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Whilst substantial research effort has been placed on understanding the interactions of plant proteins
with their molecular partners, relatively few studies in plants - by contrast to work in other organisms
- address how these interactions evolve. It is thought that ancestral proteins were more promiscuous
than modern proteins and that specificity often evolved following gene duplication and subsequent func-
tional refining. However, ancestral protein resurrection studies have found that some modern proteins
have evolved de novo from ancestors lacking those functions. Intriguingly, the new interactions evolved
as a consequence of just a few mutations and, as such, acquisition of new functions appears to be neither
difficult nor rare, however, only a few of them are incorporated into biological processes before they are
lost to subsequent mutations. Here, we detail the approach of ancestral sequence reconstruction (ASR),
providing a primer to reconstruct the sequence of an ancestral gene. We will present case studies from
a range of different eukaryotes before discussing the few instances where ancestral reconstructions have
been used in plants. As ASR is used to dig into the remote evolutionary past, we will also present some
alternative genetic approaches to investigate molecular evolution on shorter timescales. We argue that
the study of plant secondary metabolism is particularly well suited for ancestral reconstruction studies.
Indeed, its ancient evolutionary roots and highly diverse landscape provide an ideal context in which to
address the focal issue around the emergence of evolutionary novelties and how this affects the chemical
diversification of plant metabolism.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Over the last decades evolutionary biology and experimental
molecular biology have taken quite distinctive trajectories which
have mostly developed in isolation from one another. Indeed, the
massive expansion of biological research coupled with the
increased adoption of chemistry and physics in addressing biolog-
ical questions likely exacerbated this problem [1]. A consequence
of this is that currently few scientists have been trained in both
fields. However, fortunately the torrent of information from next-
generation sequencing of closely related species [2,3] means that
the techniques, subject matter and philosophies of molecular biol-
ogy are finally being brought to bear on both classical and modern
evolutionary questions [4]. The approaches we present in this
review are able to shed new light on both the origin and organiza-
tion of molecular entities and in particular to reconcile the reduc-
tionist approach of molecular biology with the wider view
evolutionary genetics can afford into biological systems.

Before attempting to combine molecular biology with evolu-
tionary studies, it is important to acknowledge, as has been elo-
quently done in several works of Joseph Thornton [1,4,5], that
they are fundamentally different disciplines. The strength of
molecular biology being that it establishes functional links
between gene and effect in experiments in which manipulation
of single molecular entities (genes, proteins) is carried out under
strictly controlled conditions. An example of this approach is that
of classical Alanine Scanning, in which site-directed mutagenesis
is used to introduce alanine substitutions in a wild-type (i.e.,
extant) protein. The combinatorial libraries thus obtained can be
used to investigate the consequence of alanine insertions on pro-
tein structure, stability and function [6]. Whilst setting high stan-
dards of evidence-based inference, an unavoidable consequence
of these approaches is, however, that they neglect the contribution
of evolutionary forces to the biological variation and to the func-
tional diversification we observe today. As such, their inferences
are necessarily constrained in a reductionist thinking which does
not embrace evolutionary processes [1]. A few examples highlight
the problems inherent in this approach. First, in the case of certain
functionally defined groups of proteins (such as carbonic anhy-
drases, alcohol dehydrogenases and serine proteases [7–9]), which
contain members that harbour the same biochemical activity but
highly dissimilar overall structures (being evolved independently
from distinct ancestral proteins), the functionalist approach cannot
link all properties of a protein to its function [10]. A second limita-
tion of the approach is that it assumes that all aspects of proteins
have been optimized for function. However, myriad studies have
demonstrated that a proteińs sequence, structure, affinity for
ligands and many other physical properties drift dramatically
across several degrees of freedom in as long as they remain untar-
geted by purifying selection [11–13]. Furthermore, they often
reflect that constraints imposed by their evolutionary history and
those of ‘‘tinkering” to produce optimal form [14]. Finally, there
are simply too many degrees of freedom in sequence, structure
and function to identify the causal links between these phenomena
in an abstract manner. As we will demonstrate below, it is, how-
ever, possible to evaluate how evolutionary divergence from a
common ancestral protein caused structure and function to
diverge, and, as such, how the specific and distinctive modern pro-
teins evolved.

By contrast to molecular biologists, evolutionary biologists take
a considerably less reductionist approach with biological variation
being seen as a favourable outcome rather than an inconvenience.
The strength of this approach is that it focuses on real world bio-
logical systems in their natural and historical contexts. It is, how-
ever, hampered by the fact that statistical associations are not
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reliable indicators of causality [15]. Thus, despite the fact that sev-
eral important experimental works in evolutionary biology have
been published in the last two decades [16–20], inferences about
historical evolution are seldom as clear cut as those from molecu-
lar biology [1]. To address this, Joseph Thornton and others pro-
posed a functional synthesis in which the techniques of
evolutionary and phylogenetic analysis are combined with molec-
ular biology, structural biology and biochemistry. In this way, phy-
logenetic analysis and, by extension, population or quantitative
genetics are used to detect mutations whose effect can be then
functionally tested, with molecular approaches, and associated to
putatively adaptive phenotypes. As such, this ‘‘functional synthe-
sis” provides historical insights into identifying the period and
indeed the lineage in which a new function emerged, the muta-
tions which arose and the sequence sites bearing putative signals
of selection. Moreover, protein structures can help to identify his-
torical amino acids that are likely to have been involved in the evo-
lution of function. Having got so far, molecular biology allows the
hypothesis to be tested directly as the production of synthetic
genes are resurrected, expressed and functionally characterized
[5].

A key theme of this functional synthesis between molecular
biology and evolutionary genetics is about how evolutionary nov-
elties emerge. Does this process proceed through quantitative
small, gradual steps, or big and sudden jumps? Metabolism - with
its protracted evolution and diversification [21,22] - is a good field
to test this hypothesis, and in particular the secondary metabolism
of plants, which is characterised by phenomenal diversity. This
large phytochemical complexity of plants is partially linked to
the fact that gene duplications and even whole genome duplication
events are considerably more frequent in Plantae than in the other
kingdoms of life [23,24]. Nevertheless, trying to understand the
modalities about how evolutionary novelties emerge - at a molec-
ular level - is a complex task. Analysis of sequence data from extant
species is clearly not sufficient, as comparison of present-day data
does not provide an estimate of the full spectrum of evolutionary
changes that might have occurred starting from the ancestral
sequence (e.g., when multiple changes affect the same site during
the history of sequence divergence, the number of differences in
the extant sequences is always an underestimation of the real
number of substitutions which have occurred, an issue known as
the ‘‘multiple hit problem”). As we will describe below, there are
several approaches possible to address this issue. The first, which
was initially proposed in the 60s, but has acquired prominence in
recent years (at least in animal and microbial systems), is that of
ancestral sequence reconstruction (ASR) [25–28]. Such works - pio-
neered by the group of Steven Benner - provided, for the first time,
historical insights about how protein function and specialization
evolved [29,30] (see also Fig. 1). Essentially, as we will describe
in more words below, ASR is based on the reconstruction of extinct
protein sequences, followed by their expression in heterologous
systems and characterization of their function in comparison with
that of modern-day proteins. The approach has been applied to
enzymes, DNA binding proteins and receptors, but, surprisingly,
has not been taken-up at scale in plants. This is somewhat surpris-
ing: as we hope to demonstrate in more words below, resurrecting
extinct proteins is a powerful way - and, perhaps, the only possible
one, given that intact proteins are rarely preserved intact in fossil
or amber specimens - to identify the historical amino acid changes
which are responsible for the large diversification of the structure,
stability and activity of the proteins existing today. This diversifica-
tion is particularly evident in plant metabolism: the chemodiver-
sity of specialized metabolites is hardly tractable, estimated
between 100,000 and 1 million [31], and is largely generated by
the proliferation of relatively few gene families (i.e., terpene syn-
thases, cytochrome P450, glycosyltransferases, acyltransferases,
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Fig. 1. Horizontal Vs vertical approach in the analysis of sequence data. The approach followed by ASR operates a shift from the classical, ‘‘horizontal” comparison of
sequence data of extant species. Starting from a sequence multialignment and a phylogenetic tree (with branch lengths, here represented by t1. . .t8), the algorithms used by
ASR infer the sequences in the ancestral nodes (blue dots). These ancestral sequences can be then aligned to the extant sequences (‘‘vertical” comparison) to identify where
and when the historical mutations occurred along the evolutionary trajectories. The ancestral coding sequences can be then expressed in heterologous systems for functional
assays. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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polyketide synthases, see for example [32]) occurring upon the
gene and genome duplications events in the plant kingdom [33].
Thus, it is only through ASR that we can identify – and restrict to
a discrete interval of evolutionary time – the amino acid changes
responsible for the functional divergence of the metabolic enzymes
extant today [34,35]. In fact, classical ‘‘horizontal” biochemical
approaches, e.g., swap experiments, in which those amino acid
residues held responsible for functional shifts are exchanged
between extant homologous proteins, usually fail to interconvert
protein function ([36,37], with some notable exceptions, see for
example [38,39]). Extant homologous proteins catalysing different
reactions, for example, may differ in several residues, but most
often only a minority of these differences are responsible for the
functional shift, with the remaining substitutions having at best
an ancillary role in the functional divergence. This may make the
identification of candidate functional residues for swap experi-
ments particularly difficult. Another reason that accounts for the
failure of horizontal swap experiments in interconverting bio-
chemical functions is the pervasive role of intragenic epistasis in
modern day sequences. A single or few amino acid replacements
could not be sufficient anymore to interconvert function between
homologous sequences, as activity in extant protein sequences is
heavily nested, and dependent, on the amino acid states at multi-
ple sites [40–42]. In light of this, the horizontal replacement of one
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or few amino acids between extant sequences usually yields a non-
functional product, due to the incompatible interactions of the
swapped residues in the amino acid background of the receiving
protein [10]. On the other hand, studies based on ASR, by focusing
only on the sequence differences between the ancestral and
descendant nodes in a phylogeny, drastically reduce the number
of amino acid substitutions, making easier the identification of
the residues leading to functional divergence. Thus, it is only
through the ‘‘vertical” comparative approach of ASR, rather than
the ‘‘horizontal” comparison of extant sequences, which we can
effectively distinguish which amino changes result in the func-
tional optimization of a pre-existing activity or in its strict parti-
tioning among paralogs, or, again, in the de novo evolution of a
function from an ancestral protein devoid of such activity [43].

That said, validated genome wide association studies (GWAS)
represent an additional form of the functional synthesis that is
widespread in plants [44,45] - albeit one that tends to focus on
recent evolutionary events. Moreover, fitness landscape studies,
such as those championed by Michael Purugganan and co-
workers, are additionally complementary approaches which are
being carried out in plants and related to ancestral reconstruction
studies [46]. We will detail both sets of studies in the section Alter-
native functional syntheses of evolutionary and molecular biology
below. However, before doing so, we will briefly detail the method-



Table 1
List of computer programs and resources for the typical steps of an ASR study. Additional softwares for phylogenetic inference can be found in Joseph Felsenstein’s homepage
(https://evolution.genetics.washington.edu/phylip/software.html, with latest updates in 2012) or in [21].

Name Description References

Orthology prediction (de novo)
JustOrthologs fast algorithm for ortholog inference. Avoids BLAST all-vs-all searches comparing instead lengths of CDS and calculates frequencies of

dinucleotide occurrences in exon sequences
[50]

Orthofinder inference of orthologs with increased precision (takes into account the gene length bias associated to the BLAST similarity scores).
Provides rooted species tree and gene trees for all orthogroups. Maps duplication events along tree branches.

[51,52]

Orthograph maps coding nucleotide sequences to genes of known orthology (useful for the extension of existing orthogroups) [53]
OrthoMCL uses the Markov Cluster algorithm (MCL) to group putative orthologs and paralogs in a single orthogroup [54]
Databases of pre-computed orthogroups
eggnog 5.0 A database of orthogroups and functional annotations from virus, bacterial and eukaryotic genomes [55]
Genomicus

Plants v.41
a multi-species genome browser allowing to visualize orthology and paralogy relationships [56,57]

OrthoDB large catalogs of orthologs (across around 600 eukaryotes and > 3000 bacteria), obtained from best reciprocal hits in Smith-Waterman
local sequence alignments

[58,59]

Phylome DB a website hosting catalogs of precomputed gene phylogenies from multiple genomes (‘‘phylomes”). Provides high-quality orthology
and paralogy relationships based on phylogenetic trees. Several plant phylomes available

[60]

PLAZA 4.5 a comparative plant genomics database hosting instances for Eudicots and Monocots. Provides sets of orthologous genes obtained
through Markov clustering

[61]

Multisequence alignment (MSA)
BAli-Phy evolution-based tool for multiple sequence alignment. Incorporates a parametric model of sequence evolution, considering also indels [62]
ClustalX (omega) a fast progressive multialignment employing sequence embedding to reduce the time required to build the guide tree [63,64]
Expresso a structure-based sequence alignment tool (protein 3D models from the Protein Data Bank are used as templates to guide the

sequence alignment)
[65]

Historian An evolution-based alignment software optimized for assessing indel rates and dN/dS ratios [66]
MAFFT progressive multialignment, includes iterative refinement methods (for small-scale alignments) and structural methods for RNA [67]
MUSCLE progressive multialignment based on k-mer counting [68]
PRANK evolution-based algorithm for alignment of closely-related sequences. Accurate placement of insertions and deletions. [69]
ProbCons algorithm based on a Markov model progressive alignment in combination with probabilistic sequence conservation information [70]
SATe’-I and

SATe’-II
Co-estimation of alignments and phylogenetic trees. Iterative approach using an initial RAxML-computed tree with a MAFFT
alignment, followed by further refinements through a divide-and-conquer strategy

[71,72]

T-Coffee consistency-based multialignment, combining a global pairwise approach (e.g., ClustalW) with a local pairwise alignment (e.g. Lalign) [73]
Alignment curation
BMGE Calculates an entropy score for each column in the MSA and compares it with similarity score based on a PAM or BLOSUM matrix.

Allows to distinguish, for each aligned character, biological variability from noise
[74]

Divvier Identifies clusters of characters of shared homology, filtering out divergent partitions; alleviates long-branch attraction in trees
obtained from filtered MSAs

[75]

Gblocks Eliminates poorly aligned (highly variable) positions from a multialignment. Can be tailored to be more or less stringent according to
the value of five different threshold scores

[76]

Noisy Eliminates homoplastic sites from MSAs based on character compatibility [77]
PREQUAL A pre-alignment filtering tool to remove non-homologous characters in phylogenomic datasets. It uses a probabilistic model to infer

homology between amino acids in non-aligned sequences

[78]

trimAl Alignment trimming based on gap, similarity and consistency scores across all columns of a MSAs [79]
Phylogenetic (tree) inference
BEAST2 Bayesian analysis of molecular sequences. It uses Markov chain Monte Carlo (MCMC) as a numerical approximation to average over

tree space
[80]

FastME Distance-based tree inference (Neighbor-Joining) [81]
FastTree2 approximate-maximum-likelihood phylogenetic trees from alignments of nucleotide or protein sequence [82]
IQ-TREE infers phylogenetic trees by maximum likelihood [83]
MPBoot Tree reconstruction based on maximum parsimony, suitable for large DNA and protein sequence alignments [84]
MrBayes Bayesian phylogenetic inference using Markov Chain Monte Carlo methods, with a large selection of evolutionary models for

aminoacid and DNA (codon) data
[85,86]

PAML (v4.9j) a package of several programs for phylogenetic analyses of DNA or protein sequences using ML. Includes the empirical Bayes method
for estimation of ancestral sequences using nucleotide, codon or amino acid substitution models [87]

[88]

PhyloBayes A popular bayesian Monte Carlo Markov Chain (MCMC) software for phylogenetic reconstruction and molecular dating. It uses non-
parametric methods to characterize sequence evolution

[89–91]

PhyML v3.0 package for phylogenetic reconstruction using ML from nucleotide or amino acid sequences; several substitution models and tree
searching algorithms implemented; introduces the criteria of minimum posterior expected error (MPEE) for ancestral sequence
reconstruction [92]

[93,94]

Curation of phylogenetic trees
Phylo-MCOA Identifies outlier genes and species in phylogenomic datasets [95]
TreeShrink Identifies genes leading to long branches [96]
TreSpEx Identifies artificial signals in phylogenetic reconstructions (paralogy, long-branch attraction) [97]
Ancestral sequence reconstruction (ASR)(ASR methods based on MP and ML are generally implemented as additional functions in tree inference programs, the ones listed

below are some additional dedicated resources)
ANCESCON ASR software incorporating different substitution rates among sites (‘‘alignment-based rate factors”) with the estimation of

phylogenetic trees based on a weighted neighbor-joining method (distance-based, [98])
[99]

FastML A user-friendly web server for computing ancestral sequences based on ML (includes marginal and joint estimates, with the time
required for calculation scaling linearly with the number of sequences, hence it is applicable to very large datasets)

[100–102]

PhyloBot A web-based tool, designed for non-experts, integrating all common steps for a typical ASR pipeline (sequence alignment,
phylogenetic inference, ancestral reconstruction, and prediction of functional effects)

[103]

ProtASR/
ProtASR2

prediction of ancestral sequences using a mean-field (MF) substitution model incorporating selection on folding stability [104,105]

Revenant a database of resurrected ancestral proteins [106]

F. Scossa and A.R. Fernie Computational and Structural Biotechnology Journal 19 (2021) 1579–1594
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ology by which ancestral proteins are resurrected, discussing the
strengths and limitations of this approach to provide examples of
ancestral protein resurrection emanating from all kingdoms of life.
We will discuss these examples in the context of protein special-
ization to finally present the case for a greater adoption of the
ancestral sequence resurrection approach, alongside those of
GWAS and fitness landscapes, as a potent tool for understanding
the evolution of plant metabolism and other processes.
2. How to ‘‘resurrect a dead gene - a primer on the methods

Despite the recent development of sophisticated computational
ASR methods, applied especially in the study of protein functional
evolution in animals and microbes, the approach of reconstructing
ancestral sequences cannot be considered entirely novel: already
in the 60s Linus Pauling and Emile Zuckerkandl made the sugges-
tion that it could have been possible, with some approximation, to
deduce the ancestral amino acid sequence from a group of homol-
ogous sequences [47]. It was not until the 90 s, however, that the
first pioneering ASR studies were published by the group of Steven
Benner [29,30]. Since then, ancestral sequence reconstruction
approaches have been greatly improved with the adoption of
refined methods for orthology prediction, sequence alignment, tree
and ancestral sequence inferences [27,28,48]and their combination
with sequence-based tests of selection [21] and unbiased metabo-
lomics for assessing enzyme specificities [49]. We present in
Table 1 a non-exhaustive list of computer programs and database
resources for all steps involved in a typical ASR study, starting from
the selection of homologous genes to the various algorithms for
reconstructing ancestral sequences

Studies of ASR are usually focused on reconstructing the evolu-
tionary trajectories of a specific protein family. The objective of a
typical ASR experiment is to recreate the sequence of an extinct
protein (representing an ancestral node in a phylogenetic tree),
assess its functional properties (through expression in heterolo-
gous systems and biochemical assays, for example) and compare
how these properties differ with respect to extant proteins. By
doing so, ASR experiments can answer the focal questions about
where (in terms of which part of the sequence) and when (so, along
which specific lineage of the gene tree) functional shifts occurred
during the evolutionary trajectories leading to protein divergence.

An ideal family which could be suitable for ASR is medium-large
in size (in terms of the number of gene family members) and is
characterised by both recent and more ancient gene duplications
(as these events may lead to functional divergence, ASR can be
the ideal approach to understand when functional specialization
emerged along ancestral branches). Also, the activity of present-
day proteins should be easily measurable, in terms of substrate
specificities/reaction products (for enzymes) or other biochemical
properties (e.g., DNA binding specificity for transcription factors).
Possibly, in order to map the position of some of the amino acid
changes along the 3-D protein structure, the crystal structures
for some extant enzymes should be also available. However, recent
advances in cryo-microscopy are finally on the cusp of delivering
the long promised atomic scale resolution and as such may soon
represent a more accessible and physiological source of this infor-
mation [107].

The starting dataset for an ASR study is thus a group of homol-
ogous sequences representing an entire gene family. The initial
gene (protein) sequences can be collected directly from NCBI or
Uniprot, using one or a few query sequences in a similarity search
(BLAST); but the identification of gene family members, especially
when assaying multiple genomes, can be better done in a phyloge-
nomic framework, using orthology-prediction tools like OrthoMCL
[54] or Orthofinder [51,52]. These tools take the full set of protein
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sequences encoded in a number of selected genomes and use all-
vs-all similarity and clustering algorithms to finally reconnect
homolog sequences, from multiple species, into orthogroups.

Once a gene family has been identified as a specific orthogroup,
the next step in ASR is to build an accurate multiple sequence
alignment (MSA) (although this could be already an output of the
orthology prediction program). Several alignment tools exist in this
case: i) traditional progressive tools, such as MAFFT and MUSCLE;
ii) consistency-based algorithms (e.g. ProbCons and T-Coffee) and
the iii) family of evolution-based approaches, like BAli-Phy and
PRANK.

Essentially, the progressive tools work by estimating an approx-
imate similarity-based ranking among all sequence pairs, to then
build a preliminary tree (the ‘‘guidetree”) of all sequences and
add progressively the additional sequences to the initial top-
scoring aligned pair. These are the faster algorithms in MSA, and
are usually employed in the orthology prediction tools.
Consistency-based methods tend to be more accurate, albeit signif-
icantly slower, as they work by searching the multialignment
which maximises the consistency among all previously-
computed pairwise alignments. The evolution-based tools include
instead an explicit model of sequence evolution (at the level of
DNA, amino acid or codon): they thus reconstruct evolutionarily-
consistent alignments incorporating not only substitutions but also
sequence insertions and deletions. Given that they are consider-
ably more computationally intensive than the progressive or
consistency-based methods, they can be used in a later step of
the phylogenomic pipeline, for example to calculate an accurate
multialignment of the sequences of a specific orthogroup initially
obtained from the orthology prediction tool.

The choice of a specific MSA algorithm has important implica-
tions for the accuracy of downstream ancestral reconstructions:
while most of the alignment algorithms were found to be quite
robust to weak perturbances (i.e., in the presence of low tree
depths and low frequency of InDels), in cases of more demanding
alignments (e.g. higher InDel rate and high number of substitu-
tions/site) the use of different algorithms had quite drastic conse-
quences on the accuracies of the reconstructed ancestral
sequences. In general, the MAFFT consistency iterative methods
(MAFFT E-INS-i and MAFFT L-INS-I, present in MAFFT version > 7)
and the various refinements of PRANK outperformed the
progressive-based alignments in terms of reconstruction accura-
cies [108].

The next step in an ASR study is that of the inference of a correct
phylogenetic tree; this is again a critical step before reconstruction
of ancestral sequences can be attempted. The tree specifies the
genealogical history of the sequences: in a gene tree, internal
nodes represent the ancestors and may mark gene duplication
events or emergence of a new lineage (Fig. 1). A well supported
gene tree, which has been reconciled with the tree of the species
under examination, representing a phylogeny which is coherent
with the larger tree of life, is of course an essential requirement
to prevent erroneous inference of ancestral states [109–111] (see
also [112–114] for a debated case of ASR based on a controversial,
and possibly incongruent, phylogeny of Eukaryotes). Several meth-
ods exist for the inference of a phylogenetic trees, and they are
broadly classified into distance-based or character-based methods.
Given that distance-based methods (e.g., neighbor-joining, mini-
mum evolution) do not model the variation of the single character
states (i.e., nucleotides, codons or amino acids in the sequence
alignments), but rely solely on the estimation of the distance
between sequences, they can be used only for the calculation of
the initial sequence tree, but not to reconstruct the ancestral
sequence states. We will thus briefly describe only the main
approaches for the character-based methods, given that the same
principles of these methods also govern the reconstruction of
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Fig. 2. The Fitch’s algorithm of maximum parsimony (MP) to reconstruct
ancestral states. To assign ancestral states the tree is traversed twice. The first time
the algorithm proceeds from leaves to root, and assigns to each internal node a set
of characters based on the intersection of descendant states (or the union of the
intersection is empty). In the second step, the algorithm proceeds from the root to
the leaves, and assigns to the internal nodes the state which is present both in the
ancestral and in the descendant node. When different equally parsimonious
reconstructions are possible, multiple solutions exist (see Suppl. Fig. 1).

F. Scossa and A.R. Fernie Computational and Structural Biotechnology Journal 19 (2021) 1579–1594
ancestral states, referring the reader to the more extensive excel-
lent reviews on the topic [48,115,116].

Character-based methods for phylogenetic inference belong
either to: i) maximum parsimony (MP); ii) maximum likelihood
(ML) or iii) Bayesian approaches. Parsimony basically calculates
the number of character changes over all possible tree topologies
and considers as the best estimate of the species (or sequence)
phylogeny the tree with the smallest number of changes [117].
As the number of possible topologies cannot be easily explored
(there are already 4.95x1038 possible rooted trees for 30 taxa!),
current parsimony approaches use some form of fast heuristic
search algorithms [84]. Although methods based on MP are gener-
ally fast, they consider all character changes as equally probable; in
doing so, they do not consider either the transition-transversion
bias or the different rates of substitution among sites. The main
limitation of MP in phylogenetic inference is thus its lack of an
explicit model for sequence evolution. For these reasons, MP has
been now almost completely superseded by ML, which effectively
incorporates explicit models of sequence evolution. A model of
sequence evolution is a description, in terms of probabilities, of
how a nucleotide or amino acid sequence changes over time. Many
sophisticated substitution models exist [118], with many variables
to be estimated (parameters): they all derive however from the
simple Jukes-Cantor model (JC, [119]), in which all base changes
are equally probable. Under this assumption, the probability of a
nucleotide change is only a function of branch lengths. Essentially,
the basic principle of likelihood methods is to maximise the prob-
ability of observing the data (e.g., a single column in the multi-
alignment), optimising the values of the parameters (e.g. those
included in the substitution model along with the branch lengths).
Since aligned sequence sites are treated as independent variables,
the overall likelihood of a tree is the product of the probabilities
calculated at each aligned site. Thus, the phylogenetic tree which
achieves the highest likelihood is the ML tree and is considered
the best representation of the sequence’s evolution.

The use of ML in phylogenetic inference was proposed by
Joseph Felsenstein in 1981 [120], when he derived the equations
for the likelihood of a given tree (based on the probabilities of char-
acter changes) and formulated the iterative method to find the tree
topology with branch lengths maximising the likelihood value. The
original ML method with its most recent refinements have been,
since then, implemented in several softwares (Table 1).

Bayesian inference is the third class of approaches for phyloge-
netic inference; these methods were introduced in the field of phy-
logenetics in the mid-1990s, and became, since then, popular
alternatives to MP or ML. However, an extensive treatment of these
methods is beyond the scope of this review, and we rather refer the
reader to excellent prior in-depth descriptions of these topics
[116,121,122]. Here, suffice to say that Bayesian methods explore
the tree space, and yield the optimal phylogeny, combining three
quantities: (i) the prior probability, that is, the probability of a tree
before the analysis (generally all trees can be equally probable, but
in some cases the priors can be weighted according to some a priori
knowledge, e.g., on the basis of fossil calibration); (ii) the likelihood
(the probability of the observed data given the tree), and (iii) the
posterior probability, which is obtained combining the prior prob-
ability with the likelihood, resulting in the calculation of the prob-
ability of a tree given the data. Although a seemingly simple
quantity, the posterior probability needs to be calculated over all
possible tree topologies, model parameters and branch lengths;
this is achieved computationally using Markov Chain Monte Carlo
(MCMC) approaches, which, in simple terms, approximate the cal-
culation of posterior probabilities by random iterative sampling
[116]. The main Bayesian programs for phylogenetic analysis are
listed in Table 1.
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With a sequence multi-alignment and a well-supported phylo-
genetic tree at hand, the next step is the reconstruction of ancestral
sequences. Essentially, the same classes of approaches for inferring
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a phylogeny, i.e. parsimony, likelihood and Bayesian statistics, also
apply in the context of inference of ancestral states.

Historically, parsimony was the first method used for ancestral
reconstruction [117]. It is a simple, fast and efficient method based
on traversing the tree twice to find the most parsimonious recon-
struction of ancestral states (the one which minimizes the number
of character changes). An example of the classical Fitch’s algorithm
for MP reconstruction of ancestral states is presented in Fig. 2.

The same limitations of MP in tree inference, however, also
apply in the reconstruction of ancestral states. These limitations
stem from the lack of a probabilistic model describing sequence
evolution, which is instead the key component of ML and Bayesian
methods. In Fitch’s MP algorithm [117], in fact, all changes are
equally probable, but this assumption ignores the
transition/transversion rate bias, and also the heterogeneity in
the rates of evolution at different sequence sites (i.e., the bias at
the 3rd codon position). Also, parsimony does not take into account
branch lengths, ignoring, for example, the higher frequency of sub-
stitutions associated to long branches. Moreover, when multiple
equally parsimonious solutions exist, MP cannot distinguish which
is the correct one, and thus converges on multiple, ambiguous
reconstructions of ancestral states (see Suppl. Fig. 1 for an example
of four equally parsimonious solutions in Fitch’s algorithm).

That said, MP can provide an accurate estimation of ancestral
sequences only in cases of limited divergence [123] and has thus
been used to resurrect ancestral proteins only from the recent past.
The first ASR study used MP to resurrect the sequence of a diges-
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Fig. 3. Example of a Maximum Likelihood (ML) algorithm for reconstruction of ances
We considered only a single site, with two possible character states (H or Q), across a phy
the leaves to the root, and, for each internal node, computes the likelihood of all possible
step, the algorithm traverses the tree from the root to the leaves assigning the ancestral
subtree composed by the leaf nodes 4 and 5, the internal node 6 and father node 7 (blu
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tive ribonuclease ancestral to the divergence between buffalos
and oxen (so, a relatively young ancestral protein, dating back to
10 Mya, [29]), with the same approach being also used to resurrect
the older ancestral ribonuclease - an enzyme of 40 Mya - from the
base of the Artiodactyl lineage (the order of Mammals including
deers, pigs and oxen) [30].

ML and Bayesian methods for reconstruction of ancestral
sequences provide a solution to the drawbacks of MP, and have
allowed so far to reconstruct sequences from the distant past (dat-
ing back to several hundred million years ago; we will present sev-
eral examples further below). Essentially, the mathematical
framework to reconstruct ancestral states is the same as that used
in ML-based tree inference. These methods were originally pro-
posed in the 1990s [87,124], but further developments were intro-
duced later, such as the inclusion of protein structural and folding
parameters [102,104]. Essentially, these methods are based on the
calculation of the posterior probabilities of all possible ancestral
states given the data. In doing so, they effectively incorporate
branch lengths and substitution probabilities, and yield the proba-
bilities not only of the optimal reconstruction, but also of those
related to the sub-optimal solutions to allow the further
biochemical exploration of alternative sequences [125] (see Fig. 3
for a simple example of a ML-based estimation of ancestral states).

In the context of ML-based reconstruction of ancestral
sequences, the initial algorithms allowed the calculation of
marginal probabilities (i.e., the probability associated to the recon-
struction of a single ancestral node, [87,124]), while further
to H to Q

from H 0.65 0.35

from Q 0.25 0.75

Substitution probabilities

ML-based assignment of node 6

1. Consider the subtree of nodes 4, 5, 6 and 7
2. Assign a state to node 7 (ancestral to 6)
3. Calculate likelihood for all alternative states 

of 6 in the subtree 
4. Identify max likelihood
5. Repeat steps 2-5 for the other states of 

node 7

Example of calculation for node 6, with t4=t5=t6

given node 7 = H:
Likelihood (H)6 = 0.65x0.65x0.35 = 0.148

Likelihood (Q)6 = 0.35x0.25x0.75 = 0.066

Max likelihood (node 6=H) (node7=H) = 0.148

given node 7 = Q:
Likelihood (H)6 = 0.25x0.65x0.35 = 0.057

Likelihood (Q)6 = 0.75x0.75x0.25 = 0.140

Max likelihood (node 6=Q) (node7=Q) = 0.140

tral states. The figure represents a simple case of ancestral reconstruction using ML.
logenetic tree with equal branch lengths. The algorithm first traverses the tree from
states taking also into account all possible states of the father node(s). In the second
states which maximise the likelihood. The figure represents the calculation for the
e rectangle).
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improvements included also the computation of joint likelihoods
(i.e., the calculation of the entire set of reconstructions across all
ancestral nodes, [100,126]). Approaches based on marginal proba-
bilities are best indicated if the objective is to reconstruct the
ancestral state within a single subtree (e.g., as for the synthesis
of the ancestral protein); joint probabilities, on the other hand,
could be used to count the number of character changes across
the entire tree.
3. Limits of ancestral protein resurrection approaches

The idea of reconstructing extinct sequences, although attrac-
tive, is, however, not exempt from limitations. The two main
approaches recalled above, MP and ML, have each their own draw-
backs. As we have seen, MP might not converge to a unanimous
solution (Suppl. Fig. 1), and, in this case, needs to make some
assumptions about when character changes preferentially occur
in the phylogeny (e.g., at the earliest possible point or along a more
recent branch, [127–129]). In a similar vein, also ML approaches
are not exempt from a priori assumptions. The phylogenetic tree
is inferred from the data, hence, large ambiguities in the alignment,
and thus in the resulting tree topology and branch lengths, have all
drastic consequences on the accuracy of reconstructed ancestral
sequences [108]. Accurate alignments may be achieved by a com-
prehensive sampling of extant sequences (e.g., by selecting a speci-
fic orthogroup from a large phylogenomic pipeline) and by the use
of evolution-based alignment algorithms which can effectively
model the insertion of gaps (see Table 1 and [130,131]).

Although ML methods for ASR are the most commonly used
today [28], there are additional limitations which should be con-
sidered, especially when the focus of the ASR is the study of bio-
chemical properties related to protein stability (see below). As
we have recalled above, ML approaches assume that the multi-
alignment, the tree and the model parameters are known and true
a priori, while Bayesian inference incorporates the uncertainty of
these parameters in the inference of ancestral sequences (e.g., by
sampling over the distribution of all possible tree topologies and
model parameters) [132–134]. Although the incorporation of
uncertainty over the tree phylogenies, in a Bayesian framework,
does not seem to increase significantly the accuracy of recon-
structed sequences [135], a study of simulated protein evolution
has pointed to some inherent bias when ML (and MP) are used in
ASR. Essentially, these two methods may introduce a systematic
bias overestimating protein stability in the reconstructed
sequences, independently from the depth at which the ancestral
node is located in the phylogeny [136]. This bias stems from the
inherent tendency of ML and MP to converge on the most probable
(or most parsimonious, in case of MP) ancestral sequence solution
across all sites, with the exclusion of all less probable amino acids
across sequence sites (some of which can give still suboptimal like-
lihoods). This results in the maximization not only of the ancestral
sequence probability, but also of the thermodynamic stability of
the protein. In a simulated protein evolution scenario, in which it
is possible to directly compare the ancestral proteins with their
true descendants, it was shown that Bayesian inference methods,
while yielding only marginally inferior ancestral reconstruction
accuracies (introducing suboptimal, slightly detrimental substitu-
tions in the ancestral sequences), outranked ML- and MP-based
methods in the estimation of the thermodynamic properties of
the ancestral sequences [136], suggesting that caution should be
taken in interpreting especially those ML-based ASR studies focus-
ing on the evolution of thermostability [137]. In these cases, the
optimal strategy would be of course to functionally test both pre-
dictions, from both ML-based and Bayesian statistics, before draw-
ing conclusions on the paths of functional evolution.
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A crucial step in ML- and Bayesian-based tree inference is the
choice of the probabilistic model for sequence evolution, a selec-
tion which brings about assumptions about the amino acid fre-
quencies, exchange tendencies and rate heterogeneity amongst
sequence sites. Since many models exist, the usual procedure is
to measure the fit of each model to the existing data and select
the one yielding the best fit [138]. Although selection of an inaccu-
rate model may produce an unrealistic tree [139], there is currently
no consensus about which criteria should be followed to determine
the model with the best fit to the data. Most importantly, it has
been demonstrated that model selection might not even be strictly
necessary in ancestral sequence reconstruction, as the use of differ-
ent criteria in model selection, or the use of the most parameter-
rich model (GTR + I + G), all yielded similar results in terms of tree
topologies and ancestral sequences [140].

Perhaps a more critical step for reliable reconstructions is
instead to obtain a well supported phylogeny, which needs to be
consistent with the larger tree of life and which can effectively rec-
oncile the gene with the species tree under examination. It is thus
important that, as a starting point in an ASR study, an orthogroup is
selected from a cross-genome orthology inference calculation (see
Table 1), as these pipelines generally implement reconciliation of
gene trees with the overall species tree [109,141,142]. Of course,
the resulting reconciled species tree needs to be critically evalu-
ated in light of the systematic relationships among the taxa under
examination. No current software is of course a substitute for
expert knowledge in evaluating how realistic the gene family tree
is in light of the species phylogeny. The recent large-scale phyloge-
nomic investigations across all kingdoms of life (Bacteria and
Archaea: [143,144], Eukaryotes: [145–147] may provide a guide
for biologists to systematically assess the organismal relationships
among taxa and provide support for phylogenetic inferences.

A strong phylogenetic support is especially important at the
level of the subtrees from which ancestral nodes need to be recon-
structed. At this regard, it is also important to rely on the most
robust metrics for branch support (e.g., the approximate
likelihood- or Bayesian-based measures of branch support or the
more traditional bootstrap, [148–150]) to make sure the target
nodes are sufficiently robust to alternative topologies.

Another point that needs to be considered is that the recon-
structed (optimal) ancestral sequence represents, in any case, the
best guess, and, as such, it should not considered as the true,
unequivocal ancestor’s sequence. Ambiguous reconstructions
may in fact occur at several sites, where different character states
might show almost equal probabilities. A caveat could be in this
case not only to consider the optimal ML reconstruction, but also
the alternative sequences with lower overall posterior probabili-
ties, and test their biochemical properties to make solid conclu-
sions about the possible paths of protein functional evolution
(this approach has been followed, among other studies, in yeast,
for resurrecting the ancestral alcohol dehydrogenase [151], and,
more recently, on a massive scale, for the half million alternative
sequences of the ancestral steroid hormone receptor [125]). When
the number of ambiguous sites is extremely large, then synthesis
and characterization of all alternative states is impractical: a solu-
tion can be in this case to synthesize the worst plausible case (the
so called ‘‘AltAll”), basically a version including the least probable
character states in all ambigous sites. If the AltAll version then
shows similar functional properties to the ML ancestral sequence,
then it is safe to assume that the functional inference is robust to
the uncertainty present in the ambiguous sites [152–154]. A sys-
tematic evaluation of the sequence uncertainty in ASR has been
attempted in three protein families characterised by different func-
tions and architectures (guanylate kinases, and the DNA-binding
and ligand-binding domains of the steroid hormone receptors);
the results showed that similar functions were observed when
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alternate, lowly probable amino acid states were incorporated into
the reconstructed AltAll sequences [155]. Although the results
reported in this study can be hardly generalized to all protein fam-
ilies, they suggest that the characterization of the AltAll version
may provide a strong support to the conclusions made on the func-
tion of the ancestral protein.
4. Evolution of protein specificity

Having covered the basic steps and methods of a typical ASR
study, we now turn to examine some exemplary case studies of
ASR in vertebrates and other organisms including those that
appeared more recently in plants. As recalled above, it was the
group of Steven Benner who pioneered studies of ASR in several
biological systems [29,30,151], but also the lab of Joseph Thornton
made, more recently, important contributions to the field. For
example, Thornton and his team found that genes for the steroid
hormone receptors, previously assumed to be confined to Verte-
brates, were also present in the sea slug Aplysia californica [156].
Based on this study, he used the extant genes to climb down the
evolutionary tree and deduce the most likely sequence of the com-
mon ancestor. He then assembled the gene and inserted it in cells
which could authentically produce the ancient protein. Taking this
further, Thornton set his own lab up to study when (and where)
the differences between the mineralcorticoid (MR) and the gluco-
corticoid receptor (GR) emerged along their evolutionary history.
The MR preferentially binds the steroid hormone aldosterone,
which regulates salt and water balance, whilst its closely related
glucocorticoid receptor is activated by cortisol and controls stress
responses. Intriguingly, although the receptors evolved via a gene
duplication event >450 million years ago, aldosterone itself did
not arise until many million years later. Resurrecting the ancestral
protein surprisingly revealed it to be sensitive to aldosterone, sug-
gesting it had been activated by a similar structure [157]. Building
on this work, Thornton’s group next determined the crystal struc-
ture of the common ancestor of the GR and MR, revealing that two
crucial mutations were responsible for altering the binding pocket
of the ancestral receptor such that it preferred binding to cortisol
[157]. Attempts to run the evolutionary sequence backwards, how-
ever, failed. They instead engineered a hormone irresponsive pro-
tein introducing a set of other mutations which had accrued
between the ancestral protein and the GR. These additional muta-
tions, whilst playing no role in the receptors’ new function, acted
as an evolutionary ratchet preventing it from regaining its old
function [158]. This finding underlines the value of ASR studies:
the contribution of epistasis and especially how it gradually
accrues during protein evolution can only be possible through
the ‘‘vertical” comparison of the reconstructed ancestral and extant
sequences [40,41].

Indeed, a recent study demonstrated how a model that statisti-
cally identifies epistasis in alignments of present day sequences
can illuminate the sequence-function landscape in a manner that
will allow the prediction of new mutations [42]. This has clear
implications for biotechnology, since features such as high stabil-
ity, substrate/catalytic promiscuity, conformational flexibility and
altered interactive properties have all been postulated [159,160].
Along these lines, the Thornton group investigated the role of epis-
tasis further. In their 2017 paper, Starr et al. explored the alterna-
tive evolutionary histories of transcriptional control of oestrogen
response elements compared to steroid response elements [125].
The aim of these series of experiments was to understand the route
molecular evolution took by also studying the alternative trajecto-
ries which could have been taken but were not. They achieved this
by combining ancestral protein resurrection with deep mutational
scanning [161,162] to characterize alternative histories in
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sequence space of an ancient transcription factor which evolved
a novel role via well-characterized mechanisms [163,164]. They
found hundreds of alternative protein sequences that use diverse
mechanisms to perform the derived function at least as well as
the extant protein. Intriguingly, these alternatives all require per-
missive substitutions that do not enhance the derived function -
but do not all require the same permissive changes. They interpret
this to mean that ‘‘the outcome of evolution depends on a serial
chain of compounding chance events”. Elegant though it is such
studies are by no means restricted to the work of Thornton with
considerable research into the role of the evolvability of promiscu-
ous protein functions [165] and specifically for glutamine binding
[166], esterases and hydoxynitryle lyases [167], beta-lactamases
[168], lactate dehydogenases [169], alkaline phosphatases [170],
sesquiterpene lactone oxidases [171] and chalcone isomerases
[172].

As we have said, parsimony approaches dominated the early
ASR studies, with the resurrected proteins being of a relatively
young age (10–80 Mya). The later introduction of ML and Bayesian
statistics made it possible to resurrect sequence from the distant
past, with the most ancient protein resurrected dating back to
around 4000 Mya [173]. In any case, the approach of ASR, so far,
has been mainly applied to reconstruct ancestral sequences from
Vertebrates [174], yeast and bacteria [106]; we will thus focus
our attention here on the few recent examples from plants, refer-
ring the reader to other excellent reviews for a more comprehen-
sive coverage of ASR studies in Vertebrates and microbes
[25,26,28].

A recent application of ASR in plants is the study of the ligand-
receptor interactions in the self-incompatibility (SI) of Brassi-
caceae. This is a spectacular example of a diversified allelic series
in which numerous highly diverged receptor-ligand combinations
are segregating in natural populations [175]. Using in planta ances-
tral protein reconstruction, the study demonstrated that two allelic
variants, segregating as distinct receptor-ligand combinations,
diverged through an asymmetrical process whereby one variant
has retained the same recognition specificity as their (now extinct)
putative ancestor, while the other has functionally diverged and
now represents a novel specificity no longer recognized by the
ancestor.

Another recent study focused on the ancestral reconstruction of
protein interaction networks [176]. The investigation adopted, as a
reference timepoint, the gamma genome polyploidization event
which occurred at the origin of the core eudicots. To better under-
stand the impact of this whole-genome duplication, the interaction
networks of ancestral MADS domain transcription factors were
reconstructed from just before and just after the gamma duplica-
tion event. The networks were then directly compared to the
extant networks of Arabidopsis thaliana and tomato (Solanum lycop-
ersicum). It was found that the gamma duplication expanded the
MADS domain interaction network more strongly than subsequent
genomic events; it strongly rewired MADS domain interactions
allowing for the evolution of new functions, as well as installing
robustness through new redundancy. Intriguingly, post gamma,
the network evolved from an organization around a single hub to
a network organized around multiple hubs with well-connected
proteins losing, rather than gaining, novel interactions.

Given the possibility ASR affords in recreating the most proba-
ble ancestral sequences, it is not surprising that RuBisCo (Ribulose-
1,5-bisphosphate carboxylase-oxygenase), namely the protein cat-
alyzing the first step of CO2 assimilation in plants has been the tar-
get of an in-depth evolutionary investigation. ASR allowed the
biochemical characterization of a predicted Precambrian variant
[177], which was likely present one billion years ago. The findings
of this study revealed the divergent evolutionary paths taken by
eukaryotic RuBisCos with respect to their bacterial homologs.
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Eukaryotic enzymes gradually developed improved specificity for
CO2, while bacterial homologs had increased rates of carboxyla-
tion. This was consistent with the in vivo analysis that showed
the preferential association of ancestral RuBisCOs into modern-
day carboxysomes, which constitute the cyanobacterial organelles
responsible for the CO2-concentrating mechanism.

Perhaps one of the most interesting avenues for the application
of ASR, although still relatively unexplored, is that of secondary
metabolism of plants. The evolution of metabolic diversity is
hardly tractable without the reference points represented by the
ancestral enzyme sequences. This is especially true in plant gen-
omes, where the impact of gene duplications led to a phenomenal
chemical diversity and enzyme promiscuity. Two papers from the
lab of Todd Barkman represent seminal works in which ancestral
protein resurrection was used to determine how enzyme function
(i.e., substrate specificity) emerged along evolution. In the first of
these papers, Huang et al. investigated the role for ancestral func-
tional variation in determining modern-day enzyme specificity in
the salicylic acid/benzoic acid/theobromine (SABATH) methyl-
transferase lineage [35]. In each case, they demonstrated that
ancestral non-preferred activities were improved upon in a daugh-
ter enzyme after gene duplication, suggesting that these functional
shifts were likely coincident with positive selection. In their second
study, Huang et al. revealed that the convergent evolution of caf-
feine in plants [178] was partially the result of the co-option of
exapted ancestral enzymatic activities which were maintained
for 100 Mya [34]. These exaptations probably became fixed, and
rose to prominence, after the initial steps of the caffeine pathway
(s) evolved.

That of evolution of plant metabolism is indeed one of the fields
where ASR has allowed recently some groundbreaking discoveries.
The emergence of a new protein function is generally explained as
the partition into the paralogs of activities already present in a gen-
eralist ancestral enzyme; in this way, subsequent evolutionary
pressures could then act to optimize the individual protein func-
tions in the descendant lineages. This has been the case which
probably acted during the evolution of the iridoid synthase (ISY)
activity in Nepetinae, a group of plant species part of the larger
mint family, Lamiaceae. Iridoids are a class of monoterpenes
derived from 8-oxogeranial (8-OG), and generally act as defensive
molecules against herbivores. In particular, nepetalactones, a sub-
class of iridoids derived from 8-OG through the action of iridoid
synthase, are volatiles monoterpenes which mimic pheromone
activities and induce behavioural responses in cats and other
Felids. While phylogenetic reconstruction of ancestral states posits
the existence of iridoid biosynthesis at the base of Lamiaceae, the
capacity to synthesize these molecules has been lost in most of
the Nepetoiadeae (a large subgroup of Lamiaceae), to later reap-
pear only in species of the Nepeta genus. ASR has been used to
reconstruct the sequences of the ancestral PRISE, the gene family
to which ISY belongs. The characterization of these ancestral forms
was in support of an evolutionary model where the ancestral PRISE
had only a minor ISY activity which was subsequently optimized,
through positive selection acting on one of the paralogs, to become
preponderant in extant enzymes of the Nepeta genus [49].

De novo evolution, that is, the emergence of an entirely new
function in the descendant which was absent in the ancestral gene,
is instead generally considered a rare instance in the emergence of
protein function. A recent investigation on the evolution of chal-
cone isomerase (CHI, an enzyme catalysing an early step in the
biosynthesis of plant flavonoids) has instead provided evidence
for the de novo evolution of the catalytic function of CHI from a
non-enzyme ancestor. Extant CHIs catalyse the enantioselective
isomerization of chalconaringenin to (2S)-naringenin, and are phy-
logenetically related to two protein families devoid of isomerase
activity: the CHI-like proteins (CHIL), whose accumulation gener-
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ally correlates with that of CHIs, and the more distant fatty acid
binding proteins (FAPs). Reconstruction of the ancestors of CHIs
(ancCHI), CHILs (ancCHIL) and of the ancestor predating the split
between CHIs and CHILs (ancCC) showed that none of these pos-
sessed isomerase activity. The study also identified the three foun-
der amino acid substitutions which gradually imparted the
enzymatic activity to extant CHIs starting from the non-catalytic
ancestor (ancCC). These three mutations showed moderate epista-
sis, as each of them gradually increased isomerase activity irre-
spective of the order in which they occurred in their non-
catalytic ancestor [179].

Partioning and improvement of side activity, as in the case of
iridoid synthase or SABATH methyltransferases, or evolution de
novo, as for chalcone isomerase, are perhaps only two specific tra-
jectories from a wider spectrum of intermediate possibilities which
range from strict partitioning to exclusive evolution de novo.
Although it is attractive to classify trajectories of protein functional
evolution into the distinct classes of sub- and neofunctionalization
of gene paralogs, ASR studies have generally provided evidence for
the co-occurrence of different phenomena, yielding a highly com-
plex scenario for the emergence of new protein functions. Some
models, and empirical data [180], blur the distinction between
neo- and subfunctionalization [37], as the two modalities may
co-occur during the evolution of a protein family. Although the
simple partition of enzymatic activities from a generalist/promis-
cuous ancestor seems to be the most common scenario, at least
from the ASR studies conducted to date, evolution of an entirely
new activity - from an ancestor devoid of such activity - appears
to be neither difficult nor rare. Also, when a new function emerged
along an evolutionary branch, be it a new catalytic activity or allos-
teric interaction, very few large-effect amino acid substitutions
were sufficient for the functional shift, with the remaining muta-
tions having (at best) an ancillary role in the fine tune and further
optimization of the new function [37,181].

Whilst all of the examples presented above both provide strong
testament to the power of ancestral protein reconstruction (as well
as telling fascinating biological stories in their own right), they
merely represent a minor proportion of the plant-based studies
which could be described as fulfilling the requirements of the func-
tional synthesis. Genome-wide association studies (GWAS) and
fitness-landscape modelling represent in fact alternative
approaches combining, as does ASR (although on a different scale),
the power of molecular with evolutionary biology. As these two
approaches are currently being far more utilized by the plant com-
munity, we shall detail them below.
5. Alternative functional syntheses of evolutionary and
molecular biology

As we said earlier, ancestral sequence reconstruction has been
seldom attempted in plants, but there are essentially two
approaches that represent alternative functional syntheses to that
provided by ASR: GWAS and fitness landscape studies. Both are
arguably more commonly applied than ancestral protein resurrec-
tion, but their pre-eminence and utility is particularly notable in
plants.

The basic principle of a GWAS, which was initially developed for
use in medical genetics, is that the presence of nucleotide polymor-
phisms can be associated with the presence of variance in a given
trait [182]. Examples of its use in Arabidopsis include studies into
the defense metabolite glucosinolate [183,184], enzyme activities
[185] and metabolite levels [186,187] of primary and secondary
metabolism. A detailed evaluation of floral secondary metabolism
in a subset of these ecotypes via LC-MS revealed that approxi-
mately half of them contained a set of 18 previously unidentified
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metabolites [188]. Detailed analysis revealed that these com-
pounds are phenylacylated flavonols, and the evaluation of recip-
rocal Col-0 and C24 introgression lines revealed, respectively,
gain- and loss-of-function mutations. Thus, these studies allowed
cloning of the responsible gene and subsequent analysis of its evo-
lutionary origin, as well as a functional evaluation of the role of
these metabolites in conferring UV-B tolerance [188]. Maintaining
this theme, the Arabidopsis accession Pna-10 is a naturally occur-
ring deletion mutant of the enzymes sinapoylglucose:malate
sinapoyltransferase and sinapoylglucose:anthocyanin sinapoyl-
transferase that are responsible for the biosynthesis of sinapoyl
malate, which also confers UV-B tolerance [189]. Similarly, a novel
amino acid racemase was discovered through the exploration of
440 natural accessions of Arabidopsis and N-malonyl-D-allo-
isoleucine was identified, opening up the opportunity to explore
the largely untapped metabolism of D -amino acids [190]. Whilst
these examples provide interesting insights into how protein func-
tion can be assigned from GWAS they represent only a minor sub-
set of what has been achieved to date. Fortunately, much of this
has been databased in the AraPheno and AraGWAS Catalog [191],
which also includes RNA sequencing and knockout mutation data.
Given that spurious associations arising from historical relation-
ships and selection patterns can occur [192], molecular validation
of GWAS experiments is needed to provide proof that the associa-
tions between genotype and phenotype are indeed reflective of a
causal relationship. Unsurprisingly, similar experiments have been
employed in crop species with such experiments being instrumen-
tal in defining genes, proteins and metabolic pathways underlying
glycoalkaloid, flavonoid, terpene and acyl sugar biosynthesis in
tomato [193–198], whilst flavonoid and terpenoid metabolism as
well as vitamins have been well studied in the cereal crops maize,
rice and wheat [199–203] and indeed many other species including
melon, watermelon (family Cucurbitaceae), sunflower (family
Asteraceae) and Rosaceae (for recent reviews see [44,45,204]), with
many of the genetic polymorphism-trait associations being either
cross-validated in alternative populations or confirmed via direc-
ted transgenic or gene editing approaches. As for the examples
described above for Arabidopsis, many of these examples also
include the identification of species-specific genes, enzymes or
metabolites and thereby represent a rich source of information
regarding the evolution of protein function. Indeed, two recent
studies in wheat [205] and tomato [206] explicitly studied the
change in the metabolome on the domestication of these species
with the latter study taking a multi-omics approach integrating
genomics, transcriptomics and metabolomics. Whilst domestica-
tion is largely characterized by altered gene expression [207], nota-
ble changes in protein coding sequences have additionally been
identified, including the loss of efficiency of the cell wall invertase
in tomato [208], the origin of six-rowed barley [209], the reduction
of grain shattering during rice domestication [210] and the free-
threshing trait in wheat [211]. As alluded to above, all these cases
are essentially examples of Thornton‘s functional synthesis even if
they only cover a mere percentage of the evolutionary timescale
achieved by studies of ancestral sequence reconstruction.

The second approach, which is increasingly being applied in
plants, is that of developing fitness consequence maps. These
maps, from an evolutionary perspective, are able to predict which
mutations are beneficial in terms of improving fitness-related
traits, whilst from a molecular biological one provide information
regarding which area of a genome impacts on cellular function
[212]. Following such strategies, fitness effect predictions can be
made based on theories of population genetics, quantifying either
the proportion of sites under selection or the strength of selection
acting on collections of sites in the genome. For this purpose, four
approaches are generally taken. First, constraint-based models that
use phylogenetic and homology-based inference can be employed
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to identify sites with low rates of substitution across a phylogeny
[213,214]. However, in some cases this approach might not be
applicable. For example, in plant genomes, transcription factor
binding sites experience a more rapid evolutionary turnover
[215], limiting the use of the constraint-based approaches. The sec-
ond class of approaches is that of site frequency spectra (SFS),
which use histograms of allele frequencies to estimate the magni-
tude of fitness effects in pre-defined sites in comparison to a neu-
tral class. In doing so, this approach distinguishes sites subject to
selection, allowing estimation of fitness effects to be made [216].
Frequency spectra are, by nature, limited by the prior site defini-
tion, but have nevertheless proven effective in defining the accu-
mulation and distributions of deleterious mutations in maize
[217] as well as in sunflower and other crops from the Asteraceae
family [218]. Thirdly, comparative population genomic methods
use intra-specific diversity and between-species divergence rates
to estimate the proportion of sites subject to selection [219] or
the magnitude and orientation of the fitness effect [220]. Finally,
effect class methods are used to predict the impact of a mutation
on fitness/function by considering properties unique to each effect
class, thereby returning a score indicating the likelihood that a
given mutation will impact function [221]. That said, most power-
ful are methods that combine population genomics and divergence
data, such as the fitCons method which is based on Natural Selec-
tion from Interspersed Genomically Coherent Elements (INSIGHT;
[222]). In the rest of this section, we will discuss some examples
from five seminal papers utilizing fitness consequence models -
two in yeast, one in the model plant Arabidopsis thaliana and two
in the important crop plant rice. In the first of these Hietpas
et al. [161] exploited deep sequencing to experimentally determine
the fitness of all possible individual point mutations for a nine
amino acid region of the chaperone Hsp90. The results from this
experimental analysis were consistent with the neutral theory,
that is, with the majority of amino acid substitutions found to be
deleterious and with the remaining mutations being essentially
neutral or nearly neutral and governed by genetic drift. More
recently, this work was expanded to encompass a large and com-
plete multiallelic intragenic fitness landscape of 640 systematically
engineered mutations in the protein. Intriguingly, they report local
ruggedness in the fitness-landscape topography as well as the exis-
tence of epistatic hotspot mutations which combine to render pre-
dictability inherently difficult in the absence of mutation-specific
information [223]. The study in Arabidopsis is even more epic. In
their work Exposito-Alonso et al. grew 517 accessions in Spain
and Germany and exposed them both to high and low precipitation
[224]. In this experiment, hot-dry conditions resulted in the death
of 63% of the lines; a significant proportion of this climate-driven
natural selection was predictable from signatures of local adapta-
tion. This study thus both provided a powerful functional evolu-
tionary study but also, as the authors themselves state, the
predictions generated there could represent a first step in the
design of conservation strategies to catalyse evolutionary rescue
of species. Finally, two papers on rice from the group of Michael
Purugganan merit discussion. The first of these studies [46] used
the INSIGHT approach to infer fitness-consequence scores from
nine functional genomics and epigenomic datasets. These scores
were then integrated with genome-wide polymorphism and diver-
gence data from 1477 rice accessions and 11 reference genomes.
This massive study concluded that approximately 9% of the gen-
ome would have fitness consequences if mutated in more than half
of the bases. It also demonstrated that 2% of the genome showed
evidence of weak negative selection, predominantly located in can-
didate regulator loci such as enhancer elements. In their second
investigation [225], gene expression in rice was analyzed in order
to estimate the type and strength of selection on the levels of 15
000 transcripts. The results indicated that variation in expression
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appears neutral or under very weak stabilizing selection in wet
paddy conditions but that selection was much stronger under con-
ditions of drought. It furthermore showed that drought selected for
early flowering and a higher expression of a MADS transcription
factor known to regulate this trait. These five examples are all
linked by the fact that they associate changes in fitness directly
to their molecular bases, and in contrast to ancestral protein resur-
rection, they often do so without experimentally accessing protein
function directly. Of all the alternative functional syntheses we
presented here, the fitness landscape maps represent perhaps
powerful companion approaches to ASR, in that they allow to fur-
ther increase the resolution of ‘‘vertical” comparisons (e.g., ances-
tral Vs extant sequences) with the dimension of comparative
population genomics of large collection of sequences from extant
species. These methods all rely essentially on the comparison
between intra- and inter-specific divergence data (of extant spe-
cies) to compute the proportion of genomic sites subject to selec-
tion (either in the coding part of the genome, as when applied on
large-scale gene expression data [225], or in the non-coding
regions [226]). In doing so, fitness landscape maps could be used
to further validate the sites under selection obtained from the clas-
sical branch-site tests in ASR ([34,35,49,227,228]), which calculate
the codons under positive selection along the lineages of the phy-
logenetic tree, and verify the persistence of these selective con-
straints, using comparative genomic methods [212], in the recent
diversification characterizing the populations of extant species.
This combined approach would significantly reinforce the conclu-
sions of an ASR study extending the validity of its functional infer-
ences to the natural diversity present in modern species.
6. Summary and outlook

Since its initial inception, the strategy of resurrecting genes has
allowed exciting discoveries into the mechanisms of molecular
evolution. The approach of ASR adds in fact a further dimension
to the comparison of extant sequences, as it allows to trace the his-
torical genesis - and impact - of amino acid substitutions on pro-
tein function. In doing so, ASR, especially when combined with
deep mutational scanning [229], has the power to explore preva-
lence and implications of intragenic epistasis during the course
of evolutionary history, an outcome that is not normally accessible
from the horizontal analysis of extant sequences. The alternative
functional approaches highlighted here (GWAS and fitness land-
scape studies) represent complementary approaches to investigate
evolutionary phenomena at different scales. In the plant field,
genome-wide association studies, especially when applied on large
genotype collections including wild relatives and domesticated
forms, may allow to identify genomic regions targeted by domesti-
cation processes or subjected to local adaptation. In doing so,
GWAS may provide, with respect to ASR, correlative (and, if the
results are then validated) also functional insights on very recent
evolutionary processes (plant domestication is considered to have
occurred in the last 10–12000 years, [230]). Fitness landscape
studies, and in particular those based on comparative population
genomics, have been crucial in detecting, for example, regions tar-
geted by positive selection.

We think an interesting next step in the development of ances-
tral reconstruction approaches could be the analysis of non-coding
sequences. Protein (or, more generally, coding sequences) have
been the primary focus of ASR so far given the massive develop-
ment of probabilistic models to describe their sequence evolution.
We now know, however, that transcriptional regulation and a sig-
nificant degree of selection constraints lie in the non-coding por-
tion of a genome [46,226], and there is now an increasing
interest to explore the molecular evolution trajectories taken by,
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for example, promoters and transcription factor binding sites.
Indeed, one of the first studies of ancestral reconstruction was tar-
geted at a LINE-1 sequence, a transcriptional inactive retrotrans-
poson dispersed in the mouse genome which is not capable to
transpose anymore. Once the sequence of LINE-1 was recon-
structed, by parsimony, and transfected into mouse cells, it showed
instead promoter activity [231]. With the availability of alignment
tools and sequence evolution models specifically designed for non-
coding sequences [232–234], the scenario of reconstructing ances-
tral promoters, transposons, and cis-regulatory sequences opens up
exciting possibilities to explore, in combination with protein resur-
rection, the evolution of molecular trajectories adopted by gene
regulatory networks.
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