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Abstract

The transmission dynamics of the coronavirus—COVID-19—have challenged humankind

at almost every level. Currently, research groups around the globe are trying to figure out

such transmission dynamics under special conditions such as separation policies enforced

by governments. Mathematical and computational models, like the compartmental model or

the agent-based model, are being used for this purpose. This paper proposes an agent-

based model, called INFEKTA, for simulating the transmission of infectious diseases, not

only the COVID-19, under social distancing policies. INFEKTA combines the transmission

dynamic of a specific disease, (according to parameters found in the literature) with demo-

graphic information (population density, age, and genre of individuals) of geopolitical regions

of the real town or city under study. Agents (virtual persons) can move, according to its

mobility routines and the enforced social distancing policy, on a complex network of accessi-

ble places defined over an Euclidean space representing the town or city. The transmission

dynamics of the COVID-19 under different social distancing policies in Bogotá city, the capi-

tal of Colombia, is simulated using INFEKTA with one million virtual persons. A sensitivity

analysis of the impact of social distancing policies indicates that it is possible to establish a

‘medium’ (i.e., close 40% of the places) social distancing policy to achieve a significant

reduction in the disease transmission.

Introduction

Infectious diseases have a substantial impact on public health, health care, macroeconomics,

and society. The availability of options to control and prevent the emergence, expansion, or

resurgence of pathogens warrants continuous evaluation using different methods. Mathemati-

cal models allow characterizing both the behavior and the emergent properties of biological

systems, such as the transmission of infectious disease. [1–3]. Many biological systems have

been modeled in terms of complex systems since their collective behavior cannot be simply

inferred from the understanding of their components [4, 5].
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Computer-based algorithms are used to model properties and dynamic interactions

between agents (e.g. persons, cells) or groups of agents within, and across levels of influence in

complex systems [6, 7]. In general, agent-based modeling (ABM) can be used for testing theo-

ries about underlying interaction mechanics among the system’s components and their result-

ing dynamics. It can be done by relaxing assumptions and/or altering the interaction

mechanisms at the individual agent level. ABMs can increase our understanding of the mecha-

nisms of complex dynamic systems, and the results of the simulations may be used for estimat-

ing future scenarios [8].

In the past, ABMs have been employed to address various infectious diseases such as, a bio-

terrorist introduction of smallpox [9], control of tuberculosis [10], implementation of distanc-

ing measures and antiviral prophylaxis to control H5N1 influenza A (bird flu) [11], design of

vaccination strategies for influenza [12], devise evacuation strategies in the event of airborne

contamination [13], and curtail transmission of measles through contact tracing and quaran-

tine [14]. In our literature review, some other novel works that include heterogeneous agents

and social distancing were proposed to model COVID-19 [15, 16]. The proposed approach,

called INFEKTA (Esperanto word for infectious), mainly differs from existing works in that it

aims to generate individuals and a complex network of places based on the population density

of a determined city including individual interaction in public transportation means.

INFEKTA models the disease transition at the person level and takes into consideration

individual infection disease incubation periods and evolution, medical preconditions, age,

daily routines (movements from house to destination places and back, including transporta-

tion medium if required), and enforced of Non-Pharmaceutical Interventions such as social

distancing policies may flatten the curve.

Complex systems approaches for epidemic models

The complex system model approach considers a system as a large number of entities (equally

complex systems that have autonomous strategies and behaviors) that interact with each other

in local and non-trivial ways [17–19]. This approach provides a conceptual structure (a multi-

level complex network [20]) that allows characterizing the interrelation and interaction

between elements of a system and between the system and its environment [21]. In this way, a

system is composed of sub-systems of second order, which in turn may be composed of sub-

systems of the third-order [22]. Transmission dynamics of infectious diseases are not tradi-

tionally modeled at the individual level, but at the population-level with a compartmental

model. However, some recent research use agent-based modeling for doing that [23].

Compartmental model

A compartmental model tracks changes in compartments without specifying which individu-

als are involved [24] and typically reflects health states relevant for transmission (e.g., suscepti-

ble, exposed, infectious, and recovered). Basically, these kinds of models represent epidemics

of communicable diseases using a population-based, non-spatial approach. The conceptual

framework for this approach is rooted in the general population model which divides a popu-

lation into different population compartments [25]. Compartmentalization typically reflects

health states relevant for transmission (e.g., susceptible, exposed, infectious, and recovered, in

short SEIR), though more partitioning is possible according to age and/or other relevant host

characteristics. Heterogeneous and temporal behavior is modeled through the incorporation

of relevant time-dependent social mixing, community structures, and seasonality, relevant for

infectious disease dynamics [26, 27]. Process dynamics are captured in transition rates, repre-

senting the rate by which an average individual transitions between compartments.
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Agent-based models for infectious disease

Agent-based models (ABMs) are a type of computer simulation for the creation, disappear-

ance, and movement of a finite collection of interacting individuals or agents with unique attri-

butes regarding spatial location, physiological traits, and/or social behavior [23, 28, 29]. ABMs

work bottom-up, with population-level behavior emerging from the interactions between

autonomous individuals and their environment [23, 30]. They allow the history of every indi-

vidual to be tracked and network structures to be explicitly represented.

In general, ABMs allow: i) To introduce local interaction rules at the individual level, which

closely coincide with physical and social interaction rules; (ii) To include behaviors that may

be randomized at the observational level, but can be deterministic from a mathematical point

of view; (iii) To incorporate a modular structure and to add information through new types of

individuals or by modifying current rules; and (iv) To observe systems dynamic that could not

be inferred from the examination of the rules of particular individuals [8].

When ABM is used for epidemic modeling, infectious disease transmission dynamics is

expected to emerge from the interaction between local interactions between the individuals.

Each individual is modeled as an agent with an internal “SEIR” state that represents its infec-

tious disease state (severity and time in it) at any instant of time. Individuals interact between

them, i.e., can infect or get infected, when they move at some instant to the same place, their

SEIR states, and the infectious disease transmission rates, and how close they are (if they are in

crowded places). Notice, the concept of crowded places is natural in INFEKTA and emerges

from the agents’ interactions (eg. if more individuals move using the same transportation

routes) and individual characteristics (e.g. children go to schools.). Transmission rates are usu-

ally approximated from the rates obtained by a compartmental model but are used at the indi-

vidual level, i.e., when individuals interact with each other.

INFEKTA agent-based model

Our agent-based model of infectious disease propagation, called INFEKTA, consists of five-

layer components:

Space

The virtual space (for a city or town being studied) is an Euclidean complex network [20]:

Nodes are places (located in some position of the 2D Euclidean space) where individuals can

be at some simulation time and edges are routes (straight lines) connecting two neighbor

places.

• Place (Node)—A place may be of three kinds: home (where individuals live), public trans-

portation station (PTS), and interest place (IP) i.e., school, workplace, market, and transpor-

tation terminal. IPs and PTSs are defined in terms of capacity (maximum number of

individuals that can be at some simulation step time). IPs and PTSs may be restricted, during

some period, to some or all individuals. Place restriction is established according to the social

distancing rule that is enforced during such a period.

• Neighbor (Edge)—A PTS is a neighbor to another according to the public transportation

system of the city or town being studied. Homes and IPs are considered neighbors to its clos-

est PTS in the 2D Euclidean space. No home is neighbor to any other home neither an IP is

neighbor of any other IP. Finally, a home and an IP are considered neighbors if they are

neighbors of the same PTS. Each individual has a Home and an IP. The closest distances are

computed between each Home and IP and between these places with the closest PTS using

their longitude and latitude. If the distance between a Home and IP is shorter than the
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distance to a PTS this Home will be connected directly to an IP instead of their closest PTS.

Otherwise, the closest PTS is connected to each Home and IP respectively. Detailed informa-

tion can be found in Fig 2 of Section Virtual Space Setup.

Time

Virtual time is defined in INFEKTA at two resolution levels: days for modeling the transmis-

sion dynamics of the infectious disease, and hours for modeling the moving and interaction of

individuals. Therefore, if an individual gets infected more than once during the same day,

INFEKTA considers all of them as a single infection event. Any individual movement is car-

ried on the same one hour, it was started, regardless of the traveled Euclidean distance neither

the length of the path (number of edges in the complex network).

Individuals

A virtual individual in INFEKTA is defined in terms of his/her demographic, mobility, and

infectious disease state information.

• Demographics—The demographic information of a virtual individual consists of: i) Age of

the individual; ii) Gender of the individual female omale; iii) Location of the individual at

the current time step; iv) Home of the individual, v) Impact level of medical preconditions

on the infectious disease state if the individual is infected, and vi) IP interest of going to cer-

tain type of IPs.

• Mobility—The ability of an individual to move through space (we use the graph defining the

space for determining the route as proposed in [31, 32]). Each individual has a mobility

plan for every day, plan that is carried on according to the enforced social distancing policy

and her/his infectious disease state. The mobility plan is modeled in INFEKTA as a collec-

tion of simple movement plans to have i) Policy: social distancing policy required for carry-

ing on the mobility plan; ii) Type: may bemandatory, i.e., must go to the defined interest

place) or optional, i.e., any place according to individual’s preferences; iii) Day: day of the

week the plan is carried on, maybe every, week, weekend, Monday, . . ., Sunday; iv) Going

Hour time an individual moves from Home to an IP; v) Duration in hours for coming back

to home, and vi) Place: if plan type is mandatory, it is a specific place, otherwise it is an IP

selected by the individual according to his/her IP preferences.

Infectious diseases dynamic

Fig 1 shows the general transition dynamics of any infectious disease at the individual level in

INFEKTA. This model can be adjusted to any specific infectious disease by setting some of the

probabilities to specific values. For example, if there is no evidence that recovered individuals

become immune or susceptible again, such probabilities can be set to 0.0.

Any individual can potentially be in one of seven different infectious disease states or health

states in INFEKTA: Immune (M), Susceptible (S), Exposed (E), Asymptomatic-Infected (IA),

Seriously-Infected (IS), Critically-Infected (IC), Recovered (R), Dead (D), and Immune (M). As

can be noticed, we just adapt the terminology from the compartmental models in epidemiol-

ogy—namely, from the SEIR (Susceptible-Exposed-Infectious-Recovered) model. In

INFEKTA, the infectious state of the SEIR model is divided into asymptomatic-infected, seri-

ously-infected, and critically-infected in order to capture how age, gender, IP preferences,
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medical preconditions (co-morbidity), and social distancing policies can impact the evolution

of the infectious disease in an individual. INFEKTA introduces both theM state since some

individuals are naturally immune to or can become immune to (after recovering) to certain

infectious diseases and the Dead (D) state to distinguish between recovered and dead

individuals.

Since rates are defined at the individual level, these rates can be defined by taking into con-

sideration, for example, rates at the population level (obtained from a compartmental model),

age, gender, and co-morbidity presented in the individual. Remember that those rates are not

defined at some time scale (as in compartmental models) but define the rule determining

changes in health states of individuals being close enough for interacting at the infectious dis-

ease transmission level or after some period of time being in some state. In this way, an indi-

vidual can change with probability α from S state to state E if close enough to an

asymptomatic-Infected (IA) individual and will change from state IA to state IS if has been at

state IA with probability θ if has been on state IA a period of time TIA .

• α: is the transmission rate and incorporates the encounter rate between susceptible and

infectious individuals together with the probability of transmission.

• β: is the rate at which individuals move from the exposed (E) to the Asymptomatic-Infected

state (IS). It’s complement (1 − β) is the rate of individuals with symptomatic cases.

• γ: is the rate at which individuals move from the exposed (IA) to the Seriously-Infected state

(IS).

• θ: is the rate at which individuals move from the Seriously-Infected (IS) to the Critically-

Infected state (IC).

• ϕ: is the death rate.

• ω: is the immune rate that incorporates the probability of becoming immune.

• TE: Time an individual will be at the Exposed (E) state before changing to the Asymptom-

atic-Infected (IA) or Seriously-Infected (IS) states.

• TIA : Time an individual will be at the Asymptomatic-Infected (IA) state before changing to

the Seriously-Infected (IC) or Recovered (R) states.

Fig 1. General transmission dynamics of any infectious disease at individual level in INFEKTA. Probabilities are

individual based and are defined according to the infectious diseases and characteristic such as current location, age,

gender, and so on. Symbol ⌚, on state X, indicates that an individual must stay some period of time TX at such state X
before being able to change to other state. Symbol ✉, indicates that individuals on state X can infect Susceptible (S)

individuals.

https://doi.org/10.1371/journal.pone.0245787.g001
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• TIS : Time an individual will be at the Seriously-Infected state (IS) before changing to the Crit-

ically-Infected (IC) or Recovered (R) states.

• TIC : Time an individual will be at the Critically-Infected (IC) before changing to the Dead

(D) or Recovered (R) states.

• TR: Time an individual will be at the Recovered state (R) before changing to the Immune

(M) or Susceptible (S) states.

INFEKTA can consider that two individuals were close enough for interacting at the trans-

mission of the infectious disease if they were at the same place (home, interest place, or public

transportation station) at the same time. In order to simplify this checking process, it is possi-

ble to consider that an individual just visited its home, final interest place, and both the initial

and final PTSs when using the public transportation system.

Social distancing policy

The social distancing policy is described in INFEKTA as a finite sequence of rules, each rule

having i) Start Time: an initial day for applying the social distancing policy rule; ii) End Time:

final day for ending the social distancing policy rule; iii) Level: indicates the kind of restriction

applied to the mobility of persons and accesses to places, and iv) Enforce: defines the specific

mobility and access restrictions of the social distancing policy.

Modeling transmission dynamics of the COVID-19 in Bogotá—

Colombia

INFEKTA is used for modeling the Transmission dynamic of the COVID-19 in Bogotá city,

the largest and crowded city in Colombia. Bogotá is the capital city of Colombia, its urban

perimeter population is 7.412.566, is composed by 112 Zonal Planning Units (UPZ, for its

acronym in spanish). Each UPZ belongs to one of the 19 urban districts in Bogotá. Also, Bogotá

massive public transportation system is called Transmilenio (TM). TM is a bus-based system,

which has 143 stations and moves near to 2.500.000 citizens every day. Data used in this

research is third party data (public available data) and can be obtained from the referenced

public sources [33, 34]. We did not have any special access or privileges to such data.

Virtual space setup

Geographical information of Bogotá is used as the Euclidean space where the moving and

interaction complex network is defined. Each one of the TM stations is located and added to

the complex network according to the real TM system [33]. Also, the airport and the regional

bus terminal are located and connected to the nearest TM station.

Demographic information from 112 UPZ is used for generating in the Euclidean space

interest places (Workplaces (W), markets (M), and schools (S)), homes (H), and people(P).

Places are generated, in each one of the districts, following a 2D multivariate normal distribu-

tion N* (μ, S) (μ is the geographic center of the UPZ and S is the co-variance matrix defined

by the points determining the perimeter of the district). The number of places in each UPZ is

generated based on the population density of each UPZ according to the data available in 2017

[34]. Table 1 shows the amount of data generated for each type of place and for people, also the

number of TM stations (Bus), and terminal transportation that we use in the simulation, and

Table 2 shows detailed information of the number of interest places generated by UPZ.
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Fig 2 shows an example of 1000 virtual places in the Euclidean map of Bogotá [35]; also, the

figure shows the associated complex network of connected places (nodes are places and edges

are routed between places), the graph was drawn with Gephi [36].

Individuals setup

An heterogeneous (varying gender, age, district and home) group of almost one million of

individuals (998213) is generated using a stratified sampling based on the demographic infor-

mation of the city for each district according to the projections to 2030 [34]. An individual is

classified, according to her/his age, as: Child = [0-9], Adolescence = [10-19], Adult = [19-49],

Table 1. Data used in the simulation.

Agent Instance Type Amount

Place Home (H) Home (H) 297260

Public Transportation Station (PTS) Bus (B)� 143

Interest place (IP) Workplace (W) 118952

School (S) 59483

Market (M) 98126

Terminal (T)� 2

Individual Individual People (P) 998213

(�) real places.

https://doi.org/10.1371/journal.pone.0245787.t001

Table 2. Number of interest places generated by UPZ group by District.

DISTRICT Amount of places

Homes(H) Markets(M) Schools(S) Workplaces(W)

(01) Usaquén 19135 6307 3830 7625

(02) Chapinero 5410 1801 1100 2184

(03) Santa Fe 3944 1284 790 1578

(04) San Cristóbal 16806 5526 3367 6725

(05) Usme 14600 4840 2930 5875

(06) Tunjuelito 9106 2966 1817 3597

(07) Bosa 23103 7656 4650 9253

(08) Kennedy 40797 13452 8135 16322

(09) Fontibón 13458 4447 2688 5374

(10) Engativá 34428 11402 6906 13787

(11) Suba 41045 13517 8200 16423

(12) Barrios Unidos 9381 3101 1864 3776

(13) Teusaquillo 5896 1912 1163 2336

(14) Los Mártires 3921 1300 798 1581

(15) Antonio Nariño 4485 1503 885 1819

(16) Puente Aranda 10462 3454 2097 4189

(17) La Candelaria 1174 395 239 460

(18) Rafael Uribe 15282 5048 3058 6108

(19) Ciudad Bolı́var 24827 8215 4966 9940

TOTAL 297260 98126 59483 118952

https://doi.org/10.1371/journal.pone.0245787.t002
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Senior = [50-69], and older = 70+. Table 3 shows the total demographic information of virtual

people.

Also, a sequence of activities was assigned randomly to each individual to define a diary

routine. This was done according to the person’s age and the hour of the day. For example,

some agents Adolescence go to school, and some agents Adult go to work. Time to start routine

-going from Home to IP and return- is randomly selected in the interval from 4h and 7h

returning between the 17h and 20h. Some agents may move using the PTI system and some

others while going directly to its destination place. The route an individual takes is defined

according to the complex network. Fig 3 shows three examples of different routines (paths

over the graph) for the individuals.

The explicit impact level of medical preconditions on the state of the COVID-19 dynamic is

not included in this preliminary modeling. We wrapped them in the transition rates and allow

modelers to change and play with different rates. Therefore, we set the initial values of these

rates as shown in Table 4.

Social distancing rule setting

The level attribute of the social distancing rule for the COVID-19 in the virtual Bogotá city is

defined as follows:

Fig 2. Example of 1000 georeferenced places in Bogotá (left) and it’s corresponding representation in the

euclidean complex network (right).

https://doi.org/10.1371/journal.pone.0245787.g002
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• None: No restrictions to the mobility neither to access to places.

• Medium: Many places and few stations are restricted (depending on the type, capacity, etc).

Some type of individuals is restricted to stay at home (except those with the required mobil-

ity level). i.e., close 40% of the places.

• Extreme: Few places are accessible to persons while few stations are restricted. Almost every

individual is restricted to stay at home (except those with the required mobility level). i.e.,

close 80% of the places.

Results

The methodology (Data preprocessing; places, population, and routes assignation; network

creation) is available in a Github repository, see S1 File. We run a total of 20 experiments and

the results (COVID-19 dynamics, sensitive analysis, and social distance policies) show below

are the mean of those experiments.

Fig 4 shows the state of the COVID-19 dynamics (propagation of the virus) after 100 days

when at the beginning of the simulation, just fifty (50) individuals are considered at state

Asymptomatic-Infected (IA). Fig 4 (left) shows the full dynamics over time. Notice that, using

the parameters reported in the literature, the dynamics of the COVID-19 pandemic shows one

wave. As expected, the number of asymptomatic, seriously, and critically infected cases grows

exponentially when a social distancing policy is not enforced. Fig 4 (right) shows the COVID-

19 dynamics at specific ticks (i.e., after 34 days—February 03 and after 67 days—March 07).

For each tick, a map of Bogotá with the dynamics is presented. The map shows the percentage

Table 3. Demographic information of virtual people grouped by District. District (D), Total(T), Male(M), Female(F).

D TOTAL Child [0-9] Adolescence [10-19] Adult [19-49] Senior [50-69] older 70+

T M F T M F T M F T M F T M F T M F

(01) 62358 33485 28873 11143 5601 5542 4599 2337 2262 28561 15163 13398 14157 7990 6167 3898 2394 1504

(02) 17459 9272 8187 2176 1075 1101 1199 598 601 8473 4410 4063 4148 2301 1847 1463 888 575

(03) 13145 6541 6604 2930 1371 1559 1076 509 567 5774 2856 2918 2554 1340 1214 811 465 346

(04) 51501 26341 25160 13343 6472 6871 4628 2269 2359 22840 11683 11157 8499 4625 3874 2191 1292 899

(05) 55236 27907 27329 16168 7801 8367 5378 2621 2757 24251 12321 11930 7940 4286 3654 1499 878 621

(06) 25394 12793 12601 5865 2791 3074 2228 1072 1156 11582 5815 5767 4340 2316 2024 1379 799 580

(07) 82103 41953 40150 22635 11015 11620 7200 3542 3658 37699 19349 18350 12313 6712 5601 2256 1335 921

(08) 135750 69517 66233 32179 15606 16573 10909 5349 5560 63480 32467 31013 24067 13080 10987 5115 3015 2100

(09) 48288 25416 22872 10311 5122 5189 3665 1840 1825 23352 12250 11102 8843 4923 3920 2117 1281 836

(10) 111026 57864 53162 22632 11102 11530 8331 4132 4199 52205 27028 25177 21980 12094 9886 5878 3508 2370

(11) 149078 78324 70754 33063 16409 16654 11747 5894 5853 70984 37201 33783 26900 14964 11936 6384 3856 2528

(12) 30578 15877 14701 5002 2418 2584 2052 1003 1049 13456 6867 6589 7579 4113 3466 2489 1476 1013

(13) 19180 10230 8950 2428 1205 1223 1283 642 641 8958 4680 4278 4812 2674 2138 1699 1029 670

(14) 12536 6210 6326 2365 1099 1266 947 445 502 5670 2776 2894 2742 1428 1314 812 462 350

(15) 13827 7090 6737 2999 1445 1554 1117 544 573 5968 3032 2936 2826 1528 1298 917 541 376

(16) 32801 16654 16147 6186 2948 3238 2474 1192 1282 15382 7731 7651 6563 3509 3054 2196 1274 922

(17) 3059 1434 1625 483 212 271 278 123 155 1369 633 736 731 360 371 198 106 92

(18) 47610 24149 23461 11532 5536 5996 4113 1995 2118 21440 10850 10590 8312 4471 3841 2213 1297 916

(19) 87284 44552 42732 25410 12375 13035 8172 4024 4148 38710 19868 18842 12614 6883 5731 2378 1402 976

998213 515609 482604 228850 111603 117247 81396 40131 41265 460154 236980 223174 181920 99597 82323 45893 27298 18595

https://doi.org/10.1371/journal.pone.0245787.t003
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Fig 3. Example routines carried by individuals. Individual 38 (top): [Child, F, School, 1]; Individual 73128 (middle):

[Adult, M, Workplace, 47]; Individual 349915 (bottom): [Older, F, Workplace, 90].

https://doi.org/10.1371/journal.pone.0245787.g003

Table 4. Parameters of INFEKTA and their estimations for COVID-19.

Symbol Description COVID-19 estimations References

Child Teen Adult Senior Older

α Probability of S! E 0.180 [15, 37]

β Probability of E! IA 0.000 0.800 0.200 [38]

γ Probability of IA! IS 0.000 0.008 0.058 0.195 0.350 [39]

θ Probability of IS! IC 0.050 0.050 0.050 0.198 0.575 [15]

ϕ Probability of IC! D 0.400 0.500 [15]

ω Probability of R!M 0.999 -

TE Time (days) at E Γ(α = 5.100, β = 0.860) [40]

TIA Time (days) at IA 3 14 5 [41]

TIS Time (days) at IS Triangular(7, 8, 9) [42, 43]

TIC Time (days) at IC Triangular(5, 7, 12) [42]

TR Time (days) at R U(80, 100) -

https://doi.org/10.1371/journal.pone.0245787.t004
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of individuals at each state per UPZ. After 34 days, the majority of individuals have been

Exposed, a bunch of individuals are in the infected states (asymptomatic, seriously, and criti-

cally) and few of them become recovered; After 67 days, all individuals have been exposed to

the virus and stay in the recovered state. Clearly, the transmission dynamics of the infectious

disease (in this case COVID-19) emerge from the local interaction of the individuals.

We analyze the sensitivity to the infection rate (α) parameter to check the robustness of the

model. Sensitivity analysis is shown in Fig 5. Notice that by increasing or decreasing the infec-

tion disease rate (Fig 5 (left)), the peak of the transmission dynamics is reached sooner or later

on time. When low infection disease rates, the number of cases is also low, reducing the impact

on the economy. On the other hand, for high infection disease rates (Fig 5 (right)) the peak is

reached in an early stage, and around half of the population is on one of the infected states

(Asymptomatic, Seriously, Critically).

Also, we try different scenarios where each one of the social distancing policies is enforced

just after 15 simulation days, see Fig 6. As can be noticed, it’s evident how social distancing

rules help to mitigate the exponential growth on the transmission disease dynamics (COVID-

19), reducing the number of infectious cases (Asymptomatic, Seriously, and Critically).

Fig 4. Evolution of the epidemic dynamics of INFEKTA. Full dynamics over time (left), and dynamics for eachUPZ
at specific time (right).

https://doi.org/10.1371/journal.pone.0245787.g004

Fig 5. Sensitive analysis for the infection probability α. α = 0.09 (left), α = 0.18 (middle), α = 0.36 (right).

https://doi.org/10.1371/journal.pone.0245787.g005
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Interestingly, when the extreme social distancing rule (access to approximately 80% of interest

places is restricted) the transmission disease dynamic displays a big second wave with more

cases than the first wave.

Although our intention was not to predict geographic spread for the city, we observed simi-

larities between the total Seriously-Infected cases in INFEKTA (we assume that individuals in

Seriously-Infected state are cases tested in Bogotá) and the current concentration of COVID-

19 cases confirmed in Bogotá [44], see Fig 7. The results show how UPZ with more cases

found with INFEKTA matches with geographic areas with more COVID-19 cases. Then, how

population distribution is generated from real density data of Bogotá, INFEKTA can be useful

to explore policies by Zonal Planning Units (UPZ) or territorial divisions of a selected place

providing to recommend actions for before, during, and after pandemic i.e., in planning and

coordination efforts through leadership and coordination across sectors.

Conclusions and future work

Modeling the Transmission dynamic of an infectious disease such as the COVID-19 is not an

easy task due to its highly complex nature. When using an agent-based model, several different

characteristics can be modeled, for example, the demographic information of the population

being studied, the set of places and the mobility of agents in the city or town under consider-

ation, social distancing rules that may be enforced, and the special characteristics of the infec-

tious disease being modeled. INFEKTA is an agent-based model that allows researchers to

combine and study all of those characteristics.

Our preliminary results modeling the transmission dynamics of the coronavirus COVID-

19 in Bogotá city, the largest and crowded city in Colombia, indicate that INFEKTA may be a

valuable asset for researchers and public health decision-makers for exploring future scenarios

when applying different social distancing policy rules and controlling the expansion of an

infectious disease. Although we are doing a rough and no so real approximation of the

Fig 6. Social distancing after 100 days when initialized at day 15 and ended at day 60 of the simulation. None—No

restrictions (left), Medium—close 40% of places (middle), and Extreme—close 80% of places (right).

https://doi.org/10.1371/journal.pone.0245787.g006

PLOS ONE INFEKTA: An agent-based model for transmission of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0245787 February 19, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0245787.g006
https://doi.org/10.1371/journal.pone.0245787


transmission dynamics of the COVID19, we are able to obtain similar behaviors, in our pre-

liminary experiments, to those reported for the COVID19 in the real world. Therefore,

INFEKTA may be able to provide more accurate results if its parameters are set to real ones:

disease transmission rates, virus, incubation periods, comorbidity, houses, interest places, rou-

tines, population size (close to nine millions of virtual individuals for the Bogotá city).

Despite the usefulness of the INFEKTA, there are some limitations. Since there are fewer

people in the model (respect to real people in Bogotá), Transmilenio stations would be less

crowded than expected and the model could underestimate the transmission of the disease.

Further, the model does not cover individual walking from homes to PTS because contact

points correspond to a complex network presented in Fig 2. Finally, the routines that each

individual has in the simulation are equal day-to-day (i.e., Monday to Sunday with the same

routine), this could influence the stochasticity nature of the model.

Our future work will concentrate on studying the transmission of COVID-19 in Bogotá city

by considering different scenarios of social distancing rules and by using more realistic infor-

mation about: i) Relation between personal information and propagation rates of the COVID-

19, ii) Places and routes, iii) Population size, and iv) Age and Medical preconditions.

Supporting information

S1 File. INFEKTA repository. A repository containing the source code of the simulator and a

technical report explaining the modeling methodology is available at INFEKTA github.

(ZIP)

Fig 7. Comparison between total Seriously-Infected cases in INFEKTA (left) and the real COVID-19 cases

confirmed in Bogotá (right). The colored boxes in the right map (confirmed cases map) corresponds to the

concentrations of the cases in 1000 meters on December 30, 2020, in Bogotá.

https://doi.org/10.1371/journal.pone.0245787.g007
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MILENIO; 2019. Available from:https://datosabiertos-transmilenio.hub.arcgis.com/datasets/trazados-

troncales-de-transmilenio/data.

34. Secretarı́a Distrital de Planeación. Visor de Proyecciones de Población SDP; 2017. Available from:

http://www.sdp.gov.co/gestion-estudios-estrategicos/estudios-macro/proyecciones-de-poblacion.

35. Secretarı́a Distrital de Planeación. Población UPZ Bogotá; 2017. Available from: https://bogota-
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