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Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet, 08907 Barcelona, Spain and
6Ensembl Team, EMBL-EBI, Hinxton, Cambridge, UK

Received February 14, 2006; Revised and Accepted March 21, 2006

ABSTRACT

The Gene Expression Profile Analysis Suite (GEPAS)
has been running for more than four years. During
this time it has evolved to keep pace with the new
interests and trends in the still changing world of
microarray data analysis. GEPAS has been designed
to provide an intuitive although powerful web-based
interface that offers diverse analysis options from
the early step of preprocessing (normalization of
Affymetrix and two-colour microarray experiments
and other preprocessing options), to the final step
of the functional annotation of the experiment
(using Gene Ontology, pathways, PubMed abstracts
etc.), and include different possibilities for cluster-
ing, gene selection, class prediction and array-
comparative genomic hybridization management.
GEPAS is extensively used by researchers of many
countries and its records indicate an average usage
rate of 400 experiments per day. The web-based pipe-
line for microarray gene expression data, GEPAS, is
available at http://www.gepas.org.

INTRODUCTION

It is quite common that the introduction of a new technology is
accompanied by claims and promises which on many occa-
sions cannot be fulfilled. This hype is then followed by a wave
of disappointment against the technology. Fortunately, as it
is reaching a certain degree of maturity, DNA microarray

technologies do not seem to have followed this fate. During
an initial period, DNA microarray publications were dealing
with issues such as reproducibility and sensitivity. Many clas-
sical microarray papers dating from the late nineties were mere
proof-of-principle experiments (1,2), in which only cluster
analysis was applied. Later, sensitivity became a main concern
as a natural reaction against quite liberal interpretations of
microarray experiments made by some researchers, such as
the fold criteria to select differentially expressed genes. It was
soon obvious that genome-scale experiments should be care-
fully analysed because many apparent associations happened
merely by chance (3). In this context, different methods for the
adjustment of P-values, which are considered standard today,
started to be extensively used (4,5). More recently the use of
microarrays as predictors of clinical outcomes (6), despite not
being free of criticisms (7), fuelled the use of the methodology
because of its practical implications. There are still some
concerns with the cross-platform coherence of results but it
seems clear that intra-platform reproducibility is high (8) and,
despite the fact that gene-by-gene results are not always the
same, the biological themes emerging from the different plat-
forms are increasingly consistent (9). That points to the
importance of the interpretation of experiments in terms of
their biological implications instead of a mere comparison of
lists of genes (10,11).

Keeping a pace with the trends mentioned above, Gene
Expression Profile Analysis Suite (GEPAS) has been growing
during the last 4 years. In the first release it was more oriented
towards clustering and data preprocessing (12). Successive
releases showed a package more oriented towards gene selec-
tion, class prediction and the functional annotation of experi-
ments (13,14). The version presented here include several new
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modules, some of which are new while other ones constitute
already available tools completely rewritten including new
functionalities. GEPAS is not a simple web server, but it con-
stitutes one of the largest resources for integrated microarray
data available over the web. It has been working for more than
four years having by the end of year 2005 an average of 400
experiments analysed per day summing up over all of their
modules. GEPAS is used by researches worldwide as can be
seen in the usage map, where all the sessions are mapped to its
geographic location (http://bioinfo.cipf.es/access_map/map.
html). It also offers on-line tutorials that can be used in
courses. In the new version (3.0) we present new modules
for the normalization of Affymetrix experiments, for differ-
ential gene expression, for the evaluation of cluster quality and
another module for array-comparative genomic hybridization
(Array-CGH) data management. Also, another conceptual
novelty is the connection of GEPAS to the PupaSuite tools
(15–17), which offers the possibility of analysing polymorph-
isms at the light of the results of the gene expression analysis.

GENERAL OVERVIEW

GEPAS aims to tackle the most common problems in micro-
array data analysis in a simple but rigorous way. Thus, after an
essential step of normalization, there are different ‘work-
flows’, or sequences of steps, that can be followed, depending
on the aim of the experiment: class discovery, differential gene
expression, class prediction or genomic copy number estima-
tion, just to cite the most common objectives of microarray
experiments. Class discovery, either in genes or in experi-
ments, is achieved by using clustering methods. GEPAS
includes some commonly used clustering methods such as
hierarchical clustering (18), SOTA (19,20), SOM (21),
K-means (22) and SOM-Tree (23). The evaluation of cluster
quality, a scarcely addressed issue, has been implemented here
in the Cluster Accuracy Analysis Tool (CAAT) module (see
below). Differential gene expression implies finding genes
with significant differences in expression between two or
more classes, related to a continuous experimental factor
(e.g. the concentration of a metabolite) or to survival data.
A new, more complete module for differential gene expression
is presented in this new version of GEPAS (see below). The
module Tnasas for class prediction implements different
classifiers, such as diagonal linear discriminant analysis
(DLDA) (24), nearest neighbour (NN) (25), support vector
machines (SVM) (26), random forest (27) and shrunken
centroids (PAM) (28) of known efficiency as class predictors
using microarray data (24). Cross-validation error is calculated
in a way to avoid the well-known selection bias problem
(29,30). See Tnasas help (http://tnasas.bioinfo.cipf.es/cgi-
bin/docs/tnasashelp) for a more detailed description of the
methods and error estimation strategy. Array-CGH (31) can
be analysed through the module ISACGH that allows predict-
ing copy number, relating these values to gene expression and
performing functional annotation through the babelomics (11)
suite. Finally, functional annotation is carried out with the
babelomics suite which can be used either as an independent
suite or as an integrated part of the GEPAS. Figure 1 illus-
trates, following the metaphor of a subway line, the intercon-
nections of the different tools in the GEPAS environment.

NORMALIZATION AND PREPROCESSING

GEPAS now implements normalization facilities for both two-
colours and Affymetrix arrays.DNMAD (32) module performs
normalization in two-colour arrays using print-tip loess (33)
with a number of different options. DNMAD can input
Genepix (Axon instruments) GPR files. The module expresso
normalizes Affymetrix CEL files using standard Bioconductor
(34) tools; in particular the package affy (35). Besides its
friendly web interface we provide the user with the speed
and above all the physical memory available in our server.

More information can be found in the corresponding tutorial
web pages (http://bioinfo.cipf.es/docus/courses/on-line.html).

In addition, the preprocessor (36) module performs some
preprocessing of the data (log-transformations, standardiza-
tions, imputation of missing values and so on).

CLUSTERING AND CLUSTER QUALITY
ESTIMATION

Despite the fact that clustering is one of the most popular—
albeit often improperly used (30)—methodologies in the ana-
lysis of microarray data there are very few alternatives for the
estimation of the quality of the results found. We have
included a module, CAAT, which provides many options for
the visualization and intuitive manipulation of hierarchical and
non-hierarchical clustering results. Many visualization modes,
browsing options and cluster extraction possibilities are cur-
rently available. Moreover, CAAT provides some descriptive
measures about each partition (average profiles, standard devi-
ation profiles, inter and intra-cluster distances) as well as a
global estimation of cluster quality by the silhouette method
(37), which performs well, in noisy situations, such as micro-
array analysis (38). CAAT submits data to other tools such as
the Babelomics (11) functional annotation suite or to ISACGH
(Figure 1).

There is more detailed information in the CAAT documenta-
tion (http://bioinfo.cipf.es/docus/courses/on-line.html).

DIFFERENTIAL GENE EXPRESSION

This version of GEPAS includes new methods for differential
gene expression analysis under different conditions. The old
module pomelo has been replaced by the new module T-rex
(Tools for RElevant gene seleXion) which is much faster and
offers new tests for different situations. T-rex distinguishes
among four conceptually different testing cases:

� Finding genes differentially expressed between two discrete
classes (e.g. case/control and so on). A number of authors
(39,40) have found that the classical t-statistic, which was
widely used in early work on the analysis of differential
expression, can be highly unreliable for microarray data.
Problems arise mainly as a consequence of statistical issues
relating to the SD term in the denominator of the t-statistic.
For example, many non-differentially expressed genes may
by chance have small observed SDs, which may cause these
genes to be erroneously selected. GEPAS now also imple-
ments different new tests:

� The t-test, which is still available.
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� An empirical Bayes methodology that allows fitting hier-
archical mixture models to identify differentially
expressed genes (41). One of the advantages of this meth-
odology is that it fits a global model taking into account
all genes in the dataset.

� A novel test for the analysis of microarray data by com-
bining inference for differential expression and variabil-
ity (CLEAR-test) (J. Valls, M. Grau, X. Sole,
P. Hernandez, D. Montaner, J. Dopazo, M. A. Peinado,
G. Capella, M. A. G. Pujana and V. Moreno, manuscript
submitted). Most tests evaluate differential expression by
using estimated variability, but no inference is made in
terms of the variability itself. CLEAR-test evaluates both
whether genes show large fold changes and whether their
variability is high.

� A data-adaptive approach to the analysis of differential
expression, in which an effective test statistic is learned
directly from microarray data. This approach has been
shown to ameliorate many of the problems associated
with both the t-statistic and simple moderated statistics
like SAM (42), and to produce good results under a range
of conditions (43).

� Finding genes differentially expressed between more than
two classes (e.g. different types of cancers and so on)
Together with the classical ANOVA methodology we
make available the same CLEAR test mentioned above
(41). While the mathematical treatment of this kind of
data is similar to that of two classes, in our tools, we separate

the case when more than two classes are available because
of its different conceptual implications.

� Finding genes whose expression is correlated to a contin-
uous variable (e.g. the level of a metabolite). Regression
analysis of gene expression on any numerical independent
variable has been implemented. C routines have been com-
piled for the particular architecture of our computers in
order to achieve the maximal speed. Estimates of Pearson’s
and Spearman’s correlation coefficients as well as P-values
for testing the null hypothesis of no correlation can also be
obtained with T-rex.

� Finding genes whose expression is related to survival times.
GEPAS uses C routines to estimate a Cox proportional
hazards regression model (44). Right censored data are
allowed as well as replicates in the survival times. Censoring
variables should be provided by the researcher together with
survival times that may be replicated.

When appropriate, P-values adjusted for multiple testing are
provided. Three methodologies are implemented. One of them
controls the FWER (family-wise error rate) (45) while the
others control the FDR (false discovery rate) (46). Our imple-
mentations make use of the p.adjust function in the stats
R package and the qvalues package (47) from Bioconductor.

FUNCTIONAL ANNOTATION

Functional annotation of the experiments gives clues to the
researcher for the interpretation of the experiment. There are a

Figure 1.Map of GEPAS functionalities as a subway line. Data (Affimetrix, two-colour or raw) are introduced from the left side and pass through the preprocessor.
Then different types of analyses can be performed: gene selection (T-rex) in different situations (two or more classes, correlation or survival; see text for details) or
class discovery (Tnasas) are two types of supervised analyses. Array-CGH data can be analysed through the red line ISACGH. Unsupervised analysis can also be
performedusing differentmethods. CAATallows tomap co-expressed genes on their chromosomal coordinates allowing the study of RIDGES (54). All the tools end
up in Babelomics (11), that allows for two different types of analysis: comparison of two sets of genes of analysis or blocks of functionally related genes.
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number of tools that make use of gene functional annotations
to try to understand the global changes in gene expression in
microarray experiments (48), but probably one of the most
complete packages in this respect is the Babelomics suite
(11,49). This suite of programs for functional annotation of
genome-scale experiments has undergone a deep modification
described in detail elsewhere (49). In brief, Babelomics can
now compare two groups of genes and test simultaneously for
the significant over-abundance of diverse biological themes
such as GO terms, KEGG pathways, Interpro motifs, Swis-
sprot keywords, Transfac� motifs, CisRed motifs, relative
abundance in tissues and bioentities extracted from PubMed,
with the proper multiple testing adjustment. This is carried out
by the FatiGO+ module, the evolution of the FatiGO program
(50). Additionally there are two modules designed to search
for functionally related blocks of genes that are co-ordinately
over- or under-expressed using both the FatiScan (51) or the
GSEA (52) algorithms.

Despite its general scope (Babelomics is not restricted to
microarrays but applicable to any type of large-scale experi-
ment), and the possibility of being used alone as an independ-
ent resource, the Babelomics suite has been fully integrated
into GEPAS. Modules of gene selection (T-rex) or class pre-
diction (tnasas) can submit the genes selected as relevant to the
FatiGO+ module for testing against the rest of genes. Like-
whise, the modules for clustering (hierarchical, k-means,
SOM, SOTA) through their cluster’ viewers or through
CAAT, can submit the genes within the selected cluster to
be tested against the rest of genes. Similar operation can be
performed from within ISACGH, with the genes contained in
the selected chromosomal region. Moreover, arrangements of
genes can be sent from T-rex to the FatiScan to test blocks of
functionally related genes tha are co-ordinately over- or under-
expressed. Sets of arrays can also be submitted to GSEA with
the same purpose.

ARRAY-CGH

Genetic aberrations, which are the molecular basis of many
diseases, have classically been studied through CGH. The
introduction of microarray-based CGH methods (array-CGH)
has revolutionized this methodology in terms of resolution and
throughput (31,53) but, at the same time, has generated a need
for new algorithms and software for dealing with this type of
data. We have included in GEPAS a new module, ISACGH,
which completely replaces the old viewer InSilicoCGH (14).
ISACGH includes two new and efficient methods for accurate
estimation of genomic copy number from array-CGH hybrid-
ization data, integrated into a web-based system that allows,
for the first time, the combined study of gene expression and
genomic copy number. Several visualization options offer a
convenient representation of the results. Moreover, the link to
the Babelomics (11,49) tools allows, for the first time in a tool
of this type, the production of functional annotations (using
different relevant biological information such as gene onto-
logy, pathways, etc.) for the detected chromosomal regions of
interest (amplified or deleted). We use the DAS technology
(Distributed Annotation System; see http://www.biodas.org/),
that allows a remote mapping of information (our predictions)
from a server (our server) to a client (Ensembl), to represent

the ISACGH predictions and data onto the Ensembl
chromosomal coordinates.

ISACGH generically maps data onto their chromosomal
coordinates. So, beyond to map genomic hybridisations any
other data can be mapped. Thus CAAT can send to ISACGH
groups of co-expressing genes, which might be useful for
defining regions of increased gene expression, also known
as RIDGES (54).

Polymorphisms affecting gene expression

Although the study of regulatory polymorphisms is not new,
there has been a recent revival of interest in them mainly
because of the availability of high-throughput data and meth-
odologies that allows their characterisation (55). The corres-
ponding GEPAS modules (CAAT, tnasas and T-rex) have a
unique feature in this regard: the possibility of connecting the
genes found to be regulated in a microarray experiment to
possible regulatory SNPs in such genes. In particular,
clustering and gene selection methods can be connected to
the PupaSuite (15–17).

DISCUSSION

GEPAS is a long-term project that aims to provide the scient-
ific community with an advanced set of tools for microarray
data analysis, without renouncing to an easy and intuitive use.
It has been running uninterruptedly for more than four years
and has grown to include more tools as new algorithms were
introduced in the microarray data analysis arena (12–14). The
GEPAS team has intended to deliver a coherent set of state-of-
the-art and widely established algorithms, running away from
building a simple collection of as-much-as-possible tools.
Actually, any new tool included is the response to a new or
emerging requirement requested by our users. As the Func-
tional Genomics node of the Spanish Institute of Bioinform-
atics (INB; http://www.inab.org) and being part of the Spanish
Network of Cancer Centers (RTICCC; http://www.rticcc.org)
we have a direct contact with researchers from which we get
much of the feedback necessary to build up a useful tool.
GEPAS, integrated with the Babelomics suite (11,49), pro-
vides the tools for performing the most common analyses
of microarray data. Moreover, it has been conceived as a
workflow that helps the user to carry out a series of consec-
utive steps of analysis with simple mouse clicks. GEPAS has
been designed to take full advantage of the properties of the
web: connectivity, cross-platform functionality and remote
usage. Its modular architecture allows easy implementation
of new tools and facilitates the connectivity of GEPAS
from and to other web-based tools.

The user of GEPAS ranges from the experimentalist with
not much experience in bioinformatics and no deep statistical
skills, interested only in data analysis, to the bioinformatician
that invokes some of the tools remotely for different purposes.

GEPAS is running in a high-end cluster (with 20 dedicated
AMDOpteron CPUs at 2.4 GHz) with a large amount of RAM
(6 GB). This allows to use tools (e.g. normalization tools are
highly RAM-consuming) that usually are beyond the capab-
ilities of the hardware available to many end users.

In addition, there is a teaching programme related to
GEPAS (see http://bioinfo.cipf.es/docus/courses/courses.
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html) with on-line tutorials that can be freely used (http://
bioinfo.cipf.es/docus/courses/on-line.html).

Although other alternatives are available for microarray
data analysis, there is no other similar resource over the
web with the number of possibilities offered by GEPAS.
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