diagnostics, Rotkreuz, Switzerland) or the TaqPath assay 
on a QuantStudio 5 platform (Thermo Fisher Scientific, 
Allschwil, Switzerland).20–22 Participants diagnosed with 
COVID-19 contacted the study team to discuss their 
symptoms and health statuses. Additionally, participants 
provided their date of SO and overall symptom duration, 
enabling us to calculate the symptom end (SE) date.

Questionnaires
For the second antibody test, all participants were asked 
to complete a questionnaire providing personal infor-
mation (age, sex), smoking status (current, past, never), 
blood group (A, B, AB, 0, unknown), number of children, 
exposure to household contacts who tested positive for 
COVID-19, working with people who have tested positive 
for COVID-19, and vaccination status. We calculated the 
body mass index (BMI) based on the height and weight 
collected from the GAPP database.

Statistical analysis
The primary objective was to determine whether different 
physiological parameters deviated from the baseline 

during COVID-19 infection. This information was used 
to develop a model for predicting COVID-19 infection 
before SO. To evaluate whether RR, HR, HRV, WST and 
skin perfusion deviated from baseline measurements 
during the four infection-related periods, we categorised 
the daily parameter measurements as occurring at base-
line if the day (d) was  >10 days prior to SO (ie, d>SO-
10), the incubation period as SO-10 ≤d < SO-2, and the 
presymptomatic period as SO-2 ≤d < SO. We chose a cut-
off of −2 days based on previous reports of infected partic-
ipants becoming contagious 2 days before SO.23 Because 
the participants’ reported symptom durations varied, the 
measurements were categorised into the symptomatic 
infection category if SO≤d ≤ SE. Finally, the parameters 
collected after SE were classified as being in the recovery 
period (d>SE).

Development of a machine-learning algorithm for detecting 
presymptomatic COVID-19 infection
We chose a recurrent neural network (RNN) with long 
short-term memory (LSTM) cells for the binary classifi-
cation of an individual as healthy or infected (positive for 
COVID-19) on a given day. LSTM networks have proven 
to be highly accurate in recognising time series patterns 
and events across large datasets.24 The internal structure 

Figure 1  COVI-GAPP participants (n=1163) wore a certified medical device at night while they slept, syncing it to a 
complementary smartphone application on waking. The device and app were originally designed for fertility tracking in naturally 
menstruating women but adapted for the purposes of this study. Instead of real-time fertility indications, participants saw 
‘Fertility Unknown’ on syncing (A). Additionally, the in-app daily diary asked participants about potential confounds (B) and 
COVID-19 symptoms (C) rather than fertility-related questions.
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of such networks can memorise states and easily fetch or 
activate them, even if they were created many epochs ago. 
The LSTM network we implemented consisted of two 
hidden layers with 16 and 64 cells (figure 2). Its output 
activation was a sigmoid function, whereas the recurrent 
activation was a hyperbolic tangent (tanh) function. The 
output was limited to a range between 0 and 1 to ensure 
that the model yielded an overall probability of infection 
on a given day. A potential COVID-19 infection was indi-
cated when this probability exceeded 0.5.
1.	 Data processing and multilevel model specification

All data processing and analyses were performed in R 
(version3.6.1) and Python (version3.6). Preprocessing 
of the data was performed to remove potential artefacts 
and ensure consistency with best practices25 (see online 
supplemental materials for detailed description). Further, 
we ran a series of multilevel models with random inter-
cepts and slopes to determine the differences in physi-
ological parameters during the infection-related periods 
compared with baseline. Given our continuous criterion, 
we modelled our outcomes of interest using residual 
maximum likelihood estimation and Satterthwaite df. 
Four binary variables were created, indicating the infec-
tion period to which a given measurement belonged 
(1=belonging to that period, 0=not belonging to that 
period). The reference baseline-period measurements 
were encoded as zero across all four binary variables. 
The reported results included unstandardised regression 

coefficients for each effect. When multiple models were 
possible for the same parameter, we chose the model 
using the percentile of the data (stable maxima) with 
the best fit (see online supplemental materials). To 
ensure a family-wise alpha level less than or equal to 0.05, 
we implemented Bonferroni correction for the seven 
analysed parameters (corrected alpha level of p=0.007) 
and adjusted the definition of marginal significance 
accordingly (ie, 0.007≤p ≤ 0.05).
2.	 Data preparation and feature extraction for algorithm 

development
The Ava-bracelet records over a million data points 

per use. Therefore, we first identified the features 
that are most predictive of COVID-19. We normal-
ised the night-time WST, RR and HR values to prime 
our model to detect deviations from baseline meas-
urements and ensure greater stability in the measure-
ments (eg, to minimise interparticipant variability). 
Next, we compared the predictive performance of the 
raw features before engineering the novel composite 
features. We conducted a principal component anal-
ysis decomposition to test the correlation between 
the day of SO and other binary-labelled features (eg, 
alcohol consumption). We also examined the correla-
tion between WST and other physiological parameters 
to determine the potential autocorrelation prior to the 
model specification.
3.	 Training process

Figure 2  Recurrent neural network (RNN) architecture for the detection of a presymptomatic case of COVID-19. The RNN 
consisted of two hidden layers and one output layer. The first hidden layer contained 16 and second layer contained 64 long 
short-term memory (LSTM) units. The LSTM output activation was a sigmoid function, while the recurrent activation on hidden 
layers was the rectified linear unit function. The input of RNN was eight consecutive values of physiological signal originating 
from eight consecutive nights of data. The output was an indication about the potential COVID-19 infection.

https://dx.doi.org/10.1136/bmjopen-2021-058274
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To limit our analysis to symptomatic COVID-19 cases, 
participants had to report the date of SO and record 
at least 28 days of bracelet data prior to that date. The 
full 4 weeks of data were required to ensure accurate 
baseline readings and enable the algorithm to account 
for cyclical variations in parameters attributable to 
monthly hormonal changes. Thus, each participant 
included in the analysis had at least 29 consecutive days 
of data recorded using the bracelet. We partitioned 
the data into 8-day sequences, enabling the algorithm 
to compare the physiological parameters across 8-day 
windows. This means that each user had more nega-
tive (class 0; ‘healthy’ days) sequences in the distri-
bution3 11 18 19 25 26 than positive sequences (class 1; 
‘infected’ days (eg, SO-10 to SO-2) as shown in figure 3). 
We selected a binary cross-entropy loss function for the 
RNN by using a stochastic gradient descent (SGD) opti-
miser. Owing to the sample size, we set the learning 
rate to 0.007 and 2000 epochs, while also enabling an 
early stopping mechanism to prevent model overfitting. 
We trained our RNN 10 times, randomly splitting our 
sample into a training set (70% of participants) and 
a test set (30% of participants) for each instance. We 
report the metrics of the best-performing RNN model 
selected according to the following recall equation:

overall_recall = ((recall_class_1_train+recal_class_0_
train) * 0.7 + (recall_class1_test+recall_class_0_test) * 
0.3)/2

Finally, because of the number of COVID-19 cases 
compared with healthy days in our dataset, we upsampled 
instances of class one through duplication, such that it 
was represented in our training set 1.15 times more than 
a given negative sequence (ie, class 0). Thus, the SGD 
optimiser treated the two classes as roughly equal and no 
longer overweighted the importance of the parameters 
predicting a healthy 8-day period. By training this LSTM 
model, we sought to leverage deep learning to predict the 
presymptomatic onset of COVID-19.

Patient and public involvement
No patient or public involvement.

RESULTS
Participants
A total of 1163 participants (mean age=44.1 years, 
SD=5.6; 667 (57%) females) were enrolled in the 
COVI-GAPP study (figure 4). Of these participants, 127 
(10.9%; 95% CI (9.3 to 12.8)) contracted COVID-19 
during the study period. Ten infected participants were 
hospitalised for short-term monitoring, with breathing 
difficulties and fever as the main reported symptoms. 
Three asymptomatic infected participants were retro-
spectively identified using antibody tests. As seen in 
table 1, there were no differences in the sex ratio, age, 
BMI or smoking status between individuals who did or 
did not test positive for COVID-19 during follow-up (all 
p≥0.30). A significantly higher proportion of participants 
who contracted COVID-19 reported household contacts 
(n=58 of 1036 seronegative participants vs 53 of 127 sero-
positive participants; p<0.001) or work colleagues who 
also had COVID-19 (n=230 of 1036 seronegative partici-
pants vs 49 of 127 seropositive participants; p<0.001). On 
average, COVI-GAPP participants wore the Ava-bracelet 
for 1370.8 hours over the course of the study (SD=802.7), 
for a total of 1 453 006 hours. Of the 127 participants 
who tested positive for COVID-19, either through 
RT-PCR and SARS-CoV-2 antibody tests or antibody tests 
only, 66 users had worn their bracelet at least 29 days 
prior to SO which enabled sufficient data quality. Among 
these 66 participants, COVID-19 infection was confirmed 
by RT-PCR test and SARS-CoV-2 antibody test (n=48) or 
solely by antibody test (n=18).
1.	 Participants with confirmed COVID-19

Table 2 shows the clinical characteristics of COVID-19 
positive participants, stratified according to their compli-
ance with wearing the Ava-bracelet prior to SO. A series of 
26 analyses of variance and chi-square tests with Bonfer-
roni correction revealed that only BMI varied significantly 
between the two groups; noncompliant participants had 
a higher mean BMI (25.8 kg/m2, SD=4.0) than their 
compliant peers (23.8 kg/m2, SD=3.7; F(1, 116)=10.39, 
p=0.002).
2.	 Compliant participants with confirmed COVID-19

Figure 3  Class depiction based on the recurrent neural network (RNN). Here, class 0 represents healthy days and class 1 
represents the presymptomatic phase of COVID-19 (SO-10 to SO-2). Vectors of marked classes represent training input for the 
RNN. SO, symptom onset.
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Among the 66 compliant participants with COVID-19, 
13 248 nights of data were collected (mean duration=200 
nights, SD=47; range 72–284 nights) for a total of 124 
079 hours (mean hours per participant=1880, SD=461.8). 
The compliant participants had a mean age of 42.9 years 
(SD=5.6) and most had never smoked (n=57; 86%). Their 
COVID-19 symptoms lasted for an average of 8.5 days 
(SD=5.0; range 1–25 days). Table 2 shows the frequency 
of the self-reported symptoms.

Physiological changes during the clinical course of COVID-19
Employing multilevel modelling, we observed significant 
changes in five (RR, HR, HRV, HRV ratio and WST) of 
the seven device-measured physiological parameters 
during the incubation, presymptomatic, symptomatic 
and recovery periods of COVID-19, compared with base-
line. Table  3 lists the unstandardised coefficient values 
for each statistical model. The complete course of the 
different physiological parameters is shown in figure 5.

Respiration rate
COVID-19 positive participants had a significantly 
higher RR during the symptomatic period than at base-
line (‍βintercept‍ = 15.1 breaths/min, SE=0.26; p<0.0001). 
Controlling for intraindividual variance, the nightly 
RR increased by 1.0 breaths/min (SE=0.18; p<0.0001). 
There were no significant differences in the RR detected 
between the baseline and other periods (all p≥0.114).

Heart rate
At baseline, the participants had a resting nightly HR of 
55.4 beats per minute (bpm; SE=0.83; p<0.0001). During 
the incubation period, individuals’ HR increased signifi-
cantly by 0.87 bpm (SE=0.29; p=0.004). HR remained 
elevated in the presymptomatic period, expected to be 
1.0 bpm higher than that at baseline (SE=0.36, p=0.007). 
HR continued to increase following SO, beating 2.2 bpm 
faster than at baseline (SE=0.48, p<0.0001). Finally, even 

Figure 4  Study flow chart. From 2170 GAPP participants, 1163 participants were enrolled in the COVI-GAPP study. A total of 
127 participants presented laboratory-confirmed COVID-19 disease and from these, a total of 66 positive tested participants 
had complete bracelet data available used for the algorithm development.
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after SE, participants had a significantly elevated HR 
(+0.87 bpm higher than baseline; SE=0.22, p=0.0002).

HRV: SD of the NN interval
Compared with a baseline SDNN of 59.6 ms (SE=1.4, 
p<0.0001), participants had significantly decreased 
SDNN in the incubation (‍βincubation‍ = −1.5 ms, SE=0.59, 
p=0.0149), presymptomatic (‍βpre−symptomatic ‍ = −1.7 ms, 
SE=64; p=0.0086) and symptomatic (‍βsymptomatic‍ = −1.4 
ms, SE=0.73; p=0.0499) periods. Following SE, SDNN 
returned to baseline levels (‍βrecovery‍ = −0.9 ms, SE=0.51, 
p=0.0787).

HRV: root mean square of successive differences
Our analyses did not reveal any significant phase-based 
differences in RMSSD for COVID-19 positive participants 
during their infection (all p≥157) compared with base-
line (‍βintercept‍ = 43.7 ms, SE=1.2; p≤0.0001).

HRV ratio
As with SDNN, multilevel analysis revealed a marginally 
significant decrease in HRV ratio during the incubation 
(‍βincubation‍ = −0.01, SE=0.01; p=0.0361) and presymp-
tomatic periods (‍βpre−symptomatic‍ = −0.02, SE = −0.01; 
p=0.0165) compared with baseline (‍βintercept‍ = 0.50, 
SE=0.02; p<0.0001). No significant difference in HRV 
ratio emerged between baseline and the symptomatic or 
recovery periods (all p≥0.5474).

Wrist skin temperature
Over and above participant level variance, WST increased 
by 0.13°C (SE=0.04; p=0.001), 0.18°C (SE=0.05; p=0.001) 
and 0.3°C (SE=0.05; p<0.0001) during the incubation, 
presymptomatic and symptomatic periods, respectively, 
compared with baseline (‍βintercept‍ = 35.3°C, SE=0.06; 
p<0.0001). WST remained elevated by 0.2°C relative to 

baseline, even during the recovery period (SE=0.03; 
p<0.0001).

Skin perfusion
No changes in skin perfusion were observed when 
comparing measurements during infection (all p≥339) 
with baseline values (‍βintercept‍ = −0.01, SE=0.0; p<0001).

Model specification and algorithm performance
The best-performing RNN consisted of composite 
features derived from the maximum nightly WST and 
median nightly RR, averaged across the preceding 
three-night window. Other parameters were excluded. 
Table 4 summarises the model performance metrics for 
the training and testing samples. Class 1 represented an 
8-day long training instance extracted from day 10 to 
day 2 before SO. Class 0 represented a training instance 
extracted from all other 8-day long consecutive measure-
ments. The training set consisted of 40 days of measure-
ments from 66 participants with a 70:30 train-test split. 
Sensitivity is reflected in the recall of class 1, whereas 
specificity is determined by the recall of Class 0. Training 
the algorithm to detect COVID-19 1 day before SO did 
not improve recall (data not shown).

In the test set, the algorithm detected 68% of COVID-19 
cases 2 days prior to SO.

DISCUSSION
Our main objective was to assess the use of existing 
medical-grade technology in the early detection of 
changes in physiological parameters related to COVID-
19, thereby facilitating early isolation and testing of 
potentially affected individuals to limit the spread of the 
SARS-CoV-2 virus. Our RNN algorithm, trained and tested 
using a 70:30 split, identified 68% of COVID-19 cases 

Table 1  Overall participant characteristics stratified according to whether they contracted COVID-19

Variables Total n=1163 COVID-19 n=127
No COVID-19
n=1036 Test statistic

Significance
(p value)

Sex ratio (F:M) 667:494 74:53 594:441
‍χ
2
‍(4)=0.40 0.982

Mean age, years 
(SD)

44.08 (5.57) 43.66 (5.64) 44.14 (5.56) F(1, 1071)=0.59 0.444

BMI, kg/m2 (SD) 24.72 (3.97) 24.74 (4.00) 24.72 (3.97) F(1, 1071)=0.02 0.90

Smoking status, N 
(never: current: past 
smoker)

654:110:102 93:10:12 561:100:90
‍χ
2
‍(2)=2.38 0.304

N of household 
contacts with 
COVID-19

111 53 58
‍χ
2
‍(1)=127.94 <0.0001*

N of work 
colleagues with 
COVID-19

279 49 230
‍χ
2
‍(3)=27.3 <0.0001*

*Indicates p≤0.002, significant difference with Bonferroni correction.
BMI, body mass index.
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up to 2 days before SO in 66 participants with an accu-
rate false-positive rate and laboratory-confirmed cases of 
SARS-CoV-2. Therefore, we demonstrated that a wear-
able sensor bracelet implemented alongside a machine-
learning model has the potential to detect COVID-19 
infections prior to SO.

Our research is one of the first prospective cohort 
studies using wearable sensor technology to gather real-
time continuous physiological data on which a machine-
learning algorithm for COVID-19 presymptomatic 
detection was trained. Previous studies have evaluated the 
use of different wearable devices and machine learning 

Table 2  Clinical characteristics of participants who contracted COVID-19 stratified according to whether they did (compliant 
group) or did not (non-compliant group) wear the bracelet regularly

Variables (n)
Compliant group 
(n=66)

Non-compliant group 
(n=61) Test statistic

Significance
(p value)

Sex ratio (F:M) 45:21 29:32
‍χ
2
‍(1)=4.74 0.030

Mean age, years (SD) 42.88 (5.59) 44.54 (5.60) F(1, 116)=2.85 0.094

BMI, kg/m² (SD) 23.75 (3.69) 25.81 (4.06) F(1, 116)=10.39 0.002*

Hospitalisation rate 3 7
‍χ
2
‍(1)=0.64 0.425

Smoking status, N
(never: current: past smoker)

57:4:5 36:6:7
‍χ
2
‍(2)=3.03 0.22

N of household contacts with 
COVID-19

35 18
‍χ
2
‍(1)=2.39 0.123

N of work colleagues with 
COVID-19

28 21
‍χ
2
‍(1)=0 1

COVID-19 symptoms:

Fever 17 23
‍χ
2
‍(1)=0.89 0.344

Chills 14 11
‍χ
2
‍(1)=0.62 0.432

Cough 26 30
‍χ
2
‍(1)=0.25 0.616

Runny nose 26 25
‍χ
2
‍(1)=0.01 0.938

Difficulty breathing 11 10
‍χ
2
‍(1)=0.39 0.530

Loss of the sense of smell 26 24
‍χ
2
‍(1)=0.37 0.543

Loss of the sense of taste 20 22
‍χ
2
‍(1)=0.02 0.896

Chest pressure 7 10
‍χ
2
‍(1)=0.22 0.636

Sore throat 18 19
‍χ
2
‍(1)=0.00 1

Muscle pain 27 32
‍χ
2
‍(1)=0.29 0.593

Headache 44 29
‍χ
2
‍(1)=7.88 0.005

Fatigue 27 38
‍χ
2
‍(1)=2.24 0.135

Malaise 19 25
‍χ
2
‍(1)=0.18 0.670

Diarrhoea 13 13
‍χ
2
‍(1)=0.02 0.896

Sickness 9 5
‍χ
2
‍(1)=1.29 0.256

Vomiting 1 5
‍χ
2
‍(1)=1.89 0.169

Hospitalisation 3 7
‍χ
2
‍(1)=0.64 0.425

Long-term effects of 
COVID-19 (≥10 day)

5 15
‍χ
2
‍(1)=5.69 0.017

Mean symptom duration 8.54 (5.10) 10.16 (10.98) F(1, 116)=1.31 0.254

*Indicates p≤0.002, significant difference with Bonferroni correction.
BMI, body mass index.
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to identify COVID-19 infections based on self-reported 
COVID-19 infections.7 8 25–31 Mishra et al,9 for example, 
evaluated the use of resting HR data from 32 infected 
Fitbit users to detect COVID-19 cases in real time and 
identified 62.5% of the cases before SO. Similarly, Miller 
et al32 used RR, HR and HRV data from 271 WHOOP 
strap wearers to identify 20% of participants who devel-
oped COVID-19 before SO and 80% by day 3 after SO.

Only laboratory-confirmed SARS-CoV-2 infections were 
used in this study to ensure more conclusive results. Our 
RNN algorithm detected 68% of laboratory-confirmed 

cases before SO, with additional statistical analyses 
revealing significant changes in the HR, HRV and WST, 
across the disease trajectory. Furthermore, our algorithm 
included more concurrent physiological parameters than 
previous studies, such as nightly RR, WST and cardiac 
data.7 9 31–35 Unlike previous studies that performed 
retrospective measurements, our system could detect 
infections before SO. Uniquely, our research repur-
posed a previously existing CE-marked medical device 
for a novel purpose, illustrating a relatively inexpensive 
technique for detecting presymptomatic COVID-19. This 

Table 3  Multi-level linear mixed models reveal the relationship between COVID-19 phases and physiological parameters

Predictors
Respiratory 
rate Heart rate

Heart rate 
variability 
(SDNN)

Heart rate 
variability 
(RMSSD)

Heart rate 
variability 
ratio

Wrist skin 
temperature Skin perfusion

Intercept 15.10† (0.26) 55.43† (0.83) 59.64† (1.43) 43.71† (1.16) 0.50† (0.02) 35.32† (0.06) −0.01† (0.00)

COVID-19 phase  �

Baseline Reference 
group

Reference 
group

Reference 
group

Reference 
group

Reference 
group

Reference 
group

Reference 
group

Incubation 0.02 (0.06) 0.87† (0.29) −1.48* (0.59) −0.37 (0.48) −0.01* (0.01) 0.13† (0.04) 0.00 (0.00)

Presymptomatic 0.14 (0.12) 1.00† (0.36) −1.70* (0.64) −0.75 (0.53) −0.02* (0.01) 0.18† (0.05) 0.00 (0.00)

Symptomatic 1.00† (0.18) 2.15† (0.48) −1.45* (0.73) 0.12 (0.51) 0.00 (0.01) 0.30† (0.05) 0.00 (0.00)

Recovery 0.10 (0.06) 0.87† (0.22) −0.92 (0.51) 0.04 (0.44) 0.00 (0.01) 0.20† (0.03) 0.00 (0.00)

Unstandardised β -coefficient values reported, with SEs in brackets.
*P<0.05.
†0.007, respectively, with Bonferroni correction.
RMSSD, root mean square of successive differences; SDNN, SD of the normal-to-normal interval.

Figure 5  The wearable device can detect changes in five physiological parameters across the clinical course of COVID-19. 
The values of each physiological parameter (with 95% CIs) collapsed across individuals (n=66) were normalised using baseline 
measurements and are shown centred around participant-reported symptom onset (SO). SDNN, SD of the normal-to-normal 
interval.
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machine-learning algorithm can be applied to any sensor 
device that measures the same physiological parameters.

Our findings suggest that a wearable-informed 
machinelearning algorithm may serve as a promising 
tool for presymptomatic or asymptomatic detection 
of COVID-19. However, RT-PCR testing remains the 
most effective method to confirm COVID-19 infections. 
A systematic review of wearable sensors in detecting 
COVID-19 reported these investigations as promising but 
also highlighted the need for investigations in broader 
populations.36 Based on this interim analysis, a 20 000-
person randomised controlled trial is underway to test 
the real-time efficacy of the RNN algorithm which can 
act on real-time machine-learning-driven alerts about the 
likelihood of a COVID-19 infection before symptoms are 
reported.13 The initial results from this larger trial are 
expected in December 2022, with a wider validation and 
more practical implications of the first presented data 
approach. In addition, detecting other illnesses using 
wearable-informed machine-learning algorithm is prom-
ising.28 30

The strengths of our study include its population-
based design and recruitment from a well-defined and 
well-characterised healthy cohort. A small subsample 
of COVID-19 positive users with sufficient high-quality 
data (wearing the Ava-bracelet ≥28 days prior to SO), 
reliance on data from a single national centre and lack 
of ethnic diversity may limit the generalisability of our 
findings. Additionally, we could not exclude imprecision 
or misclassification errors related to the symptoms expe-
rienced, dates of SO and/or SE. We acknowledge that 
our sensitivity was less than 80%. We expect to improve 
the algorithm‘s performance further in a larger cohort 
within the setting of the COVID-RED study (n=20000). 
Furthermore, our investigation was based on data from 
individuals younger than 51 years who typically show 
less severe symptoms. The algorithm could perform 
better in older people with more severe clinical manifes-
tations. This question will also be addressed within the 

framework of the COVID-RED study.13 Finally, one could 
argue that about half of the individuals identified as posi-
tive by the bracelet did not show SARS-CoV-2 infection 
in subsequent laboratory testing, and an unnecessary 
testing burden could arise from this fact. The positivity 
rates of PCR testing (ie, approximately 15%, depending 
on disease prevalence)37 38 in symptomatic outpatients 
routinely tested during the pandemic which were consid-
erably lower than the 50% observed in asymptomatic Ava-
bracelet users. Hence, the Ava-bracelet could be regarded 
as progress when compared with the current testing 
routine.

Overall, the COVI-GAPP study showed that presymp-
tomatic detection of COVID-19-related changes in physi-
ological parameters using a sensor bracelet is feasible. We 
found significant changes in HR, HRV and WST occurring 
in COVID-19 positive patients during the presymptom-
atic period compared with baseline measurements, over 
and above the effects of intrapersonal variability. A novel 
machine-learning algorithm detected 68% of laboratory-
confirmed SARS-CoV-2 infections 2 days before SO. Wear-
able sensor technology is an easy-to-use, low-cost method 
for enabling individuals to track their health and well-being 
during a pandemic. Our research shows how these devices, 
partnered with artificial intelligence, can push the bound-
aries of personalised medicine and detect illnesses prior to 
SO, potentially reducing virus transmission in communities. 
Future research should focus on how medical-grade wear-
able sensor technology can aid in combatting the current 
pandemic by monitoring sensor data.
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