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ABSTRACT It has been hypothesized that androgens respond to the social interactions as a way to adjust the
behavior of individuals to the challenges of the social environment in an adaptive manner. Therefore, it is
expected that transient changes in circulating androgen levels within physiological scope should impact the
state of the brain network that regulates social behavior, which should translate into adaptive behavioral
changes. Here, we examined the effect that a transient peak in androgen circulating levels, which mimics
socially driven changes in androgen levels, has on the forebrain state, which harbors most nuclei of the social
decision-making network. For this purpose, we successfully induced transient changes in circulating
androgen levels in an African cichlid fish (Mozambique tilapia, Oreochromis mossambicus) commonly used
as a model in behavioral neuroendocrinology by injecting 11-ketotestosterone or testosterone, and
compared the forebrain transcriptome of these individuals to control fish injected with vehicle. Forebrain
samples were collected 30 min and 60 min after injection and analyzed using RNAseq. Our results showed
that a transient peak in 11-ketotestosterone drives more accentuated changes in forebrain transcriptome than
testosterone, and that transcriptomic impact was greater at the 30 min than at the 60 min post-androgen
administration. Several genes involved in the regulation of translation, steroid metabolism, ion channel
membrane receptors, and genes involved in epigenetic mechanisms were differentially expressed after
11-ketotestosterone or testosterone injection. In summary, this study identified specific candidate genes that
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may regulate socially driven changes in behavioral flexibility mediated by androgens.

Androgens are essential for reproduction. They influence morphol-
ogy and physiology traits and have a pivotal role in the modulation of
reproductive and also aggressive behaviors (Oliveira 2004). In turn,
the social environment is known to modulate the circulating levels of
androgens (Oliveira 2004, 2009). The Challenge Hypothesis has been
proposed to explain androgen changes throughout the life history of
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an animal due to environmental (e.g., photoperiod) and social cues
(Wingfield et al. 1990; Goymann et al. 2007). This framework was
initially suggested based on comparative data from bird species, but
currently has been tested across all vertebrate taxa, including teleost
fish (Oliveira 2004; Hirschenhauser and Oliveira 2006). According to
this hypothesis, circulating androgens have their lowest levels in the
non-breeding stage, while in the breeding season quite dynamic
patterns are found. Herein, androgens vary between a breeding
baseline (triggered for instance by day length) and a physiological
maximum elicited by sexual interactions or aggressive confronts with
conspecifics (Goymann 2009). So, the social modulation of androgens
could be a proficient way of increasing androgens only when nec-
essary, preventing extended high levels (and potentially harmful) in
circulation. Indeed, despite the inherent benefits of androgens on the
fitness of an animal (e.g., spermatogenesis, secondary sex character-
istics, mating success), elevated levels of androgens have relevant
drawbacks. They interfere with paternal care and pair bonding, are
energy-consuming and have been associated to immunosuppression
and oncogenic effects (Wingfield et al. 2001; Oliveira 2004).
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At a functional level, these socially driven changes in circulating
steroid levels have been recognized to influence subsequent behaviors
(Oliveira 2009). For instance, after a fight winner and loser effects
(i.e., animals which experience victory have a higher probability of
winning subsequent matches and defeated animals are more likely to
lose subsequent fights, respectively) have been described in many
species, including teleost fish (Hsu et al 2006). Interestingly, the
winner effect seems to be mediated by androgens. In studies using the
California mice (Peromyscus californicus) males that experience prior
winnings have a transient increase of androgen levels (Oyegbile and
Marler 2005) and are more aggressive in next fights (Trainor and
Marler 2001). Furthermore, injecting androgens in castrated Cali-
fornia mice males after winning a fight induces an increase in
aggression in subsequent agonistic encounters in opposition to
vehicle-injected males (Trainor et al. 2004). Moreover, in an African
cichlid fish (Mozambique tilapia, Orechromis mossambicus) the
administration of androgen antagonists blocks the winner effect
(Oliveira et al. 2009). Altogether, these results demonstrate that
androgens have a role in the integration of past social encounters,
regulating aggression in future interactions (Wingfield 2005). Actu-
ally, it is the integration of information related to the social envi-
ronment with internal features, such as previous social experiment
and organism condition, which allows individuals to respond adap-
tively to changing social environments (Taborsky and Oliveira 2012;
Oliveira and Oliveira 2014). Hormones, such as androgens, seem to
be major players in this process acting as neuromodulators of neural
circuits underlying social behavior (Oliveira 2009).

There is a growing body of literature that has identified a set of
brain nuclei (aka Social Decision Making Network, SDMN), that
together control social behavior (Goodson 2005; O’Connell and
Hofmann 2011). The SDMN is constituted by interconnected core
nodes whose concerted activity patterns correlate with the expression
of distinct social behaviors, such as aggressive, mating or parental
behaviors (e.g., Newman 1999; O’Connell et al. 2012; Maruska et al.
2013). These brain nodes are mainly located in the forebrain and
express sex-steroid and neuropeptide receptors, allowing the neuro-
modulation of the network by these hormones, including androgens
(Goodson 2005; O’Connell and Hofmann 2011; Oliveira 2012).
Moreover, the SDMN seems to be evolutionarily conserved across
vertebrates (O’Connell and Hofmann 2012), and it has been exten-
sively studied in non-mammalian species such as birds, reptiles and
also teleost fish (e.g., Teles et al. 2015; Roleira et al. 2017; Kabelik et al.
2018; Eswine et al. 2019). Thus, androgen neuromodulation of the
neurogenomic sate of the SDMN is a candidate mechanism by which
socially-driven transient changes in circulating androgens influence
experience-driven behavioral flexibility. According to this hypothesis,
changes in gene expression patterns of the SDMN should result in
contrasting brain transcriptomes that would translate into different
behavioral patterns (Cardoso et al. 2015), which highlights the
relevance of transcriptomic studies in disclosing rapid shifts in the
state of the neural network.

The aim of this study is to investigate the effect of a physiological
and transient increase of androgens, that mimic the changes in
androgen levels driven by social interactions, in the forebrain tran-
scriptome. For this purpose, we characterized brain gene expression
temporal patterns after pharmacologically manipulating animals’
hormonal states. We used Mozambique tilapia, an African cichlid
fish with a lek-mating system (Fryer and Iles 1972). In this species,
males exhibit two contrasting phenotypes. Dominants are usually
larger, dark colored and establish territories to which they attract
females and mate; while subordinates are faded color similarly to
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females and are not able to hold territories (Oliveira and Almada
1998). In the Mozambique tilapia, androgens influence social behav-
ior and also respond to the social environment (Oliveira 2009). In this
study, we injected dominant male fish either with 11-ketotestosterone
(KT) or testosterone (T) and compared with a group injected with
vehicle solution. We focused on the forebrain because the expression
of androgen receptors in the forebrain of teleost fish is broad (e.g.,
P. notatus, Forlano et al. 2010; Carassius auratus, Gelinas and Callard
1997; A. burtoni, Harbott et al. 2007; Munchrath and Hofmann
2010). We collected samples at different sampling times (30 min and
60 min) after treatment injection to detect transient changes that
occur in the gene expression patterns by using the RN Aseq technique.
The importance of characterizing the temporal dynamics of brain
activity in behavioral genomics has been highlighted by some authors
(Rittschof and Hughes 2018; Renn and Aubin-Horth 2019). Our
hypothesis is that the genomic response would be sustained since it is
known that a cascade of events occurs in response to relevant stimuli,
beginning with the activation of pre-existing proteins (e.g., phos-
phorylation of cAMP response element-binding protein) that elicit
the rapid expression of immediate early genes which in turn act as
transcription regulators of genes later expressed (Clayton 2000, 2013;
Cardoso et al. 2015). As a consequence, we expected the existence of
multiple waves of gene expression that would be extended
from minutes to hours and wanted to determine if there is a unitary
genomic response or either different sets of genes are expressed at
distinct time stages.

MATERIALS AND METHODS

Animals and housing

O. mossambicus adult males from a stock held at ISPA were used in
this experiment. Fish were maintained in glass tanks (120 x 40 x
50 cm, 240 1) with a fine gravel substrate. Tanks were supplied with a
double filtering system (gravel and external biofilter) and constant
aeration. Water quality was analyzed twice per month for nitrites
(0.2-0.5 ppm), ammonia (<0.5 ppm, Pallintest kit) and pH (6.0 -
6.2). Fish were kept at a temperature of 26 * 2° a 12L:12D
photoperiod, and fed with commercial cichlid floating sticks.
Ninety-nine focal dominant males (weight: mean body mass *
SEM: 44.64 g = 1.00 g; mean standard length = SEM: 11.23 cm
*+ 0.12 cm; age: 2.5 - 3 years old) were used in this study. There was no
difference in body size or weight between treatments (see belows; t(18)
= 1.767, P = 0.094).

Males’ social status was monitored several times per week and
territorial males were identified based on nuptial black coloration and
exhibition of reproductive behavior, including territory defense
and digging of a spawning pit in the substrate, for at least 1 week
(Oliveira and Almada 1996).

Experimental setup

Subjects were lightly anesthetized (MS-222, Pharmagq; 300 ppm) to be
weighted and measured and then individually housed in experimental
tanks. Each experimental tank (50 x 25 x 30 cm, 40 L) had opaque
lateral walls to prevent male’s visual contact with adjacent tanks.
After 1 week of isolation, focal males were arbitrarily assigned to one
of the following treatments: intra-peritoneal (i.p.) injection with (1)
11-ketotestosterone (KT-treated group); (2) testosterone (T-treated
group); or (3) vehicle (V-treated group). Focal males were injected,
returned to experimental tanks and sampled 15, 30 or 60 min after
injection to collect blood (sample size of 8-12 per group) and/or
brain. A control group, similarly isolated for one week but not
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injected, was sampled for blood to measure baseline androgen levels.
To reduce hormonal fluctuations associated with natural circadian
rhythm, the experiment was conducted in the morning.

11-ketotestosterone dose (Steraloids, 0.02 g/g BW) was selected
based on a pilot experiment where three different doses were tested in
castrated male fish. We selected the dose that produced a significant
physiological increase in circulating levels (Figure S1) similar to the
one observed for this species in male-male interactions (Félix et al.
2020). Testosterone (Steraloids) concentration used was also 0.02 p.g/g
based on a previous study (Huggard et al. 1996: in this experiment, by
using goldfish, Carassius auratus, several testosterone dosages, at
physiological levels, were administered in vivo and resulted in the
stimulation of gonadotropin subunit gene expression in the fish
pituitary proving to be involved in steroidogenic regulation;
0.02 pg/g was the lowest concentration used). Stock hormones were
dissolved in 100% ethanol to a concentration of 0.5 mg/ml and then
diluted in saline solution (0.9% sodium chloride) until their final
concentration. Vehicle solution consisted in 0.05% ethanol in saline
solution.

Blood sampling

Males were anesthetized (MS-222, Pharmag; 450 ppm) and blood was
collected from the caudal vein using heparinized 25-gauge needles.
Blood sampling always took place within 4 min of the induction of
anesthesia to prevent possible effects of handling stress on steroids
levels (Foo and Lam 1993). Blood samples were centrifuged (10 min,
3000 g, 4°) and plasma was stored at — 20° until further processing.

Hormone assays

11-ketotestosterone (KT) and testosterone (T) free steroids were
extracted from plasma samples by adding diethyl-ether (Merck).
Samples were then agitated for 20 min, centrifuged (5 min, 163 g,
4°) for phase separation and kept at -80° for 15 min to freeze the water
phase and separate the ether fraction (containing the free steroid).
This process was repeated twice to obtain higher extraction efficiency.
Ether fraction was evaporated with a speedvac (Savant SC1101) and
the dried organic phase was re-suspended in phosphate buffer.
Steroid concentrations were measured by radioimmunoassay using
a T antibody from Research Diagnostics Inc (#WLI-T3003, rabbit
anti-testosterone). The antibody used for KT was kindly donated by
D. E. Kime and the corresponding specificity table was published in
Kime and Manning (1982). The reactive marker used for T was from
Amersham Biosciences ([1,2,6,7-3H] Testosterone, #TRK402-250
wCi) while KT marker was produced in-house from marked cortisol
(Kime and Manning 1982). Inter-assay variabilities were 5.3% for KT
and 8.2% for T. Intra-assay variation coefficients were 2.4%, 2.1% and
7.6% for KT and 8.9%, 8.2% and 4.5% for T.

Tissue processing and RNA extraction

We randomly selected 5 focal males for brain analysis from each one
of the following experimental treatments: KT-group (2 sampling time
points: 30 min and 60 min), T-group (2 sampling time points: 30 min
and 60 min) and V-treated group (2 sampling time points: 30 min and
60 min). In total we killed 30 individuals, with an overdose of MS-222
(Pharmag; 800 ppm). These sampling times take in consideration the
time course of the socially driven androgen response in O. mossam-
bicus which shows two peaks, an earlier one at 5-15 min and a late one
at 60-90 min, and aim to assess the effects of the early androgen peak
on brain state. Although no data are available for O. mossambicus on
the time lag between the circulating and brain androgen peak in
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response to social interactions, it is known from other species that
steroids in the brain peak 20-30 min later than in plasma (Droste et al.
2008; Remage-Healey et al. 2008). After sectioning of the spinal cord,
forebrain area (olfactory bulbs, telencephalon and diencephalon) was
dissected under a stereomicroscope (VWR SZB200) and collected in
500 wl of Qiazol lysis buffer (RNeasy Lipid Tissue Mini Kit, Qiagen).
Samples were stored at -80° until RNA extraction. Total RNA was
extracted using RNeasy Lipid Tissue Mini Kit (Qiagen) with some
protocol adjustments. Briefly, samples were homogenized with a
pellet pestle motor (Kontes) and added 100 pl of chloroform. In-
cubation times were increased in order to maximize RNA recovery
and in the end samples were diluted in 50 pl of RNase-free water.
DNase digestion was performed to guarantee samples free of DNA
contamination. RNA quantity was assessed using a Nanodrop spec-
trophotometer (Thermo Scientific) and RNA integrity was confirmed
using Bioanalyzer (Agilent). RNA was stored at -80° until processing.

Library preparation, RNA sequencing and reference
genome mapping

cDNA was generated with SmartSeq2 protocol (Picelli ef al. 2014) and
libraries were prepared with an optimized Nextera protocol (Baym
et al. 2015).

RNA libraries of the 30 samples were pooled and sequencing was
performed by the Centre for Genomic Regulation (CRG, Barcelona,
Spain). cDNAs were amplified according to the Illumina RNA-Seq
protocol and sequenced in three lanes using the Illumina HiSeq
2500 v4 system as paired-end 75-bp reads so that 200-300 million
reads per lane (i.e., 20-30 Mio reads/sample) could be achieved.

Quality of the data were checked with FASTQC software 0.11.7
(Andrews 2010). Cutadapt 1.18 (Martin 2011) was used to remove
low quality reads (quality-cutoff set to 20) and adapter sequences
keeping only paired end-reads having a minimum length of 30 bp.
Clean reads were mapped onto the Nile tilapia, Oreochromis niloticus,
reference genome (Oreochromis_niloticus.Orenil1.0.92) using Hisat2
2.1.0 (Kim et al. 2015). Quality control of alignments was ascertained
with Qualimap 2.2.1 (Okonechnikov et al. 2016) and the table of
counts was generated with FeatureCounts 1.6.1 (Liao et al. 2014). The
RNAseq produced a total number of clean reads that ranged between
10.06 and 29.2 million reads. About 8.56 to 26.16 million reads were
mapped onto the genome.

Data analysis

Hormone analysis: Normality of steroid data were tested by analyz-
ing skewness and kurtosis values (Kline 1998) and running Shapiro-
Wilk tests. Hormone variables were log-transformed to meet parametric
assumptions. Outliers were identified using a generalized extreme
studentized deviate procedure (P = 0.05, maximum number of
outliers set to 20% of the sample size) and removed from data.
Homoscedascity was confirmed with Levene’s test. Hormone levels
(KT, T) were analyzed using planned comparisons to compare steroid
levels between each time-point (15, 30 and 60 min) and the baseline
(no-injection group) for each treatment (KT-, T- or V-treated
groups). P-values were adjusted using the Benjamini and Hochberg
(1995) procedure. Effect sizes were computed for planned compar-
isons (Cohen’s d). Statistical analysis was performed using R (R Core
Team 2015) and STATISTICA v.10 (StatsoftInc).

Differential gene expression analysis: Gene counts were imported to
R, and edgeR 3.18.1 package was used for gene expression analysis
(Robinson et al. 2010). We filtered genes with very low levels of
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expression levels (= 1 CPM) and retained genes expressed in at least
3 samples. An exploratory analysis was performed by Principal
Component Analysis (PCA) to check relative similarities among
replicates. One of the samples from the V-treated group was iden-
tified as an outlier and excluded from further analyses (Figure S2).

Differentially expressed (DE) genes were determined for each
experimental group (KT- and T-treated groups) using the V-treated
group as a reference. Counts were normalized using the TMM
normalization method and the generalized linear model (GLM)
likelihood ratio (LR) test for significance was implemented in edgeR
(Robinson et al. 2010) for each time point separately (30 min and 60
min). P-values were adjusted for multiple testing using false discovery
rates (FDR) with the Benjamini and Hochberg (1995) procedure, and
genes with an FDR < 0.1 were considered as being differentially
expressed. For visualization of the global expression patterns of DE
genes among treatment groups, a hierarchical clustering analysis was
performed for each time point. The reliability of the hierarchical
cluster was assessed by 1,000 bootstrap resampling of the expression
values using the R package pvclust 2.0 (Suzuki and Shimodaira 2006).
Heatmaps were produced with the hclust function in R, adapted to
produce a hierarchical clustering of Z-transformed expression values
using Euclidean distance with complete linkage. A PCA was also
conducted to cluster samples by groups using DE genes (Figures S3
and S$4).

Tilapia gene annotation and gene ontology terms were obtained
from the ENSEMBL BIOMART database. GO term enrichment for
genes detected as differentially expressed were evaluated in GOstats
v2.42.0 (Falcon and Gentleman 2007), using a ‘conditional’ hyper-
geometric test with a P-value < 0.05. This method accounts for the
hierarchical relationships of GO terms, and hence, a formal correc-
tion for multiple testing cannot be applied due to the implicit
dependence between neighboring GO terms, which do not comply
with the independence of tests needed for correction of the p-values.
The relative contribution of GO enrichment data in terms of GO
classes they represent was visualized using the GO slim vocabulary
and the web tool CateGOrizer (Zhi-Liang et al. 2008).

The R package GeneOverlap 1.22 (Shen and Sinai 2019) was used
to assess the significance of the overlap between the DEG lists
obtained for the KT-group and the T-group.

Ethics statement

Experimental procedures used in this study were conducted in
accordance with the institutional guidelines for the use of animals
in experimentation and were approved both by the internal Ethics
Committee of ISPA and by the National Veterinary Authority
(Diregao Geral de Alimentagdo e Veterinaria, Portugal; permit num-
ber 0421/000/000/2013).

Data availability

Raw sequencing data were deposited in BioProject portal at NCBI
(BioProject ID PRJNA591471; http://www.ncbi.nlm.nih.gov/biopro-
ject/591471). Table S1 includes each sample library information such
as total number of reads and mapped reads. Table S2 contains gene
counts generated with FeatureCounts. Full gene lists and DEG gene
lists determined for the KT-treated group and using the V-treated
group as a reference are available in Table S3 and Table S4, re-
spectively for the 30 min and 60 min time points. Full gene lists and
DEG gene lists determined for the T-treated group and using the
V-treated group as a reference are available in Table S5 and Table S6,
respectively for the 30 min and 60 min time points. Table S7 contains
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the list of DEG genes which overlap between the KT-group and
T-group, for the 30 min time point. Table S8 contains the results for
the GO term enrichment for genes detected as differentially
expressed. Supplemental material available at figshare: https://
doi.org/10.25387/g3.11987283.

RESULTS

Hormone levels

The levels of KT and T changed significantly with time and treatment
(Table 1). Androgen treated fish (either KT-treated or T-treated) had
a significant increase above baseline of the injected androgen 15 min
and 30 min but not 60 min after administration (Table 1, Figure 1).
There were no differences in either KT or T in fish injected with
vehicle (V-treated group) (Table 1, Figure 1).

Forebrain genomic response at 30 min after

androgen administration

A total of 319 differentially expressed (DE) genes was observed in the
KT-treated group compared with the V-treated group, of which
104 were up-regulated and 215 down-regulated (Figure 2C, Table
$3). In the T-treated group, 101 DE genes were found compared with
the V-treated group, of which 26 were up-regulated and 75 down-
regulated (Figure 2C, Table S5). Eighteen genes were DE both in the
KT- and T-treated groups relative to the V-treated group (Table S7).
The overlap between the two DE lists (KT-group vs. T-group)
considering the whole set of genes in the genome was small but
statistically significant (P < 0.001, OR = 19.2), even though
the similarity between the two lists is very low (Jaccard similarity
index = 0.0).

Hierarchical clustering shows that although all V-treated individ-
uals clustered together according to their DE genes, KT-treated and
T- treated individuals did not cluster according to their DE genes
(Figure 2A). Principal component analysis showed that that the
treatments tend to separate, with the first component explaining
59.4% of the variance and separating the 3 treatments (Figure 2B),
whereas the second component describes 18.5% of the variance in DE
genes and allows separation between the V-treated and the androgen
treated groups.

The GO analysis (Table S8) found different biological processes,
cellular components and molecular functions enriched by DE genes
for KT- and T-treated groups. For up-regulated DE genes, KT-treated
group had enrichment of processes related to metabolism, carbohy-
drate metabolism, cell and catalytic and transporter activity, while
T-treated group had a predominant enrichment of processes related
to metabolism, development and cell differentiation (Figure 3). The
vast majority of down-regulated DE genes of the KT-treated group
were associated to metabolism and cell organization, cell and in-
tracellular and binding and catalytic activity, while for the T-treated
group, these genes were associated to transport, ion transport, cell and
transporter activity (Figure 4).

Forebrain genomic response at 60 min after

androgen administration

Only 1 differentially expressed (DE) gene was observed in the
KT-treated group compared with the V-treated group, which was
down-regulated (Table S4). In the T-treated group, 8 DE genes were
found compared with the V-treated group, 1 up-regulated and
7 down-regulated (Table S6). The DE gene observed in the
KT-treated group was not present in the list of DE genes obtained
for the T-treated group. Hierarchical clustering shows that although
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Table 1 Effect of time and treatment (KT, T or vehicle) on circulating hormone levels. Planned comparisons and effect sizes between the

baseline and the other time points for each treatment

Planned Comparisons

Androgen-treated group

Vehicle group (V)

Comparisons t p d t P d
KT
0 min vs. 15 min —4.681 <0.0001 2.089 —0.3361 0.7378 0.104
0 min vs. 30 min —-3.722 0.001 1.857 —1.362 0.355 0.514
0 min vs. 60 min —-1.126 0.396 0.578 0.7978 0.513 0.101
T
0 min vs. 15 min —-6.482 <0.0001 3.449 0.6376 0.5258 0.416
0 min vs. 30 min -2.715 0.025 1.486 0.2003 0.9461 0.339
0 min vs. 60 min —1.400 0.332 0.212 0.0678 0.9461 0.200

11-ketotestosterone (KT); testosterone (T); t-test estimate; d: effect size estimate (Cohen’s d); p: p-value after multiple comparison adjustment; statistically significant

values are in bold.

all except two individuals clustered following their treatment accord-
ing to their DE genes (Figure 5A). Principal component analysis
shows that that the groups tend to separate, with the first component
explaining 65.0% of the variance and separating all groups. The
second component describes 12.5% of the variance of DE genes
(Figure 5B).

We did not perform the GO analysis for the KT-treated group
since only 1 DE gene was observed in this group. For the same reason,
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the GO analysis for the T-treated group was performed only to the set
of down-regulated genes (Table S8) and identified that the vast
majority of down-regulated genes of the T-treated group were
associated to metabolism and catalytic/hydrolase activity (Figure 6).

DISCUSSION
Our results show that a physiological and transient increase of
circulating androgens, which mimics the transient androgen response

KT-treated group

V-treated group

Figure 1 Temporal pattern of androgen circulat-
ing levels of fish injected with vehicle (V-treated
group), 11-ketotestosterone (KT-treated group)
or testosterone (T-treated group). Sample size for
each point: 8-11 individuals. Values are mean *
standard error of the mean (SEM). A. 11-ketotes-
tosterone (KT) levels of V and KT-treated groups;
B. testosterone (T) levels of V and T-treated
groups; * P < 0.05; *** P < 0.001.
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Figure 2 Differences in forebrain gene expression patterns of fish injected with vehicle (V-treated group), 11-ketotestosterone (KT-treated group)
or testosterone (T-treated group) at 30 min post-injection: A. Heatmap of differentially expressed genes. Intensity of color indicates relative
expression levels of each gene (rows) in each treatment (columns), with blue representing downregulated transcripts and yellow upregulated
transcripts. For each cluster obtained with hierarchical clustering, unbiased p-values (value between 0 and 1 but here in %) can be seen above the
heatmap. These values were calculated via multiscale bootstrap resampling, indicating how strong the cluster is supported by data. B. Principle
Component Analysis (PCA) of DE genes of fish from the three treatment groups. C. Number of differentially expressed genes of fish injected with

11-ketotestosterone (KT-treated group) or testosterone (T-treated group) using a vehicle group (V-treated group) as a reference group.

to social interactions, induces significant changes in the pattern of
forebrain gene expression in Mozambique tilapia territorial males.
Individuals injected with KT experienced a transient increase of KT
levels and had a higher number of genes differentially expressed
relative to vehicle-treated fish, than individuals injected with T which
also had a transient increase of T levels. Moreover, in both androgen
treatments there were more genes differentially expressed in the
forebrain 30 min after the injection than in 60 min after the injection.
Together these results indicate that transient changes in circulating
KT have a higher impact in changes in the forebrain transcriptome,
which may underlie adaptive behavioral responses to social
challenges.

A growing body of research has adopted genomic scale gene
expression studies to unravel the brain mechanisms associated to
social interactions [e.g., mating behavior, (Lawniczak and Begun
2004); affiliative interactions: (Shpigler et al. 2019); agonistic inter-
actions: (Oliveira et al. 2016); social eavesdropping: (Lopes et al.
2015); mate choice: (Cummings et al. 2008)]. Specifically the tran-
scriptomic response to social challenges posed by brief territorial
intrusions have been described in a comparative manner across taxa
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[i.e. in the house mouse (Mus musculus), the threespined stickleback,
Gasterosteus aculeatus, and in the honey bee, Apis mellifera] and
genes related to hormones are commonly affected (Rittschof et al.
2014). On the other hand, the effect of chronic exposure to androgens
on the brain during development or in adulthood has been docu-
mented (Peterson et al. 2013; Ghahramani et al. 2014). However, to
our knowledge, the specific effect of an acute and transient peak of
androgens, like the one observed in response to social interactions, on
the brain, has not been investigated.

In teleost fish, KT is considered the main circulating androgen
since it has a higher impact than T on spermatogenesis, secondary sex
characters and sexual behavior (reviewed by Borg 1994). In several
teleost species, including the Mozambique tilapia, KT responds to
social interactions, contrary to T (e.g., Hirschenhauser et al., 2004,
Oliveira et al., 1996). The present study confirms KT as more effective
than T in producing significant changes in the brain transcriptome.
Interestingly, in this study both androgens are shown to induce the
differential expression of several (>100) genes in the brain of the
Mozambique tilapia. However, different sets of genes are DE-expressed
in KT and T treated fish.
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For the KT-treated group (30 min sampling time point), several
genes involved in the regulation of translation (e.g., ribosomal
proteins) or steroid metabolism (dehydrogenase/reductase, choles-
terol 24-hydroxylase) were differentially expressed but many other
genes were affected. For instance, kisspeptin-2, a gene known to
regulate the hypothalamus-pituitary-gonads (HPG) axis, by modu-
lating gonadotropin secretion (Nile tilapia, Park et al. 2016) and
consequently androgen release, was down-regulated. Likewise, the
estrogen receptor membrane was downregulated supporting evidence
from previous observations (e.g., androgen treatment of castrated rats
reduces expression levels of estrogen receptor in the ventrolateral part
of the ventromedial nucleus hypothalamus; Simerly and Young
1991), and confirming that, in the Mozambique tilapia, androgens
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also affect estrogen receptor expression and seem to modulate the
hormonal responsiveness of estrogen receptor containing neurons.
On the other hand, the immediate early gene c-fos, a gene known to
orchestrate the transcriptomic responses to social challenges in both
mice and zebrafish (Malki et al., 2016) by acting as a transcription
factor that regulates the MAPK signaling pathway involved in
neurosecretion and structural plasticity (Clayton 2000), was
up-regulated. Moreover, it is known that steroids can induce cell
changes in a question of minutes or even seconds through non-
genomic mechanisms, typically involving intracellular second mes-
sengers (mostly calcium changes) and signal transduction cascades
(Michels & Hoppe 2008). For instance, studies have described the
activation of membrane receptors, hormone-binding globulin
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reference group.

receptors, protein kinases or the regulation of voltage- and ligand-
gated ion channels and transporters within these mechanisms
(reviewed in Michels and Hoppe 2008) that can also affect gene
transcription (Foradori et al. 2008). Accordingly, in this study, we
detected the up-regulation of ion channel membrane receptors
(glycine receptors, glra2, glrbb; G-protein coupled receptors, gprc5bb;
glutamate receptors, griklb), also of auxiliary proteins of glutamate
receptors of the AMPA-subtype (cornichon and pentraxin, Greger
et al. 2017) and protein kinases (e.g., mapk11), probably to be used in
these rapid androgen effects. Also, and as already mentioned, an-
drogens can have oncogenic effects, and several of the reported DE
genes for the KT-treated group are indeed associated with tumors
(e.g., phosphoglycerate mutase 1, cathepsin Z, ephrin, Pernicova et al.
2011; Beauchamp and Debinski 2012; Hitosugi et al. 2012) while
others are involved in neuroprotection (e.g., mapkll, Nguyen et al.
2005) or neuronal growth (limbic system associated membrane
protein, Pimenta et al. 1995), supporting previous evidence for the
opposition between neuroprotective and neuroendangering roles of
androgens (Foradori et al. 2008).

1978 | A.S. Félix et al.

For the T-treated group (30 min sampling time point), secre-
tagogin, a tumor marker (Birkenkamp-Demtréder et al. 2005) is
up-regulated, while programmed cell death 1 and death effector
domain-containing 1, genes involved in apoptosis, are down-
regulated (Inohara et al. 1997; Sharpe et al. 2007). However
chromatin- interacting genes were up-regulated (barrier-to-autointegration
factor-like protein (Oh et al. 2015), suggesting the existence of
epigenetic mechanisms underlying an increase of plasma testoster-
one. Together these results suggest that KT and T play distinct roles in
the regulation of brain molecular processes.

According to our working hypothesis the forebrain transcriptome
changes described above should represent the transcriptomic re-
sponses to social challenges mediated by transient changes in an-
drogens, and should be mediating winner effects, hence reinforcing
territoriality in resident territorial males. Although, a characterization
of the forebrain transcriptomic response to social challenges for
tilapia is not available, a time course study of the transcriptomic
response after short territorial intrusions in the three-spined stick-
leback has been published (Bukhari et al. 2017). In this study the
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authors, using the same sampling time points (30 and 60 min) used in
our study, found several sets of genes whose expression profile
changed in concert together, originating different gene clusters with
different temporal expression patterns (Bukhari et al. 2017). More-
over, genes belonging to each cluster had a similar function (Bukhari
et al. 2017). This work supports the hypothesis that multiple waves of
transcription are produced in response to a social challenge, with a
first genomic response more related to stimulus perception, followed
by a second wave of genomic response responsible for the behavioral
response, then recovering and finally adjusting future behavior
(Aubin-Horth and Renn 2009; Bell and Aubin-Horth 2010;
Clayton 2013). The existence of waves of gene expression in response
to social interactions is also supported in the honey bee with a similar
behavioral paradigm (Shpigler et al. 2017). Likewise, our results
emphasize that gene expression is dynamic and that selecting only
a single sampling time point may miss the peak of transcriptomic
response since at 60 min after androgen administration very few
genes were differentially expressed. In contrast, at 30 min post-
treatment a significant wave of transcription has been detected with
most of the DE genes being down-regulated, in line with the results of
Bukhari et al. (2017), suggesting that individuals respond first by
down-regulating brain activity and afterward up-regulating it. In
order to assess to what extent the androgen-driven transient tran-
scriptomic response is part of the transcriptomic response to social
interactions we have further compared the DEG lists for each time
sampling in the present study with those elicited by a territorial

£.G3 Genes| Genomes | Genetics
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intrusion in sticklebacks for the same sampling points (DEG 30 min:
telencephalon = 246, diencephalon = 120; DEG 60 min: telencephalon
=614, diencephalon = 523; Bukhari et al. 2017). Two main differences
are immediately observed: (1) the waves of transcription induced by a
social challenge in sticklebacks peak at 60 min, whereas in the present
study they peak at 30 min in response to androgens, suggesting
different temporal dynamics for each transcriptional response; (2) At
each peak of transcription, social challenges elicit a higher number of
DEG than androgens, suggesting that the transcription-mediated
behavioral responses to social challenge are not exclusively mediated
by androgens. Moreover, a comparison of ortholog DEG between the
two experiments shows an almost absence of overlap (see Table S9
and File S2), with only 4 ortholog genes (desmoglein, myosin, keratin
and one undescribed gene) co-expressed at 30 min and one (plexin) at
60 min. These data further suggest a high independence of the
transcriptomic response to social interactions from an androgen
mediation, which is difficult to reconcile with the established key
role of androgens as mediators of the winner effect in tilapia, which
occurs at a timeframe (2h post-interaction; Oliveira et al. 2009)
compatible with the sampling times used in this study (30 and
60 min). At least two possible explanations are possible for this
mismatch: (1) there are species specific responses and the use of the
stickleback response to social interactions is misleading; (2) The
mediator effect of androgens on the winner effect is not mediated
itself by changes at the forebrain transcriptome level, and depend on
other physiological mechanisms at other brain levels or even on

Androgens Change Brain Transcriptome | 1979



muscle physiology. In this respect, another important aspect to high-
light is that in our study, we focused on a large brain area, the forebrain,
that encompasses most nuclei that make up the social decision making
network. Therefore, we captured the overall response of this network to
transient androgen changes but we did not provide detail on putative
regional differences across this network in the neurogenomic state of
each of its nodes. In another transcriptomic study conducted in male
threespined stickleback, it was found that several genes were
up-regulated in the diencephalon and down-regulated in other brain
areas in response to a territorial challenge (Sanogo et al. 2012). These
results confirm the idea that each brain region has its own distinct
neurogenomic response, and even if the same genes are differentially
expressed in different regions, they can have in fact opposite regulatory
directions (Sanogo et al. 2012). Therefore, with ongoing methodolog-
ical developments and the reduction of sequencing costs, future studies
should gain from the characterization of the transcriptomic response of
each of the brain nuclei that together make up the SDMN.

In summary, our findings suggest that a transient rise of circu-
lating androgens, such as the one observed after social interactions
elicits relevant transcriptional changes, that may be part of an
integrative process of adjusting future behaviors and promoting
adaptive and socially competent behaviors.

ACKNOWLEDGMENTS

We acknowledge the Gene Expression Unit of Instituto Gulbenkian
de Ciéncia (IGC, Oeiras, Portugal) for preparing cDNA libraries and
the Bioinformatics and Computational Biology Unit of Instituto
Gulbenkian de Ciéncia for performing the initial stages of RNAseq
data analysis (quality control, alignment to reference genome, gen-
eration of table of counts). During the writing of this review RFO and
ASF were supported by Fundagdo para a Ciéncia e a Tecnologia
(grants EXCL/BIA-ANM/0549/2012 and SFRH/BD/102892/2014,
respectively). A.S.F. and RF.O. designed the experiment. A.S.F.
and A.R. performed the experiment. A.S.F. processed samples.
ASF. and S.D.C. analyzed the data. A.S.F. and RF.O. wrote the
paper with contributions from A.R. and S.D.C.

LITERATURE CITED

Andrews, S., 2010 FastQC: a quality control tool for high throughput sequence
data.

Aubin-Horth, N, and S. C. Renn, 2009 Genomic reaction norms: using
integrative biology to understand molecular mechanisms of phenotypic
plasticity. Mol. Ecol. 18: 3763-3780. https://doi.org/10.1111/j.1365-
294X.2009.04313.x

Baym, M., S. Kryazhimskiy, T. D. Lieberman, H. Chung, M. M. Desai et al.,
2015 Inexpensive multiplexed library preparation for megabase-sized
genomes. PLoS One 10: €0128036. https://doi.org/10.1371/
journal.pone.0128036

Beauchamp, A., and W. Debinski, 2012  Ephs and ephrins in cancer: Ephrin-
Al signalling. Semin. Cell Dev. Biol. 23: 109-115. https://doi.org/10.1016/
j.semcdb.2011.10.019

Bell, A. M., and N. Aubin-Horth, 2010 What can whole genome expression
data tell us about the ecology and evolution of personality? Philos. Trans.
R. Soc. B Biol. Sci. 365: 4001-4012.

Benjamini, Y., and Y. Hochberg, 1995  Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B
57: 289-300.

Birkenkamp-Demtroder, K., L. Wagner, F. Brandt Sorensen, L. Bording
Astrup, W. Gartner ef al., 2005 Secretagogin is a novel marker for
neuroendocrine differentiation. Neuroendocrinology 82: 121-138. https://
doi.org/10.1159/000091207

Borg, B., 1994 Androgens in teleost fishes. Comp. Biochem. Physiol. Part C
Comp. 109: 219-245.

1980 | A.S. Félix et al.

Bukhari, S. A,, M. C. Saul, C. H. Seward, H. Zhang, M. Bensky et al.,

2017 Temporal dynamics of neurogenomic plasticity in response to
social interactions in male threespined sticklebacks. PLoS Genet. 13:
€1006840. https://doi.org/10.1371/journal.pgen.1006840

Cardoso, S. D., M. C. Teles, and R. F. Oliveira, 2015 Neurogenomic
mechanisms of social plasticity. J. Exp. Biol. 218: 140-149. https://doi.org/
10.1242/jeb.106997

Clayton, D. F.,, 2000 The genomic action potential. Neurobiol. Learn. Mem.
74: 185-216. https://doi.org/10.1006/nlme.2000.3967

Clayton, D. F., 2013 The Genomics of Memory and Learning in Songbirds.
Annu. Rev. Genomics Hum. Genet. 14: 45-65. https://doi.org/10.1146/
annurev-genom-090711-163809

Cummings, M. E,, J. Larkins-Ford, C. R. L. Reilly, R. Y. Wong, M. Ramsey
etal,2008 Sexual and social stimuli elicit rapid and contrasting genomic
responses. Proc. Biol. Sci. 275: 393-402.

Droste, S. K., L. De Groote, H. C. Atkinson, S. L. Lightman, J. M. H. M. Reul
et al., 2008 Corticosterone levels in the brain show a distinct ultradian
rhythm but a delayed response to forced swim stress. Endocrinology 149:
3244-3253. https://doi.org/10.1210/en.2008-0103

Eswine, S. L., J. K. Pontinen, and S. A. Heimovics, 2019 Competitive ability
during mate competition relates to unique patterns of dopamine-related
gene expression in the social decision-making network of male zebra finches.
Neurosci. Lett. 706: 30-35. https://doi.org/10.1016/j.neulet.2019.04.027

Falcon, S., and R. Gentleman, 2007 Using GOstats to test gene lists for GO
term association. Bioinformatics 23: 257-258. https://doi.org/10.1093/
bioinformatics/btl567

Félix, A. S., Roleira, A, and R. F. Oliveira, 2020 Rising to the challenge?
Inter-individual variation of the androgen response to social interactions
in cichlid fish. Horm. Behav. (in press)

Foo,]. T. W, and T.J. Lam, 1993  Serum cortisol response to handling stress
and the effect of cortisol implantation on testosterone level in the tilapia,
Oreochromis mossambicus. Aquaculture 115: 145-158. https://doi.org/
10.1016/0044-8486(93)90365-6

Foradori, C. D., M. J. Weiser, and R. J. Handa, 2008 Non-genomic actions of
androgens. Front. Neuroendocrinol. 29: 169-181. https://doi.org/10.1016/
j.yfrne.2007.10.005

Forlano, P. M., M. Marchaterre, D. L. Deitcher, and A. H. Bass,

2010 Distribution of Androgen Receptor mRNA Expression in Vocal,
Auditory, and Neuroendocrine Circuits in a Teleost Fish. J. Comp. Neurol.
518: 493-512. https://doi.org/10.1002/cne.22233

Fryer, G.,and T. D. Iles, 1972  The Cichlid Fishes of the Great Lakes of Africa:
Their Biology and Evolution. Oliver & Boyd, Edinburgh.

Gelinas, D., and G. V. Callard, 1997 Immunolocalization of aromatase- and
androgen receptor-positive neurons in the goldfish brain. Gen. Comp.
Endocrinol. 106: 155-168. https://doi.org/10.1006/gcen.1997.6891

Ghahramani, N. M., T. C. Ngun, P. Y. Chen, Y. Tian, S. Krishnan et al.,
2014 The effects of perinatal testosterone exposure on the DNA
methylome of the mouse brain are late-emerging. Biol. Sex Differ. 5: 8.
https://doi.org/10.1186/2042-6410-5-8

Goodson, J. L., 2005 The vertebrate social behavior network: Evolutionary
themes and variations. Horm. Behav. 48: 11-22. https://doi.org/10.1016/
j.yhbeh.2005.02.003

Goymann, W., 2009  Social modulation of androgens in male birds. Gen.
Comp. Endocrinol. 163: 149-157. https://doi.org/10.1016/
j-ygcen.2008.11.027

Goymann, W., M. M. Landys, and J. C. Wingfield, 2007 Distinguishing
seasonal androgen responses from male-male androgen responsiveness-
revisiting the Challenge Hypothesis. Horm. Behav. 51: 463-476. https://
doi.org/10.1016/j.yhbeh.2007.01.007

Greger, L. H,, J. F. Watson, and S. G. Cull-Candy, 2017  Structural and
Functional Architecture of AMPA-Type Glutamate Receptors and Their
Auxiliary Proteins. Neuron 94: 713-730. https://doi.org/10.1016/
j-neuron.2017.04.009

Harbott, L. K,, S. S. Burmeister, R. B. White, M. Vagell, and R. D. Fernald,
2007 Androgen receptors in a cichlid fish, Astatotilapia burtoni:
structure, localization, and expression levels. ]. Comp. Neurol. 504: 57-73.
https://doi.org/10.1002/cne.21435

-=.G3:Genes| Genomes | Genetics


https://doi.org/10.1111/j.1365-294X.2009.04313.x
https://doi.org/10.1111/j.1365-294X.2009.04313.x
https://doi.org/10.1371/journal.pone.0128036
https://doi.org/10.1371/journal.pone.0128036
https://doi.org/10.1016/j.semcdb.2011.10.019
https://doi.org/10.1016/j.semcdb.2011.10.019
https://doi.org/10.1159/000091207
https://doi.org/10.1159/000091207
https://doi.org/10.1371/journal.pgen.1006840
https://doi.org/10.1242/jeb.106997
https://doi.org/10.1242/jeb.106997
https://doi.org/10.1006/nlme.2000.3967
https://doi.org/10.1146/annurev-genom-090711-163809
https://doi.org/10.1146/annurev-genom-090711-163809
https://doi.org/10.1210/en.2008-0103
https://doi.org/10.1016/j.neulet.2019.04.027
https://doi.org/10.1093/bioinformatics/btl567
https://doi.org/10.1093/bioinformatics/btl567
https://doi.org/10.1016/0044-8486(93)90365-6
https://doi.org/10.1016/0044-8486(93)90365-6
https://doi.org/10.1016/j.yfrne.2007.10.005
https://doi.org/10.1016/j.yfrne.2007.10.005
https://doi.org/10.1002/cne.22233
https://doi.org/10.1006/gcen.1997.6891
https://doi.org/10.1186/2042-6410-5-8
https://doi.org/10.1016/j.yhbeh.2005.02.003
https://doi.org/10.1016/j.yhbeh.2005.02.003
https://doi.org/10.1016/j.ygcen.2008.11.027
https://doi.org/10.1016/j.ygcen.2008.11.027
https://doi.org/10.1016/j.yhbeh.2007.01.007
https://doi.org/10.1016/j.yhbeh.2007.01.007
https://doi.org/10.1016/j.neuron.2017.04.009
https://doi.org/10.1016/j.neuron.2017.04.009
https://doi.org/10.1002/cne.21435

Hirschenhauser, K., and R. F. Oliveira, 2006 Social modulation of an-
drogens in male vertebrates: meta-analyses of the challenge hypothesis.
Anim. Behav. 71: 265-277. https://doi.org/10.1016/
j.anbehav.2005.04.014

Hirschenhauser, K., M. Taborsky, T. Oliveira, A. V. M. Candrio, and R. F.
Oliveira, 2004 A test of the ‘challenge hypothesis’ in cichlid fish: sim-
ulated partner and territory intruder experiments. Anim. Behav. 68: 741-
750. https://doi.org/10.1016/j.anbehav.2003.12.015

Hitosugi, T., L. Zhou, S. Elf, J. Fan, H.-B. Kang et al., 2012  Phosphoglycerate
Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor
Growth. Cancer Cell 22: 585-600. https://doi.org/10.1016/
j.ccr.2012.09.020

Hsu, Y., R. L, Earley, and L. L. Wolf, 2006 Modulation of aggressive
behaviour by fighting experience: mechanisms and contest outcomes. Biol.
Rev. Camb. Philos. Soc. 81: 33-74. https://doi.org/10.1017/
$146479310500686X

Huggard, D., Z. Khakoo, G. Kassam, S. Seyed Mahmoud, and H. R. Habibi,
1996  Effect of Testosterone on Maturational Gonadotropin Subunit
Messenger Ribonucleic Acid Levels in the Goldfish Pituitary. Biol. Reprod.
54: 1184-1191. https://doi.org/10.1095/biolreprod54.6.1184

Inohara, N, T. Koseki, Y. Hu, S. Chen, and G. Nunez, 1997 CLARP, a death
effector domain-containing protein interacts with caspase-8 and regulates
apoptosis. Proc. Natl. Acad. Sci. USA 94: 10717-10722. https://doi.org/
10.1073/pnas.94.20.10717

Kabelik, D., C. Weitekamp, S. C. Choudhury, J. T. Hartline, A. N. Smith et al.,
2018 Neural activity in the social decision-making network of the brown
anole during reproductive and agonistic encounters. Horm. Behav. 106:
178-188. https://doi.org/10.1016/j.yhbeh.2018.06.013

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner
with low memory requirements. Nat. Methods 12: 357-360. https://
doi.org/10.1038/nmeth.3317

Kime, D. E., and N. J. Manning, 1982 Seasonal patterns of free and
conjugated androgens in the brown trout Salmo trutta. Gen. Comp.
Endocrinol. 48: 222-231. https://doi.org/10.1016/0016-
6480(82)90020-X

Kline, R. B., 1998  Methodology in the social sciences. Principles and practice of
structural equation modeling, Guilford Press, New York.

Lawniczak, M. K. N,, and D. J. Begun, 2004 A genome-wide analysis of
courting and mating responses in Drosophila melanogaster females.
Genome 47: 900-910. https://doi.org/10.1139/g04-050

Liao, Y., K. S. Gordon, and W. Shi, 2014  FeatureCounts: an efficient general
purpose program for assigning sequence reads to genomic features.
Bioinformatics 30: 923-930. https://doi.org/10.1093/bioinformatics/
btt656

Lopes, J. S., R. Abril-de-Abreu, and R. F. Oliveira, 2015 Brain Transcrip-
tomic Response to Social Eavesdropping in Zebrafish (Danio rerio). PLoS
One 10: e0145801. https://doi.org/10.1371/journal.pone.0145801

Malki, K., E. Du Rietz, W. E. Crusio, O. Pain, J. Paya-Cano et al.,

2016 Transcriptome analysis of genes and gene networks involved in
aggressive behavior in mouse and zebrafish. Am ] Med Genet Part B 171:
827-838. https://doi.org/10.1002/ajmg.b.32451

Martin, M., 2011 Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet. J. 17: 10-12. https://doi.org/
10.14806/€j.17.1.200

Maruska, K. P, A. Zhang, A. Neboori, and R. D. Fernald, 2013  Social
opportunity causes rapid transcriptional changes in the social behaviour
network of the brain in an African cichlid fish. J. Neuroendocrinol. 25:
145-157. https://doi.org/10.1111/j.1365-2826.2012.02382.x

Michels, G., and U. C. Hoppe, 2008 Rapid actions of androgens. Front.
Neuroendocrinol. 29: 182-198. https://doi.org/10.1016/
j.yfrne.2007.08.004

Munchrath, L. A,, and H. A. Hofmann, 2010 Distribution of sex steroid
hormone receptors in the brain of an African cichlid fish, Astatotilapia
burtoni. J. Comp. Neurol. 518: 3302-3326. https://doi.org/10.1002/cne.22401

Newman, S. W., 1999 The medial extended amygdala in male reproductive
behavior. A node in the mammalian social behavior network. Ann. N'Y
Acad Sci. 877: 242-257.

-=.G3:Genes| Genomes | Genetics

Volume 10 June 2020 |

Nguyen, T.-V. V., M. Yao, and C. J. Pike, 2005 Androgens activate mitogen-
activated protein kinase signaling: role in neuroprotection. J. Neurochem.
94: 1639-1651. https://doi.org/10.1111/j.1471-4159.2005.03318 x

O’Connell, L. A., and H. A. Hofmann, 2012 Evolution of a Vertebrate Social
Decision-Making Network. Science. 80: 1154-1157. https://doi.org/
10.1126/science.1218889

O’Connell, L. A, and H. A. Hofmann, 2011 The Vertebrate mesolimbic
reward system and social behavior network: A comparative synthesis.

J. Comp. Neurol. 519: 3599-3639. https://doi.org/10.1002/cne.22735

O’Connell, L. A., B. J. Matthews, and H. A. Hofmann, 2012 Isotocin
regulates paternal care in a monogamous cichlid fish. Horm. Behav. 61:
725-733. https://doi.org/10.1016/j.yhbeh.2012.03.009

Oh, H. S., P. Traktman, and D. M. Knipe, 2015 Barrier-to-Autointe-
gration Factor 1 (BAF/BANF1) Promotes Association of the SETD1A
Histone Methyltransferase with Herpes Simplex Virus Immediate-
Early Gene Promoters. MBio 6: €00345-15. https://doi.org/10.1128/
mBio.00345-15

Okonechnikov, K., A. Conesa, and F. Garcia-Alcalde, 2016 Qualimap 2:
advanced multi-sample quality control for high-throughput sequencing
data. Bioinformatics 32: 292-294.

Oliveira, R. F., 2009 Social behavior in context: Hormonal modulation of
behavioral plasticity and social competence. Integr. Comp. Biol. 49: 423-
440. https://doi.org/10.1093/icb/icp055

Oliveira, R. F., 2004 Social Modulation of Androgens in Vertebrates:
Mechanisms and Function, pp. 165-239 in Advances in the Study of
Behavior, edited by Slater, P. J. B, J. S. Rosenblatt, C. T. Snowdown, and T.
J. Roper. Academic Press, New York.

Oliveira, R. F., 2012 Social plasticity in fish: integrating mechanisms and
function. J. Fish Biol. 81: 2127-2150. https://doi.org/10.1111/j.1095-
8649.2012.03477 x

Oliveira, R. F,, and V. C. Almada, 1996 Dominance hierarchies and social
structure in captive groups of the Mozambique tilapia Oreochromis
mossambicus (Teleostei, Cichlidae). Ethol. Ecol. Evol. 8: 39-55.

Oliveira, R. F., and V. C. Almada, 1998 Mating tactics and male — male
courtship in the lek-breeding cichlid Oreochromis mossambicus. J. Fish
Biol. 52: 1115-1129.

Oliveira, R. F., V. Almada, and A. V. M. Canario, 1996  Social modulation of
sex steroid concentrations in the urine of male cichlid fish Oreochromis
mossambicus. Horm. Behav. 30: 2-12. https://doi.org/10.1006/
hbeh.1996.0002

Oliveira, G. A,, and R. F. Oliveira, 2014 Androgen modulation of social
decision-making mechanisms in the brain: an integrative and embodied
perspective. Front. Neurosci. 8: 209. https://doi.org/10.3389/
fnins.2014.00209

Oliveira, R. F., A. Silva, and A. V. M. Canario, 2009 Why do winners keep
winning? Androgen mediation of winner but not loser effects in cichlid
fish. Proc. Biol. Sci. 276: 2249-2256. https://doi.org/10.1098/
rspb.2009.0132

Oliveira, R. F., J. M. Simoes, M. C. Teles, C. R. Oliveira, J. D. Becker et al.,
2016 Assessment of fight outcome is needed to activate socially driven
transcriptional changes in the zebrafish brain. Proc. Natl. Acad. Sci. USA
113: E654-E661. https://doi.org/10.1073/pnas.1514292113

Oyegbile, T. O., and C. A. Marler, 2005 Winning fights elevates testosterone
levels in California mice and enhances future ability to win fights. Horm.
Behav. 48: 259-267. https://doi.org/10.1016/j.yhbeh.2005.04.007

Park, J. W, Y. H. Jin, S.-Y. Oh, and J. Y. Kwon, 2016  Kisspeptin2 stimulates
the HPG axis in immature Nile tilapia (Oreochromis niloticus). Comp.
Biochem. Physiol. Part B Biochem. Mol. Biol. 202: 31-38.

Pernicova, Z., E. Slabakova, G. Kharaishvili, J. Bouchal, M. Kral et al.,

2011 Androgen depletion induces senescence in prostate cancer cells
through down-regulation of Skp2. Neoplasia 13: 526-536. https://doi.org/
10.1593/neo0.11182

Peterson, M. P., K. A. Rosvall, J. H. Choi, C. Ziegenfus, H. Tang et al.,
2013 Testosterone Affects Neural Gene Expression Differently in Male
and Female Juncos: A Role for Hormones in Mediating Sexual Dimor-
phism and Conflict. PLoS One 8: e61784. https://doi.org/10.1371/
journal.pone.0061784

Androgens Change Brain Transcriptome | 1981


https://doi.org/10.1016/j.anbehav.2005.04.014
https://doi.org/10.1016/j.anbehav.2005.04.014
https://doi.org/10.1016/j.anbehav.2003.12.015
https://doi.org/10.1016/j.ccr.2012.09.020
https://doi.org/10.1016/j.ccr.2012.09.020
https://doi.org/10.1017/S146479310500686X
https://doi.org/10.1017/S146479310500686X
https://doi.org/10.1095/biolreprod54.6.1184
https://doi.org/10.1073/pnas.94.20.10717
https://doi.org/10.1073/pnas.94.20.10717
https://doi.org/10.1016/j.yhbeh.2018.06.013
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1016/0016-6480(82)90020-X
https://doi.org/10.1016/0016-6480(82)90020-X
https://doi.org/10.1139/g04-050
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1371/journal.pone.0145801
https://doi.org/10.1002/ajmg.b.32451
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1111/j.1365-2826.2012.02382.x
https://doi.org/10.1016/j.yfrne.2007.08.004
https://doi.org/10.1016/j.yfrne.2007.08.004
https://doi.org/10.1002/cne.22401
https://doi.org/10.1111/j.1471-4159.2005.03318.x
https://doi.org/10.1126/science.1218889
https://doi.org/10.1126/science.1218889
https://doi.org/10.1002/cne.22735
https://doi.org/10.1016/j.yhbeh.2012.03.009
https://doi.org/10.1128/mBio.00345-15
https://doi.org/10.1128/mBio.00345-15
https://doi.org/10.1093/icb/icp055
https://doi.org/10.1111/j.1095-8649.2012.03477.x
https://doi.org/10.1111/j.1095-8649.2012.03477.x
https://doi.org/10.1006/hbeh.1996.0002
https://doi.org/10.1006/hbeh.1996.0002
https://doi.org/10.3389/fnins.2014.00209
https://doi.org/10.3389/fnins.2014.00209
https://doi.org/10.1098/rspb.2009.0132
https://doi.org/10.1098/rspb.2009.0132
https://doi.org/10.1073/pnas.1514292113
https://doi.org/10.1016/j.yhbeh.2005.04.007
https://doi.org/10.1593/neo.11182
https://doi.org/10.1593/neo.11182
https://doi.org/10.1371/journal.pone.0061784
https://doi.org/10.1371/journal.pone.0061784

Picelli, S., O. R. Faridani, A. K. Bjorklund, G. Winberg, S. Sagasser et al.,
2014 Full-length RNA-seq from single cells using Smart-seq2. Nat.
Protoc. 9: 171-181. https://doi.org/10.1038/nprot.2014.006

Pimenta, A. F., V. Zhukareva, M. F. Barbe, B. S. Reinoso, C. Grimley et al.,
1995  The limbic system-associated membrane protein is an Ig superfamily
member that mediates selective neuronal growth and axon targeting.
Neuron 15: 287-297. https://doi.org/10.1016/0896-6273(95)90034-9

Remage-Healey, L., N. T. Maidment, and B. A. Schlinger, 2008 Forebrain
steroid levels fluctuate rapidly during social interactions. Nat. Neurosci. 11:
1327-1334. https://doi.org/10.1038/nn.2200

Renn, S. C. P, and N. Aubin-Horth, 2019 Transcriptomic Architecture of
Reproductive Plasticity. https://doi.org/10.1093/acrefore/
9780190264086.013.262

Rittschof, C. C., S. A. Bukhari, L. G. Sloofman, J. M. Troy, D. Caetano-Anollés
et al, 2014 Neuromolecular responses to social challenge: Common
mechanisms across mouse, stickleback fish, and honey bee. Proc. Natl.
Acad. Sci. USA 111: 17929-17934. https://doi.org/10.1073/
pnas.1420369111

Rittschof, C. C.,,and K. A. Hughes, 2018  Advancing behavioural genomics by
considering timescale. Nat. Commun. 9: 489. https://doi.org/10.1038/
541467-018-02971-0

Robinson, M. D., D. J. McCarthy, and G. K. Smyth, 2010 edgeR: a Bio-
conductor package for differential expression analysis of digital gene
expression data. Bioinformatics 26: 139-140. https://doi.org/10.1093/bi-
oinformatics/btp616

Roleira, A., G. A. Oliveira, J. S. Lopes, and R. F. Oliveira, 2017 Audience
Effects in Territorial Defense of Male Cichlid Fish Are Associated with
Differential Patterns of Activation of the Brain Social Decision-Making
Network. Front. Behav. Neurosci. 11: 105. https://doi.org/10.3389/
fnbeh.2017.00105

Sanogo, Y. O., M. Band, C. Blatti, S. Sinha, and A. M. Bell,

2012 Transcriptional regulation of brain gene expression in response to a
territorial intrusion. Proc. Biol. Sci. 279: 4929-4938. https://doi.org/
10.1098/rspb.2012.2087

Sharpe, A. H,, E. . Wherry, R. Ahmed, and G. J. Freeman, 2007  The function
of programmed cell death 1 and its ligands in regulating autoimmunity
and infection. Nat. Immunol. 8: 239-245. https://doi.org/10.1038/ni1443

Shen, L., and M. Sinai, 2019 GeneOverlap: Test and visualize gene overlaps. R
package version 1.22.0, http://shenlab-sinai.github.io/shenlab-sinai/.

Shpigler, H. Y., M. C. Saul, E. E. Murdoch, A. C. Cash-Ahmed, C. H. Seward
etal, 2017 Behavioral, transcriptomic and epigenetic responses to social

1982 | A.S. Félix et al.

challenge in honey bees. Genes Brain Behav. 16: 579-591. https://doi.org/
10.1111/gbb.12379

Shpigler, H. Y., M. C. Saul, E. E. Murdoch, F. Corona, A. C. Cash-Ahmed et al.,
2019 Honey bee neurogenomic responses to affiliative and agonistic
social interactions. Genes Brain Behav. 18: €12509. https://doi.org/
10.1111/gbb.12509

Simerly, R. B., and B. J. Young, 1991 Regulation of estrogen receptor
messenger ribonucleic acid in rat hypothalamus by sex steroid hormones.
Mol. Endocrinol. 5: 424-432. https://doi.org/10.1210/mend-5-3-424

Suzuki, R., and H. Shimodaira, 2006  Pvclust: an R package for assessing the
uncertainty in hierarchical clustering. Bioinformatics 22: 1540-1542.
https://doi.org/10.1093/bioinformatics/btl117

Taborsky, B., and R. F. Oliveira, 2012  Social competence: an evolutionary
approach. Trends Ecol. Evol. 27: 679-688. https://doi.org/10.1016/
j.tree.2012.09.003

Team, R. C,, 2015 R: A language and environment for statistical computing.

Teles, M. C., O. Almeida, J. S. Lopes, and R. F. Oliveira, 2015 Social
interactions elicit rapid shifts in functional connectivity in the social
decision-making network of zebrafish. Proc. Biol. Sci. 282: 20151099.
https://doi.org/10.1098/rspb.2015.1099

Trainor, B. C,, I. M. Bird, and C. A. Marler, 2004 Opposing hormonal
mechanisms of aggression revealed through short-lived testosterone
manipulations and multiple winning experiences. Horm. Behav. 45: 115-
121. https://doi.org/10.1016/j.yhbeh.2003.09.006

Trainor, B. C,, and C. A. Marler, 2001 Testosterone, paternal behavior, and
aggression in the monogamous California mouse (Peromyscus californi-
cus). Horm. Behav. 40: 32-42. https://doi.org/10.1006/hbeh.2001.1652

Wingfield, J. C., 2005 A continuing saga: The role of testosterone in
aggression. 48: 253-255.

Wingfield, J. C,, R. E. Hegner, A. M. Dufty, Jr., and G. F. Ball, 1990 The
“Challenge Hypothesis™: Theoretical Implications for Patterns of Tes-
tosterone Secretion, Mating Systems, and Breeding Strategies. Am. Nat.
136: 829-846. https://doi.org/10.1086/285134

Wingfield, J. C., S. Lynn, and K. K. Soma, 2001  Avoiding the “costs” of
testosterone: ecological bases of hormone-behavior interactions. Brain
Behav. Evol. 57: 239-251. https://doi.org/10.1159/000047243

Zhi-Liang, H., J. Bao, and M. Reecy James, 2008 CateGOrizer: A web-based
program to batch gene ontology classification categories. Online
J. Bioinform. 9: 108-112.

Communicating editor: B. Andrews

-=.G3:Genes| Genomes | Genetics


https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1016/0896-6273(95)90034-9
https://doi.org/10.1038/nn.2200
https://doi.org/10.1093/acrefore/9780190264086.013.262
https://doi.org/10.1093/acrefore/9780190264086.013.262
https://doi.org/10.1073/pnas.1420369111
https://doi.org/10.1073/pnas.1420369111
https://doi.org/10.1038/s41467-018-02971-0
https://doi.org/10.1038/s41467-018-02971-0
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.3389/fnbeh.2017.00105
https://doi.org/10.3389/fnbeh.2017.00105
https://doi.org/10.1098/rspb.2012.2087
https://doi.org/10.1098/rspb.2012.2087
https://doi.org/10.1038/ni1443
http://shenlab-sinai.github.io/shenlab-sinai/
https://doi.org/10.1111/gbb.12379
https://doi.org/10.1111/gbb.12379
https://doi.org/10.1111/gbb.12509
https://doi.org/10.1111/gbb.12509
https://doi.org/10.1210/mend-5-3-424
https://doi.org/10.1093/bioinformatics/btl117
https://doi.org/10.1016/j.tree.2012.09.003
https://doi.org/10.1016/j.tree.2012.09.003
https://doi.org/10.1098/rspb.2015.1099
https://doi.org/10.1016/j.yhbeh.2003.09.006
https://doi.org/10.1006/hbeh.2001.1652
https://doi.org/10.1086/285134
https://doi.org/10.1159/000047243

