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Abstract: Severe outcomes of COVID-19 are associated with pathological response of the immune
system to the SARS-CoV-2 infection. Emerging evidence suggests that an interaction may exist
between COVID-19 pathogenesis and a broad range of xenobiotics, resulting in significant increases
in death rates in highly exposed populations. Therefore, a better understanding of the molecular basis
of the interaction between SARS-CoV-2 infection and chemical exposures may open opportunities for
better preventive and therapeutic interventions. We attempted to gain mechanistic knowledge on the
interaction between SARS-CoV-2 infection and chemical exposures using an in silico approach, where
we identified genes and molecular pathways affected by both chemical exposures and SARS-CoV-2
in human immune cells (T-cells, B-cells, NK-cells, dendritic, and monocyte cells). Our findings
demonstrate for the first time that overlapping molecular mechanisms affected by a broad range
of chemical exposures and COVID-19 are linked to IFN type I/II signaling pathways and the
process of antigen presentation. Based on our data, we also predict that exposures to various
chemical compounds will predominantly impact the population of monocytes during the response
against COVID-19.
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1. Introduction

In December 2019, a novel infectious disease was recognized [1]. The disease was
named coronavirus disease 2019 (COVID-19) and it is known now to be caused by coro-
navirus SARS-CoV-2. As of 20 March 2021, the COVID-19 pandemic has recorded al-
most 122 million cases with 2,694,094 mortalities spanning 223 countries of the world [2].
Recently, many SARS-CoV-2 vaccines have been developed, but global morbidity and
mortality due to COVID-19 remain substantial. Additionally, the evolution of SARS-CoV-2
challenges existing vaccines and threatens the global population with new virus variants.
Therefore, a better understanding of factors affecting COVID-19-caused morbidity and
mortality is needed.

An emerging body of studies demonstrates that diverse chemical exposures can
increase COVID-19 severity. For example, a 1 µg/m3 increase in particulate matter (PM2.5)
in air is responsible for a greater than 8% increase in the death rate from COVID-19 [3].
Exposure to air pollutants is the major culprit behind the significant COVID-19 mortalities
in different countries of the world [4]. The major types of air pollutants that can increase
the COVID-19 severity include ozone, carbon monoxides, sulphur dioxides, lead, volatile
organic compounds, particulate matter (PM2.5 and PM10), and nitrogen oxides [5–8].

Besides air pollutants, several other chemicals have also been associated with COVID-
19 severity. For example, one study identified significant associations between COVID-19
infection fatality rates and toxic industrial chemicals in the United States [9]. Increased
severity of COVID-19 was also reported owing to the use of sanitizers and disinfecting
chemicals [9–12]. Plasma levels of perfluorinated compounds were also associated with an
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increased risk of COVID-19 [13]. It has also been hypothesized that neuroinflammation
induced by environmental chemicals may increase neurological symptoms in COVID-19
patients [14].

Thus, existing data demonstrate that a variety of chemical exposures increase the
severity of COVID-19. A better understanding of the molecular basis of interaction be-
tween SARS-CoV-2 infection and chemical exposures may open opportunities for better
preventive and therapeutic interventions. Analysis of the interaction of SARS-CoV-2 infec-
tion with all chemicals to which humans are exposed is, however, challenging, if not an
impossible task.

In our recent study, we attempted to identify genes and molecular pathways most
sensitive to chemical exposures using an unbiased big-data approach by overlying tran-
scriptomic datasets from 2169 individual studies [15]. This unbiased analysis demonstrated
that immune response pathways, including interferon signaling and cytokine signaling,
are pathways highly sensitive to chemical exposures [15]. Immunotoxic effects of many
environmental and occupational chemical compounds have long been recognized [16].
Emerging evidence from experimental and population studies demonstrates the ability of
a broad range of xenobiotics to interact with immunological pathways [17–20]. Thus, we
hypothesize that specific immune response mechanisms may be synergistically affected by
chemical exposures and SARS-CoV-2, resulting in increased severity of the disease.

Emerging data on SARS-CoV-2 indicate that the disease severity is linked to a highly
dysregulated innate immune response characterized by a delayed interferon response
and exuberant inflammatory response [21,22]. Studies demonstrated that SARS-CoV-2
blunts the production of type I interferons (IFN), molecules representing the first line of
innate antiviral defense [21,23]. Additionally, SARS-CoV-2 infection can lead to excessive
production of pro-inflammatory cytokines (cytokine storm) [24,25]. These mechanisms
may be linked causally, as a suppressed IFN response results in excessive production of
proinflammatory cytokines, resulting in severe acute respiratory syndrome [21,26].

To test the hypothesis that SARS-CoV-2 and a broad range of xenobiotics may impair
similar immunological mechanisms, we used the in silico approach to identify genes
and molecular pathways affected by both chemical exposures and SARS-CoV-2 in major
types of human immune cells. Our research predicts that chemical exposures and SARS-
CoV-2 infection synergistically affect IFN type I/II signaling pathways and the process of
antigen presentation.

2. Results

According to our hypothesis, specific immune response mechanisms may be syner-
gistically affected by chemical exposures and SARS-CoV-2, resulting in increased severity
of the disease. To test this hypothesis, we first used data on the sensitivity of mammalian
genes to chemical exposures identified in our previous research [15,27] by overlaying tran-
scriptomic datasets from many individual toxicological genomic studies. This allowed the
identification of genes that respond most often to a variety of chemical exposures (Figure 1).
At that step, the sensitivity of a gene to chemical exposure was expressed as the number
of chemical–gene interactions (CGIs). CGI reflects the number of individual toxicological
studies in which the gene of interest was affected by exposure.
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Figure 1. Flow chart of the study approach: transcriptomic information from 2169 studies was ex-
tracted from the Comparative Toxicogenomic Database (A) and used to calculate the sensitivity of 
every gene to chemical exposures (B) [15]. Information on the expression of every gene in different 
types of immune cells was extracted from the Human Protein Atlas (C) and used to normalize the 
sensitivities of genes to chemical exposures for the level of expression in different cell types (D). 
Information on changes in gene expression in different immune cells in response to SARS-CoV-2 
was extracted from Coronoscape (E). Metascape (F) was used to identify molecular pathways en-
riched with genes highly sensitive to chemical exposures in immune cells and genes affected in these 
cells by both chemical exposures and SARS-CoV-2. 

Genes sensitive to chemical exposures are not equally expressed in different cell 
types. If some cells have very low levels of expression of chemically sensitive genes in 
normal physiological conditions, then it is reasonable to assume that chemical exposures 
will not significantly alter the physiology of these cells. On the contrary, cells expressing 
highly chemically sensitive genes will respond to chemical exposure by the significant 
change in their physiology. Thus, to model cell response to xenobiotics, we need to un-
derstand the levels of expression of chemically sensitive genes in this specific cell type. 
Following this logic, we generated lists of genes with their chemical sensitivity values ad-
justed for the level of expression in different human immune cells. We call these adjusted 
values cell-specific sensitivity of genes (CSSG). 

At the next step, for different immune cells, we compared the lists of genes with the 
highest CSSG values with genes affected by SARS-CoV-2 in the same cell types, in order 
to identify synergistic effects of both stressors. Finally, we used genes with the highest 
CSSG values as well as genes affected by both chemical exposures and SARS-CoV-2 in 
Metascape enrichment analysis to identify molecular mechanisms most sensitive to xeno-
biotics and both stressors in each cell type. 

Below, we provide an analysis of molecular pathways enriched with the top CSSG 
genes and with genes that are sensitive to both chemical exposures and SARS-CoV-2. 

Figure 1. Flow chart of the study approach: transcriptomic information from 2169 studies was
extracted from the Comparative Toxicogenomic Database (A) and used to calculate the sensitivity of
every gene to chemical exposures (B) [15]. Information on the expression of every gene in different
types of immune cells was extracted from the Human Protein Atlas (C) and used to normalize the
sensitivities of genes to chemical exposures for the level of expression in different cell types (D).
Information on changes in gene expression in different immune cells in response to SARS-CoV-2 was
extracted from Coronoscape (E). Metascape (F) was used to identify molecular pathways enriched
with genes highly sensitive to chemical exposures in immune cells and genes affected in these cells
by both chemical exposures and SARS-CoV-2.

Genes sensitive to chemical exposures are not equally expressed in different cell types.
If some cells have very low levels of expression of chemically sensitive genes in normal
physiological conditions, then it is reasonable to assume that chemical exposures will not
significantly alter the physiology of these cells. On the contrary, cells expressing highly
chemically sensitive genes will respond to chemical exposure by the significant change
in their physiology. Thus, to model cell response to xenobiotics, we need to understand
the levels of expression of chemically sensitive genes in this specific cell type. Following
this logic, we generated lists of genes with their chemical sensitivity values adjusted for
the level of expression in different human immune cells. We call these adjusted values
cell-specific sensitivity of genes (CSSG).

At the next step, for different immune cells, we compared the lists of genes with the
highest CSSG values with genes affected by SARS-CoV-2 in the same cell types, in order to
identify synergistic effects of both stressors. Finally, we used genes with the highest CSSG
values as well as genes affected by both chemical exposures and SARS-CoV-2 in Metascape
enrichment analysis to identify molecular mechanisms most sensitive to xenobiotics and
both stressors in each cell type.

Below, we provide an analysis of molecular pathways enriched with the top CSSG
genes and with genes that are sensitive to both chemical exposures and SARS-CoV-2.
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2.1. Monocytes
2.1.1. Top CSSG for Monocytes

The list of top genes with the highest CSSG values in monocytes includes 409 genes
(Supplemental File 1). Top Metascape enriched biological categories affected by chem-
ical exposures are involved in the regulation of immune response, including cytokine
signaling, degranulation and migration, phagocytosis, VEGFA-VEGFR2 signaling pathway,
hemostasis, apoptosis, and response to toxic substance (Table 1, Supplemental File 2).

Table 1. Top ten biological functions most sensitive to chemical exposures in immune cells. Biological functions identified
as most sensitive in more than one cell type are shown in bold.

NK Cells
(649 Top CSSG)

T Cells
(558 Top CSSG)

Monocytes
(409 Top CSSG)

B Cells
(408 Top CSSG)

Dendritic Cells
(510 Top CSSG)

1 mRNA catabolic
process

Ribosome,
cytoplasmic

Leukocyte
degranulation

Ribosome,
cytoplasmic

Regulation of
expression of SLITs

and ROBOs

2 Cytokine signaling in
immune system

Cytokine signaling in
immune system

Cellular responses to
external stimuli

VEGFA-VEGFR2
signaling pathway

Leukocyte activation
involved in immune

response

3 VEGFA-VEGFR2
signaling pathway

VEGFA-VEGFR2
signaling pathway

Cytokine signaling in
immune system

TRBP containing
complex

Oxidation-reduction
process

4 Oxidation-reduction
process

Oxidation-reduction
process

VEGFA-VEGFR2
signaling pathway

Cytokine signaling in
immune system

VEGFA-VEGFR2
signaling pathway

5
Leukocyte activation
involved in immune

response

Positive regulation of
cell death

Positive regulation of
cell death

Nucleoside
monophosphate

metabolic process

Cytokine signaling in
immune system

6 Ribonucleoprotein
complex biogenesis

Apoptotic signaling
pathway

Apoptotic signaling
pathway Ribosome assembly TRBP containing

complex

7
Protein processing in

the endoplasmic
reticulum

Leukocyte activation
involved in immune

response

Oxidation-reduction
process

Regulation of
translation

Apoptotic signaling
pathway

8
Regulation of

apoptotic signaling
pathway

Ribonucleoprotein
complex assembly

Nuclear receptors
meta-pathway Protein folding Response to toxic

substance

9 Protein folding
Regulation of cellular

amide metabolic
process

Cellular response to
interleukin-12

Apoptotic signaling
pathway

Mitochondrion
organization

10
Regulation of cellular

amide metabolic
process

Epstein–Barr virus
infection Hemostasis Positive regulation of

cell death
Positive regulation of

cell death

2.1.2. Genes Affected by Chemicals and COVID-19

We identified 635 genes affected by COVID-19. Out of these 635 genes, 124 genes (20%)
overlapped with top monocyte-specific sensitive genes (Figure 2). The top overlapping
genes include, for example, genes encoding cell cycle progression and differentiation
(S100A8, S100A9); genes involved in the suppression of apoptosis (PLAC8); several EEF
genes serving a broad range of functions in monocytes such as protein synthesis and
delivery of aminoacyl tRNA to the ribosome; CD14 and IFITM3 involved in response to
bacterial and viral infections, respectively; PABPC1 involved in ribosome recruitment and
translation initiation; and NAPILI, playing an important role in DNA replication (Table 2).
Metascape enrichment analysis showed that overlapping genes are involved in essential
functions of the immune system (cytokine signaling, antigen processing and presentation,
positive regulation of reactive oxygen species, metabolic processes, platelet degranulation,
and response to bacterial and viral infections), respiratory diseases (pertussis, neutrophil
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degranulation), VEGFA-VEGFR2 signaling pathway, cell regulation, and death (apoptotic
signaling pathway, I-kappaB kinase/NF-kappaB signaling) (Table 3, Supplemental File 3).
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Table 2. Top ten genes sensitive to COVID-19 and chemical exposures in immune cells. Genes sensitive to both xenobiotics
and SARS-CoV-2 in more than one cell type are shown in bold.

NK Cells T Cells Monocytes B Cells Dendritic Cells

1 STAT1 TPT1 S100A8 MS4A1 HLA-DQB1
2 ISG15 EEF1A1 PLAC8 CD74 HSPA5
3 ACTB STAT1 IFITM3 JCHAIN; IGJ ISG15
4 GNLY MX1 PABPC1 HSPA5 PABPC1
5 EEF2 EEF2 NAP1L1 CALR EEF2
6 JAK1 PABPC1 S100A9 HSP90B1 TRIM22
7 SP100 EIF4B EEF1A1 PDIA6 FKBP5
8 PABPC1 ISG15 EEF2 PDIA4 PLSCR1
9 TPT1 IL7R CD14 CD79B HSP90AB1

10 ISG20 PIM1 IFI6 CD79A HSPA8

Table 3. Top ten biological functions most sensitive to chemical exposures and COVID-19 disease in immune cells. Biological
functions sensitive to both xenobiotics and SARS-CoV-2 in more than one cell type are shown in bold.

NK Cells
(24 Gene Overlap)

T Cells
(55 Gene Overlap)

Monocytes
(124 Gene Overlap)

B Cells
(65 Gene Overlap)

Dendritic Cells
(20 Gene Overlap)

1
Regulation of

multi-organism
process

Cytokine signaling in
immune system

Neutrophil
degranulation

Regulation of
multi-organism

process

Regulation of viral life
cycle

2 Interferon signaling Chaperone-mediated
autophagy

Cytokine signaling in
immune system Protein folding Antigen processing

and presentation

3 T cell mediated
cytotoxicity Translation factors

Regulation of
multi-organism

process

VEGFA-VEGFR2
signaling pathway

P2X7 receptor
signaling complex

4 PID IL12 2PATHWAY
Regulation of

multi-organism
process

Defense response to
other organisms Translation factors Viral entry into host

cell

5 Protein methylation Antigen processing
and presentation

Activation of immune
response

Regulation of myeloid
cell differentiation Response to virus
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Table 3. Cont.

NK Cells
(24 Gene Overlap)

T Cells
(55 Gene Overlap)

Monocytes
(124 Gene Overlap)

B Cells
(65 Gene Overlap)

Dendritic Cells
(20 Gene Overlap)

6 Antigen processing
and presentation

Regulation of
hemopoiesis

Apoptotic signaling
pathway B cell activation Translation factors

7 Translation factors
I-kappaB

kinase/NF-kappaB
signaling

Response to inorganic
substance

Cytokine signaling in
immune system

Response to
interferon-gamma

8 Negative regulation of
binding

Epstein–Barr virus
infection

Regulation of cytokine
production

Chaperone-mediated
protein folding

Negative regulation of
the cellular component

organization

9 Homotypic cell–cell
adhesion

Response to
interferon-gamma Pertussis Translation RNA degradation

10 Allograft rejection
H2AX complex,

isolated from cells
without IR exposure

Antigen processing
and presentation

Interaction with
symbiont

Negative regulation of
intrinsic apoptotic
signaling pathway

2.2. NK Cell
2.2.1. Top CSSG for NK-Cells

Top CSSG genes in NK cells include 649 genes (Supplemental File 1). Top Metascape
enriched biological categories affected by chemical exposures are involved in the regulation
of protein synthesis and processing (mRNA catabolism and processing, protein processing
in endoplasmic reticulum, protein folding, protein catabolism, and proteolysis), immune
response (cytokine signaling, VEGFA-VEGFR2 signaling, leukocyte activation, interferon
signaling, and hemostasis), and mitochondria functions (mitochondrion organization,
aerobic respiration, and the oxidation-reduction process) (Table 1, Supplemental File 2).

2.2.2. Genes Affected by Chemicals and COVID-19

A total of 779 genes were affected by COVID-19 in NK cells. Out of these, 24 genes (3%)
overlapped with the list of top NK-cell specific chemically sensitive genes (CSSG) (Figure 2).
The top overlapping genes include, for example, genes encoding interferons—antiviral
signaling molecules (ISGI5 and ISG20), proteins involved in cytokine signal transduction
(STAT1 and JAK1), antimicrobial protein of cytotoxic granules of NK-cells (GNLY), proteins
involved in the regulation of viral gene expression (SP100), beta-actin involved in cell
motility (ACTB), and proteins involved in the regulation of protein synthesis (TPT1, EEF2,
and PABPC1) (Table 2). Metascape enrichment analysis revealed that overlapping genes
are involved in the VEGFA-VEGFR2 signaling pathway, immune responses (interferon
signaling, antigen processing and presentation, and cytotoxicity), and apoptosis (Table 3,
Supplemental File 3).

2.3. T-Cells
2.3.1. Top CSSG for T-Cells

A total of 558 genes were identified as top CSSG genes for T-cells (Supplemental File 1).
Top Metascape enriched biological categories affected by chemical exposures are involved
in the regulation of protein synthesis and processing (ribosome, protein folding, protein
processing in endoplasmic reticulum, and others), immune response (cytokine signaling,
VEGFA-VEGFR2 signaling, leukocyte activation, and response to viral infection), response
to stress (response to toxic substance, transcriptional regulation by TP53, and regulation of
cellular stress response), and apoptosis (Table 1, Supplemental File 2).

2.3.2. Genes Affected by Chemicals and COVID-19

A total of 743 genes were affected by COVID-19. Out of these, 55 genes (7.4%) over-
lapped with top T-cell-specific sensitive genes (CSSG) (Figure 2). The top overlapping
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genes include, for example, genes involved in antiviral interferon signaling cascade (MX1
and ISGI5); genes involved in lymphocytes’ development, proliferation, and survival
(IL7R and PIM1); genes involved in protein synthesis (EEF1A1, EEF2, and PABPC1); and
STAT1, involved in the response to cytokines and growth factors (Table 2). Metascape
analysis showed that the top overlapping genes are involved in immune response (cy-
tokine signaling and production, response to interferon-gamma, antigen processing and
presentation, I-kappaB kinase/NF-kappaB signaling, and P2X7 receptor signaling com-
plex), hemopoiesis, chaperone-mediated autophagy, and cell cycle/apoptosis regulation
(MYC signaling) (Table 3, Supplemental File 3).

2.4. B-Cells
2.4.1. Top CSSG for B-Cells

The shortlist of the top CSSG genes for B-cells included 408 genes (Supplemental File 1).
Top Metascape biological categories affected by chemical exposures are involved in pro-
tein synthesis (ribosome, ribosome assembly, regulation of translation, and others) and
processing (protein ubiquitination, protein folding, and response to topological incorrect
proteins), DNA biosynthesis, immune response (leucocyte activation, cytokine signaling,
and VEGFA-VEGFR2 signaling), hemopoiesis, apoptotic signaling, and response to toxic
substances (Table 1, Supplemental File 2).

2.4.2. Genes Affected by Chemicals and COVID-19

A total of 660 genes were affected by COVID-19. Out of these, 65 genes (9.8%)
overlapped with the top B-cell-specific chemically sensitive genes (CSSG) (Figure 2). The
top overlapping genes include, for example, genes encoding for chaperones (HSPA5,
PD1A4, PD1A6, CALR, and CD74); genes involved in the development and differentiation
of B-cells into plasma cells (MS4A1); genes encoding components of B lymphocyte antigen
receptor (CD79A and CD79B); and JCHAIN, a protein component of the antibodies IgM
and IgA (Table 2). Metascape analysis showed that the top overlapping genes are involved
in translation, protein folding, different components of immune system development,
and immune response, including myeloid cell differentiation B-cell activation; cytokine
signaling; antigen processing and presentation; I-kappaB kinase/NF-kappaB signaling;
VEGFA-VEGFR2 signaling; and response to viral, bacterial, and parasitic infections, among
others (Table 3, Supplemental File 3).

2.5. Dendritic Cells
2.5.1. Top CSSG for Dendritic Cell

Top CSSG genes for dendritic cells include 510 genes (Supplemental File 1). Top
enriched biological categories affected by chemical exposures are involved in the regulation
of protein synthesis and processing (TRBP containing complex, protein folding, protein
processing in endoplasmic reticulum, and others); immune response (leukocyte activation,
cytokine signaling, VEGFA-VEGFR2 signaling, and response to viral infection); response
to stress (response to toxic substance, response to oxidative stress, and fluid shear stress);
mitochondria function (oxidation-reduction process, mitochondrion organization, aerobic
respiration, and monocarboxylic acid metabolism); and SLIT and ROBO cascade, which
may be involved in the regulation of cell migration and angiogenesis; and apoptosis
(Table 1, Supplemental File 2).

2.5.2. Genes Affected by Chemicals and COVID-19

A total of 623 genes were affected by COVID-19. Out of these 623 genes, 20 genes
(3.2%) overlapped with the top dendritic cell-specific chemically sensitive genes (CSSG)
(Figure 2). The top overlapping genes include, for example, genes encoding chaperones
(HSPA5, FKBP5, HSP90AB1, and HSPA8); major histocompatibility complex protein (HLA-
DQB1); TRIM22, which mediates interferon’s antiviral effects; EEF2; and PABPC1 genes
involved in protein synthesis (Table 2). Metascape analysis showed that the top overlapping
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genes are involved in the response to viral infection (regulation of viral life cycle, viral entry
into host cell, response to virus, response to interferon-gamma, and RNA degradation);
antigen processing and presentation; P2X7 receptor signaling complex, which senses ATP
released by dying cells and plays a role in inflammation; IL-18 signaling; and apoptotic
signaling (Table 3, Supplemental File 3).

2.6. Top Sensitive Overlapping Genes in Multiple Cell Types

Eight genes were identified as the topmost genes sensitive to chemical exposures and
COVID-19 in more than one cell type. They include genes involved in the regulation of
protein synthesis (EEF2, EEF1A1, PABPC1, and TPT1), chaperones (HSPA5 and HSP90B1),
and key players in interferon signaling cascade (ISG15 and STAT1).

Biological functions sensitive to chemical exposures across different cell types include
cytokine signaling, VEGFA-VEGFR2 signaling, apoptotic signaling pathway, oxidation and
reduction processes, protein synthesis, and folding. Biological functions most sensitive to
chemical exposure and COVID-19 in more than one cell type include cytokine signaling as
well as antigen processing and presentation.

3. Discussion

This study is the first to provide an overview of overlapping molecular mechanisms
affected by COVID-19 and a broad range of chemical exposures. Previous research sug-
gested that exposure to chemicals can increase COVID-19 disease severity [28–30]. The
molecular mechanisms underlying the adverse effect of chemical exposures on COVID-19
progression remain mostly unknown. Our study allows the prediction of molecular mecha-
nisms affected by chemical exposures, which may be responsible for severe progression
of COVID-19.

Today, COVID-19 severity is linked to abnormal behavior of an innate immune system,
characterized by a delayed IFN response and excessive inflammatory response [21,25].

IFN-mediated signaling plays a central role in anti-viral defense mechanisms [31].
Response to SARS-CoV-2 starts from the activation of pattern recognition receptors (PRRs)
primarily in epithelial and endothelial cells, alveolar macrophages, NK cells, dendritic cells,
and inflammatory monocyte-macrophages [21]. PRRs then activate the IFN production
pathway via a cascade of adaptors and IRF proteins. IFNs bind to their specific receptors,
leading to the phosphorylation of STAT1 and STAT2 by JAKs. This phosphorylation results
in the formation of an IFN-stimulated gene factor 3 (ISGF3) complex containing STAT1,
STAT2, and a transcription factor IRF9. Further translocation of ISGF3 to the nucleus results
in its binding to IFN-stimulated response elements (ISREs) in promoters of IFN-stimulated
genes and induction of their transcription.

IFN-stimulated genes are involved in many lines of antiviral defense, such as suppres-
sion of protein synthesis to prevent replication of pathogens, promotion of apoptosis of
virus-infected cells via the p53 pathway, activation of major histocompatibility complexes
I (MHC I, all IFNs) and II (MHC II, IFNγ) to increase antigen presentation, increase in
immunoproteasome activity to boost the process of antigen loading to MHC I, suppres-
sion of angiogenesis, and activation of other immune cells. It is important to mention
here that positive regulation of antigen presentation by IFNs results in activation of the
adaptive branch of the immune system, as both T-cells and B-cells are activated by antigen
presentation by dendritic cells and macrophages.

This brief overview of molecular mechanisms involved in the IFN I/II cascade and
biological functions regulated downstream suggests that chemical exposures may increase
the severity of COVID-19 owing to their interaction with IFN signaling cascade. Indeed, the
majority of genes and enriched molecular pathways affected by both stressors, COVID-19
and xenobiotics, are relevant to IFN signaling. Key IFN signaling genes were identified
as sensitive to COVID-19 and chemical exposures in all analyzed cells (not all of them
are shown in tables in the text; see Supplemental File 1 for more detail). For example,
IFN gamma receptor was among the top CSSG genes in monocytes and dendritic cells,
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while STAT1 was sensitive to COVID-19 and xenobiotics in monocytes, NK cells, and
T-cells. Additionally, the IFN-signaling pathway was highly enriched in NK cells, and
response to IFN-gamma was enriched in dendritic cells and T-cells. Similarly, biological
categories regulated downstream of IFN were enriched in most cells, including protein
synthesis, apoptosis, antigen processing and presentation, cell cycle, and angiogenesis
pathway (VEGFA-VEGFR2).

It is interesting that, among genes sensitive to chemical exposures and COVID-19, we
did not find genes involved in the regulation of IFN production in response to viral infection.
In other words, our data suggest that IFN signaling is disrupted at some downstream steps,
following IFN binding to their receptors. Emerging evidence demonstrates that SARS-CoV-
2 has several strategies to suppress IFN signaling, including avoidance of detection by host
PRRs and inhibition of the signal transduction mediated by PRRs and IFN receptors [23].
Our data suggest that SARS-CoV-2 and chemical exposures may synergistically impair the
IFN signaling cascade, with the virus mostly suppressing the initial steps leading to IFN
production, while xenobiotics affect the cascade starting from IFN binding to IFN receptors
until transcription of IFN-stimulated genes.

Given that severe progression of COVID-19 is associated with a dysregulated inflam-
matory response, many studies suggested that SARS-CoV-2 may cause a “cytokine storm”
responsible for increased morbidity and mortality [32–35]. Several studies attempted to
identify inflammatory molecules associated with severe COVID-19 [25,36–38]. Although
the profile of inflammatory markers is highly variable between patients, a general pheno-
type of severe COVID-19 is characterized by elevated IL-6, IL-8, IL-10, TNF-alpha, CCL2,
CCL3, and CXCL8 [21]. All these genes were not members of the lists of the most chemically
sensitive genes in all analyzed immune cells, except CCL2, which was among the top CSSG
genes for monocytes. Thus, it is likely that chemical exposure does not play a significant
role in promoting an excessive inflammatory response—a “cytokine storm”.

In our analysis, we observed the highest overlap (20%) between the top CSSG genes
and genes affected by SARS-CoV-2 in monocytes. This observation suggests that the
functions of monocytes may be compromised in COVID-19 patients exposed to high doses
of various chemicals. Monocytes are professional antigen presenters providing the link
between innate and adaptive branches of the immune system. A delayed response of
T-cells and B-cells owing to disrupted antigen presentation by monocytes may constitute
the molecular mechanism responsible for severe COVID-19 progression in patients exposed
to high doses of chemicals. For example, antigen presentation is required for differentiation
of effector T-cells: cytotoxic T-cells are critical for elimination of virally infected host cells;
T helper cells are responsible for stimulation of antibody class switching in B-cells and
activation/recruitment of macrophages, neutrophils, and other innate cells.

The approach used in our study is based on a high level of generalization, which
masks the complexity and diversity of individual chemical–gene interactions. Additionally,
the direction of change in gene expression was not considered when sensitivities of genes
to chemical exposures were calculated. In fact, our previous study demonstrated that
the absolute majority of highly chemically sensitive genes are induced and suppressed
by an almost equal number of compounds [15]. Similarly, a high level of generalization
does not allow accounting for individual differences in patients’ response to COVID-19,
including differences determined by age, sex, race, comorbidities, and other factors. Future
experimental studies are needed to validate our in silico predictions.

4. Materials and Methods
4.1. Sensitivity of Genes to Chemical Exposures

The unbiased approach for the identification of genes sensitive to chemical exposures
was developed in our previous studies [15,27]. A database was created by extracting data
on chemical–gene interactions from the Comparative Toxicogenomics Database (CTD) [39]
(Figure 1A) using the following filtering criteria. First, data were extracted only from ex-
periments that used high-throughput approaches for gene expression analysis. In addition,
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we selected data only from experiments that used human, rat, or mouse cells or tissue for
gene expression analysis in in vitro and in vivo studies. Further, we removed from the
database all genes that are not present in the genomes of all three species (human, rat, and
mouse). The resulting database included 591,084 entries, each representing one CGI. At the
next step, the number of CGIs was calculated for every gene to represent its sensitivity to
chemical exposures (Figure 1B). Our previous study has shown that ranked sensitivities
of genes to chemical exposures do not depend on the composition of chemicals used in
original studies—sources of transcriptomic data [15], suggesting that our method provides
unbiased results.

4.2. Sensitivities of Genes to Chemical Exposures Normalized for Expression in Different Cell Types

Normalized gene expression (NGE) values for human T-cells, B-cells, NK cells, den-
dritic, and monocyte cells were extracted from the Human Protein Atlas [40] (Figure 1C)
and used to adjust the chemical sensitivity of genes for the level of expression in different
immune cells. For this adjustment, CGI values were magnified by NGE values for cor-
responding cells (CSSGs = CGI × NGE) (Figure 1D) (Supplemental File 4). To select the
top genes with the highest CSSG values for enrichment analysis, we used an approach
of cutoff point identification in descriptive high-throughput -omics studies described in
detail elsewhere [41]. In short, the cutoff point was identified as a point of transition from
exponential to super-exponential phases of the curve of ranked CSSG values. The major
assumption of that approach is that the small number of genes with high CSSG values
dominate changes in biological processes and functions in response to chemical exposures.

4.3. Genes Affected by SARS-CoV-2 in Human Immune Cells

The Coronascape (coronascape.org) database was used as a source of information on
gene expression changes in human tissues in response to COVID-19 exposures (Figure 1E).
This database contains 390 datasets representing 29 tissues and cell lines collected from
22 individual studies. Only datasets where the effect of COVID-19 was analyzed in
immune cells of human patients were used (Table 4). In vitro studies were excluded from
the analysis.

Table 4. Total number of COVID-19 data sets for each cell type extracted from Coronascape and used
in this study. Each dataset corresponds to one patient.

Cell Type Number of
Datasets

Genes Affected by COVID-19
in More than One Dataset Sources

Dendritic cells 14 53 [42]
NK cells 19 81 [42,43]
B-cells 23 248 [42–44]

Monocytes 32 278 [42,43]
T-cells 35 116 [42,43]

4.4. Overlap of Top CSSG Genes with Genes Affected by COVID-19

To identify genes that are sensitive to both chemicals and COVID-19, we overlapped
the top CSSG genes for each cell type with genes affected in Coronascape datasets in the
same cell types. Percent overlap was calculated as follows: % overlap = number of top
CSSG genes/COVID-19-affected genes (Figure 2).

4.5. Enrichment Analysis

The top genes with high CSSG values for each cell type as well as genes affected
by chemical exposures and COVID-19 in immune cells were analyzed using Metascape
analysis (Figure 1F) with default settings [45]. For enrichment analysis, we selected only
chemically sensitive genes affected in a specific cell type in more than one patient-specific
COVID-19 dataset. Most of the discussion and conclusions of the manuscript are based on
the analysis of biological categories enriched with a very high level of statistical significance:
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−log(p) > 16 for categories sensitive to chemical exposures, and −log(p) > 4 for categories
sensitive to both xenobiotics and SARS-CoV-2. Significant categories (−log(p) > 2) with
lower statistical significance are shown in Supplemental Files 2 and 3.

5. Conclusions

This study demonstrates that overlapping molecular mechanisms affected by a broad
range of chemical exposures and COVID-19 are linked to IFN type I/II signaling pathways
and to the process of antigen presentation. These pathways are essential components of the
immediate response of innate immunity against viral infections. Synergistic impairment
of these mechanisms by environmental factors and SARS-CoV-2 infection may affect the
magnitude of the adaptive immune response and result in severe progression of COVID-19.
Based on our data, we predict that exposures to various chemical compounds will pre-
dominantly impact the population of monocytes during the response against COVID-19.
Our data do not provide any support of a hypothesis that chemical exposures may exacer-
bate a COVID-19-induced “cytokine storm”. The approach used in this study has many
limitations. Future development of publicly accessible information-rich databases may
help to improve the outcomes of in silico research. For example, information on sex, age,
comorbidities, and others may add new layers of analysis of COVID-19-associated changes
in molecular pathways. Similarly, information on doses and exposure protocols used
in toxicological experiments will allow stratifying analysis in accordance with exposure
scenarios.
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