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Improved management of severe sepsis has been one of the major health care

accomplishments of the last two decades. Due to enhanced recognition and improved

management of severe sepsis, in-hospital mortality has been reduced by up to

40%. With that good news, a new syndrome has unfortunately replaced in-hospital

multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes

sepsis patients who survive the early “cytokine or genomic storm,” but fail to fully

recover, and progress into a persistent state of manageable organ injury requiring

prolonged intensive care. These patients are commonly discharged to long-term

care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors

develop CCI. CCI is the result, at least in part, of a maladaptive host response

to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive

response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy,

T-cell exhaustion, and the expansion of suppressor cell functions. We have defined

this panoply of host responses as a persistent inflammatory, immune suppressive and

protein catabolic syndrome (PICS). Why is this important? We propose that PICS in

survivors of critical illness is its own common, unique immunological endotype driven

by the constant release of organ injury-associated, endogenous alarmins, and microbial

products from secondary infections. While this syndrome can develop as a result of a

diverse set of pathologies, it represents a shared outcome with a unique underlying

pathobiological mechanism. Despite being a common outcome, there are no therapeutic

interventions other than supportive therapies for this common disorder. Only through an

improved understanding of the immunological endotype of PICS can rational therapeutic

interventions be designed.
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SEPSIS IS A NATIONAL CRISIS

Sepsis afflicts over 1.7 million Americans annually, and accounts for over 250,000 deaths in the
United States alone (1). More patients die from sepsis annually than from lung cancer, the number
one cause of cancer-related deaths. Sepsis remains the most common cause of death in the intensive
care unit (ICU), accounting for 1 in 3 hospital deaths (2). Sepsis is also the most expensive
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in-hospital diagnosis in the U.S. today (3). Even with these
staggering numbers, the impact of sepsis on patients, their
families, and the community is grossly underestimated as
survivors experience multiple ongoing morbidities (4). Sepsis has
an annual patient care cost approaching $23 billion (more than
$55 million per day) (5), which again is likely an underestimate,
as the chronic effects of sepsis months to years post-intensive care
unit (ICU) discharge are unknown (6).

Sepsis induces a profound state of both acute and chronic
immune dysregulation, which contributes to both the mortality
and long-term morbidities (7). These long-lasting morbidities
include frequent re-hospitalization within the year following
sepsis diagnosis, with the most common admission diagnoses
being pneumonia or urinary tract infection (8). Interestingly,
there are no FDA-approved therapeutics for the immunologic
treatment of sepsis despite over 150 clinical trials and
successful pre-clinical testing (9). In-hospital management
remains primarily supportive in nature. Post-hospitalization,
Prescott and Angus in their 2018 JAMA review of enhancing
recovery from sepsis had only three recommendations: (1)
identify new problems and treat appropriately, (2) review and
adjust long-term medications, and (3) evaluate for treatable
conditions that result in rehospitalization (10). None of these
approaches target the unique immunologic and physiologic
consequences of critical illness, as our understanding of the acute
sepsis survivor remains incomplete!

SEPSIS IS AT ITS MOST BASIC CORE AN
IMMUNOLOGICAL DISEASE

Sepsis is associated with an early/immediate “systemic
inflammatory response” (11). Authors have used the terms
“cytokine storm” and “genomic storm” for this early response
(12, 13), but these are gross over-simplifications of an integrated
innate and adaptive immune response. At its most fundamental,
the host response we define as “sepsis” is due to the recognition
and response of host protective immune systems to microbial
pathogens and their products (termed pathogen-associated
molecular patterns; PAMPS) or the consequential release of
endogenous alarmins (danger-associated molecular patterns;
DAMPs) (14, 15). Acutely, the response appears aimed at
isolating microbial growth and limiting replication, although
it is well-known that when the response is either exaggerated
or becomes systemic, can be associated with microcirculatory
defects, organ injury, and death (16, 17).

The term “storm” is prescient, since the response, especially
when the exposure is systemic, can produce devastating
widespread host responses, including microcirculatory failure,
profound vascular and organ injury, shock and death (18, 19). In
the 1980’s and early 1990’s whenmany of the cytokines/mediators
involved in this “storm” were originally identified and cloned,
the complexity and breadth of the immediate host response to
microbial products was not fully understood. Initial efforts to
modify the host response to sepsis targeted this early/immediate
response by interfering with individual microbial products and
early cytokine appearance (20). Unfortunately, antibodies or

immunoadhesins to endotoxin, TNFα, IL-1, IFNγ to name a very
few, have all failed to improve outcomes to sepsis (21).

Although the reasons for the failure of these attempts to
prevent this early “storm” are clearly multifactorial, including
timing, redundancy of action, and heterogeneity of the patient
population, there was also an over-assumption that treating
sepsis would only require identifying the “silver bullet”
responsible for the immediate organ damage (22). If there is
anything that the failures of the past three decades have taught,
it is that successful treatment of sepsis is, and will continue
to be, an iterative process dependent upon both increasing our
basic understanding of sepsis pathophysiology and translating
this knowledge into improved clinical management.

What was learned was that one key to improving in-hospital
survival was earlier sepsis recognition and initiation of treatment
(23). Rapid diagnosis and initiation of sepsis treatment bundles
have been a major hospital-systems’ accomplishment (24). A
second important key was the implementation of standardized
best practices in the management of the sepsis patient (25).
Almost two decades after implementation of the Surviving Sepsis
Campaign, a 25% improvement in compliance with best-practice
has resulted in a 9% absolute reduction in 28 day all-cause
mortality (26). In the largest study to date, with over 1 million
subjects, the state of New York-mandated early interventions
significantly improved sepsis survival compared to states that did
not mandate early intervention (27).

CHRONIC POOR OUTCOMES ARE
REPLACING IN-HOSPITAL MORTALITY

Earlier recognition and more consistent best-practice
management have resulted in fewer patients dying early from the
consequences of the “storm” (28, 29). This has resulted in more
in-hospital survivors, and the appearance of late immunological
complications of trauma and sepsis are now becoming the
norm (30). As many as 33% of all sepsis survivors do not
rapidly or fully recover but, instead, develop a new syndrome of
“chronic critical illness” (CCI) (31–33). Chronic critical illness is
represented by a persistent low grade inflammatory and chronic
immunosuppressive phase associated with functional declines
that can last from months to years following the acute event
(Figure 1) (32).

These mechanisms underlying post-sepsis
immunosuppression and inflammation are poorly understood,
limiting our ability to prevent secondary infections and improve
long-term outcomes in sepsis survivors. Chronic critical illness
does not have a single consensus definition, like sepsis, but all
define it as ongoing/persistent manageable organ dysfunction
requiring hospitalization and increased resource utilization (e.g.,
ICU management) (31, 34). Based upon length-of-stay based
mortality data from ICU patients at Shands UF Health, we set
the duration of hospitalization at 2 weeks, and this definition has
gained acceptance by others (35).

Our own studies have suggested that the severity of the initial
acute phase, the age of the patient, the number of pre-existing
comorbidities, and the influence of kidney injury, all impact
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FIGURE 1 | The host response to severe sepsis can have three different clinical trajectories: (1) early MOF leading to death, (2) rapid recovery, or (3) the new

appearance of chronic critical illness (CCI) characterized by organ dysfunction, inflammation, immune suppression, and protein catabolism. MDSC, myeloid derived

suppressor cells; EMVs, endothelial microvesicles; sPDL-1, soluble protein death ligand 1; LTAC, long-term acute care hospital.

the development of CCI (36). Sepsis survivors who develop
CCI experience a higher frequency of secondary infections, have
longer hospital stays, and poor disposition (37). Dramatically,
60% of CCI patients are readmitted in the first 6 months (38),
usually for recurrent infections, and 40% of these patients are
dead at 6 months (39). Not unexpectedly, 70% of deaths are
preceded by a withdrawal of care (40, 41).

CHRONIC POOR OUTCOMES AFTER
SEPSIS ARE THE RESULT OF A
MALADAPTIVE IMMUNOLOGICAL
DYSCRASIA

Chronic critical illness represents the clinical
manifestation/endpoint of a complex immunological “dyscrasia”
that results in increased susceptibility to secondary infections;
poor functional, physical and cognitive outcomes (34, 38, 39).We
have argued that the metabolic and immunologic underpinnings
of this response is the immunological endotype we have termed
the Persistent Inflammatory, immunosuppressive and protein
Catabolic Syndrome (PICS) (32, 42, 43). As summarized in
Table 1, sepsis survivors with CCI experience the very common
PICS endotype reflected by persistently elevated inflammatory
cytokines and DAMPs, immune suppression, and an increased
number of opportunistic infections.

A “phenotype” is defined as a set of observable characteristics of an individual

resulting from the interaction of its genotype with the environment. CCI can

be classified as a phenotype because of its reproducible characteristics:

ongoing manageable organ injury requiring at least 14 days of ICU care. In

contrast, an endotype is defined as a subtype of a condition represented

by a distinct functional or pathobiological mechanism (44). Importantly,

endotypes differ from phenotypes because the former requires a common

underlying mechanism. Endotypes, unlike phenotypes, can be associated

with clusters of disease. PICS would classify as an endotype, since it may

well be a common underlying mechanism that can explain not only sepsis and

trauma CCI, but could also explain in part, cancer cachexia, and the chronic

inflammation and lean tissue wasting associated with chronic obstructive

pulmonary disease, cardiac cachexia and chronic renal disease.

The immunological dyscrasia that defines PICS is
multifactorial. Primary mechanisms leading to sepsis-
induced impairment of adaptive immune system include:
(i) apoptosis-induced T-cell depletion, (ii) T-cell exhaustion due
to upregulation of inhibitory receptors or downregulation of
essential co-stimulatory receptors, (iii) decreased bone marrow
lymphopoiesis, and (iv) myeloid-based T-cell suppression, and
myeloid cell dysregulation (45–47).

“Emergency myelopoiesis” is defined as inflammation-
induced hematopoiesis, which is critical for the immediate
management of tissue injury and controlling infection (48–
50). In contrast to adaptive immune cells, such as T cells and
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TABLE 1 | CCI phenotype in severe trauma and sepsis survivors.

Phenotype Sepsis CCI

Persistent inflammation Acute Phase Reactants—↑CRP,

↓Albumin

↑↑↑

Cytokines ↑↑

DAMPS, mtDNA, ncDNA,

S100A8/A9, HMGB1

↑↑↑

Immune suppression Absolute lymphocyte count ↓↓↓

Secondary infections, sepsis

readmission

↑↑↑

MDSCs ↑↑↑

CD14+ HLA-DR expression ↓↓↓

ELISpot T-cell IFNγ ↓↓↓

Protein catabolism Body weight loss ↑↑

Loss of lean tissue ↑↑

Loss of physical function ↑↑

CRP, c-reactive protein; DAMPs, damage associated molecular patterns; mtDNA,

mitochondrial DNA; s100A8/A9, calcium binding proteins that form calprotectin; HMGB1,

high-mobility group box 1 protein; HLA-DR, Human Leukocyte Antigen DR isotype; IFNγ,

Interferon gamma. ↑ increased, ↑↑ moderately increased, ↑↑↑ markedly increased; ↓

decreased, ↓↓ moderately decreased, ↓↓↓ markedly decreased.

B cells, that proliferate in response to their specific antigens,
innate myeloid populations are continuously replenished from
hematopoietic stem cells (HSCs) and progenitors in bonemarrow
(BM) and extramedullary (42, 51). However, the molecular
mechanism of emergency myelopoiesis during infection remains
incompletely understood. HSCs and hematopoietic progenitors
can directly sense the presence of pathogens or endogenous
alarmins via pattern recognition receptors (PRRs) such as
Toll-like or NOD-like receptors (TLRs, NLRs), and they can
also respond to pro-inflammatory cytokines such as interferon
(IFN)-α, IFN-γ, interleukin (IL)-1, tumor necrosis factor (TNF)-
α, and granulocyte colony-stimulating factor (G-CSF) (42). IFN-
α and IFN-γ have pleiotropic effects onmany cell types, including
HSCs and hematopoietic progenitors (52). Importantly, these
cytokines, along with IL-27, have been demonstrated to induce
an expansion of HSCs and myeloid progenitors, leading to the
production of differentiated PMNs, macrophages and dendritic
cells at the cost of both lymphopoiesis and erythropoiesis (49, 50).

Dmitry Gabrilovich has argued that the long-term host
response to cancer, chronic infection, and sepsis (Figure 2B)
results in what he has termed “pathological activation of
neutrophils and monocytes” (53). Weak activation signals that
occur in sepsis survivors during CCI, such as endogenous
alarmins released from low grade organ injury, secondary
colonization and infection from invasive ICU procedures,
immobility, and delirium, all result in the mild but consistent
elevated production of inflammatory cytokines and signals that
drive persistent “emergency myelopoiesis.” What Gabrilovich
has argued (54), and we have experimentally demonstrated in
both trauma and sepsis (55), is that long-duration, low-grade
inflammation drives pathologic myeloid cell activation and T-cell
exhaustion, leading to both persistent inflammation and immune
suppression (PICS).

During unresolved inflammation, such as following microbial
infection, ongoing tissue injury, and other chronic conditions;
the nature of signals affecting T-cells and myeloid cells differs
from that seen during the early or immediate “genomic or
cytokine storm” (56). Reduced bone marrow and thymic
generation of new T-cells and increased expression of
immunosuppressive receptors favors exhaustion and apoptosis
of T-cell populations resulting in lymphopoiesis. The expansion
of myeloid-derived suppressor cells (MDSCs) in sepsis is a
complex and gradual phenomenon governed by multiple factors.
Gabrilovich has argued that accumulation of MDSC requires
two groups of signals: the first leading to expansion of immature
myeloid cells and the second, pathological activation as MDSCs.
The first group of signals is driven as a direct host response
to the microbial pathogen and includes: GM-CSF, G-CSF,
M-CSF, SCF, VEGF, and polyunsaturated fatty acids (PUFAs)
(53, 57). Transcriptional factors/regulators including STAT3,
STAT5, IRF8, C/EBPβ, and NOTCH play a major role in this
process (58). Other factors involved in this process include
adenosine receptors A2b, NLRP3, and alarmins S100A8 and A9
(59). Importantly, the second group of signals, resulting in the
pathological activation of MDSCs, does not require an infectious
process and can be provided by inflammatory cytokines and
endogenous alarmins alone, which include interferon (IFN)-γ,
IL-1β, IL-4, IL-6, IL-13, IL-27, TNF-α, and the TLR ligand,
HMGB1 (59).

First and foremost, these stimuli drive the expansion of
bone marrow and extramedullary myelopoiesis. Neutrophils
and monocytes generated under these conditions display a
variant phenotype and morphology. They are characterized by
relatively weak phagocytic activity, increased levels of reactive
oxygen species (ROS) and nitric oxide (NO) production, and
high expression of arginase 1, PGE2, and a number of anti-
inflammatory cytokines (60, 61). Most of these features are absent
in classically activated neutrophils and monocytes, which is
why Gabrilovich has characterized this activation as “pathologic”
(54). This state of activation leads not to the elimination of
the threat or activation of host protective immunity, but to
the inhibition of adaptive and innate immunity. Cells in this
pathologic state of activation can be identified functionally,
biochemically, and, to some extent, phenotypically, and are now
termedMDSCs. The longer the myeloid compartment is exposed
to the effects of factors described above, the more potent the
pathologic activation of these MDSCs. Therefore, at any given
moment, there is a heterogeneous population of cells in tissues
represented by classically activated neutrophils, monocytes, and
pathologically activated MDSCs (Figure 2). In the early stages of
sepsis, bona-fide immune suppressive MDSCs are rarely detected
(62, 63). However, there are cells with some biochemical and
genomic characteristics of MDSCs, which probably represent an
intrinsic part of MDSC development (53, 62).

The evidence that expansion of immunosuppressive MDSCs
is a constant response to prolonged sepsis is incontrovertible.
As early as 2007, we demonstrated that by 7 days post-sepsis,
up to 95% of bone marrow cells are of myeloid lineage,
mostly immature and functional MDSCs (64). These cells also
overwhelm secondary lymph tissues, such as the spleen, lymph
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FIGURE 2 | Pathologic activation of neutrophils and monocytes. (A) In the presence of strong activation signals coming from pathogens in the form of toll-like

receptors ligands (TLRL), damage associated molecular pattern (DAMP), pathogen-associated molecular patterns (PAMP) molecules monocytes and neutrophils are

mobilized from the BM. This response results in classic myeloid cell activation. (B) In the presence of weak activation signal mediated mostly by growth factors and

cytokines, myeloid cells undergo modest but continuous expansion. Pro-inflammatory cytokines and ER stress responses contribute to pathologic myeloid cells

activation that manifests in weak phagocytic activity, increased production of reactive oxygen species (ROS), nitric oxide (NO), arginase 1 (not expressed in human

monocytes and M-MDSC) and prostaglandin-E2 (PGE2). This results in immune suppression. Endoplasmic reticulum = ER. Modified from Veglia et al. (53).

nodes, and reticuloendothelial tissues (such as the lung and
liver) (65). Importantly, we have demonstrated that rapid,
sustained presence of MDSCs, and their quantitative levels are
strong predictors of nosocomial infections and poor discharge
outcomes in sepsis patients (7). These findings were confirmed
by Uhel, who established that sepsis survivors with expanded
MDSC populations had a higher rate of reinfection and hospital
readmission (66).

Additionally,McCall et al. demonstrated that these cells evolve
functionally over time, becoming more immunosuppressive (32).
With regard to MDSC suppressor activity, Hollen et al. have
observed considerable time-dependent differences in MDSC
suppression of T-cell proliferation. Much to our surprise, but
consistent with Gabrilovich’s overarching hypothesis (Figure 2),
pathological activation of MDSCs in humans did not occur
immediately after sepsis, but required 7–14 days to develop
fully. Regardless of whether MDSCs came from sepsis survivors
who developed CCI or rapidly recovered, PBMC-derived
CD11b+CD33+HLA-DRdim MDSCs obtained prior to day 7
were not immunosuppressive, while MDSCs obtained at or after
day 14 (all CCI patients) suppressed both autologous CD4+ and

CD8+ T-cell proliferation to antiCD3/CD28 (Figure 3). Also,
septic MDSCs from day 14 (late), but not from day 4 (early),
potently suppressed stimulated T-cell production of IL-2 and, to
a lesser extent, IFNγ.

More interestingly, most of the MDSCs in septic CCI
patients were granulocytic with a gene expression profile
reflective of a highly inflammatory and immunosuppressive
transcriptome (67). Analysis of individual gene transcripts
from bulk cell-sorted human CD11b+CD33+HLA-DRdim

MDSCs was consistent with suppressed HLA gene expression
and up-regulated inflammatory gene expression (Figure 4).
Canonical Pathway and Causal Network Analysis supported
these pathway alterations and a pattern of simultaneous
low-grade inflammation with immunosuppression.

Although G-MDSCs (granulocyte-like MDSCs) comprise the
largest subpopulation of MDSCs in sepsis, expansion of M-
MDSCs (monocytic MDSCs) and E-MDSCs (early MDSCs) is
also observed. Importantly, different subpopulations of MDSCs
are immunosuppressive through different mechanisms, and
can, therefore, have different targets for intervention (53). To
understand the rich “landscape” of blood MDSCs late after sepsis
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(day 21), single-cell RNA sequencing and Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (scRNA-seq and
CITE-seq) was conducted on enriched MDSCs obtained from
peripheral blood mononuclear cells (PBMCs) (Figure 5). This
was conducted to identify individual populations of MDSCs

FIGURE 3 | Percent T lymphocyte suppression by MDSCs. Immature myeloid

cells with the surface markers CD33+CD11b+HLA-DRdim were isolated on

days 4, 7, 14, and 21 after sepsis, and from healthy control subjects.

Autologous T lymphocytes were stimulated with soluble anti-CD3/28 and

seeded in a co-culture with MDSCs in a 1:1 ratio. T cells were labeled with

CellTrace Violet to detect proliferation, and a proliferation index (PI) was

calculated for both CD4+ and CD8+ T cells using flow cytometric analysis.

Percent suppression was calculated as the ratio of PI from stimulated T cells in

the presence of MDSCs and the PI of stimulated T cells in culture medium

alone. Percent suppression for both CD4+ and CD8+ T cells was significantly

different between day 4 vs. 14 (p = 0.0402 and 0.0012), day 4 vs. 21 (p =

0.0225 and <0.0001), and day 7 vs. 21 (p = 0.037 and 0.045). There was no

significance noted of percent suppression of CD4+ and CD8+ T cells between

days 7 and 14 (p = 0.17 and 0.08). This T cell suppression was not seen in

age-matched healthy control subjects. Modified from Hollen et al. (62).

*indicates statistically significant intervals (p < 0.05).

(G-, M-, and E-MDSCs) and their transcriptomic profiles in
healthy and septic patients. In this case, samples were obtained
at day 21 from two sepsis survivors with CCI, and samples were
also obtained from two age and sex matched healthy, control
subjects. Samples were first isolated on a Ficoll gradient, and then
CD11b+CD33+HLA-DRdim cells were mixed 3:1 with original
PBMCs to assure inclusion with all cell populations. sc-RNAseq
of over 150,000 cells were conducted.

As displayed in Figure 5, there was a dramatic expansion
of the G-MDSC subpopulation and a less dramatic expansion
of M-MDSCs in the sepsis patients. E-MDSCs, which were
not detectable from healthy human subjects, were modest in
sepsis survivors with CCI (detectable in only one of the sepsis
subjects). G-MDSCs showed not only the greatest expansion,
but also the most dramatic changes in their transcriptome.
Interestingly, we did not see an increase in expression among
genes that are associated with immunosuppression in cancer
(such as ARG1, CD274, COX2, PGE2, and NOS2). While this
was a small pilot study, it suggests that MDSCs present in
sepsis may be inherently different from those seen in cancer-
associated immunosuppression.

AGING PREDISPOSES THE
DEVELOPMENT OF CCI AND PICS

The global population is rapidly aging (70, 71) with increasing
healthcare resources and costs devoted to this group. The
frequency of hospitalizations for sepsis in patients over 50 has
increased, most dramatically in patients aged 65 years or greater
(72). Advanced age is also associated with more severe organ
failure, infectious complications, increased ventilator days, a
longer ICU LOS, an increased 28-day mortality, and an increased
likelihood of discharge to skilled nursing or long-term care
facilities (73).

FIGURE 4 | Microarray Transcriptomic Analysis of MDSCs from Patients 14 days after Sepsis and Healthy Control Subjects. The genomic response of bulk isolated

MDSC RNA in healthy controls and septic patients 14 days after initial infectious onset. (A) Conditional principal component analysis of septic (day 14) and healthy

control MDSC gene expression patterns. (B) Heat map of the hierarchical clustering of MDSC gene expression patterns and variation between septic patients (S) from

day 14 and healthy (H) control subjects. Modified from Mathias et al. (67).
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FIGURE 5 | Uniform manifold approximation and projection (UMAP) plots of cell clusters identified in healthy patients (n = 2,340 cells) vs. sepsis 1 (bacteremia,

sepsis; n = 1,544 cells) and sepsis 2 (fungemia, septic shock; n = 5,587 cells) showing three distinct MDSC subsets. Heatmap illustrating expression patterns of

MDSC subsets at 21 days post-sepsis vs. healthy control subjects. Rows represent the specific genes of interest differentially expressed in both sepsis patients; only

sepsis patient 1; only sepsis patient 2; and genes not differentially expressed in this study, but previously determined to be important to MDSC function in cancer and

autoimmunity. Number of columns represent number of cells analyzed in each group. DE, differentially expressed genes in sepsis vs. healthy controls. Colors

represent mean normalized relative expression with blue representing reduced expression and orange, increased expression. Modified from Darden et al. (68).

As seen in younger populations, the in-hospital mortality
from sepsis in the elderly is decreasing, but still remains
significantly higher. The risk of CCI and discharge to a non-
home destination is also increased in the elderly population
and is multifactorial in nature (33, 72, 74). Contributing factors
include senescence (normal aging), inflammaging (chronic,

subclinical inflammation), comorbidities, lack of physiologic
reserve, pre-existing disability, and epigenetic changes. These
factors prevent older individuals from readily returning to
homeostasis following critical illness and contribute to the
increased risk of morbidity and mortality following sepsis (70,
71, 75, 76).
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Aging has a profound role on the immune system.

Immunosenescence is a state of age-associated changes in the

immune system which is characterized by decreased ability to
mount an effective response to pathogens (77, 78), decreased

competency of the adaptive immune system (as evidenced

by decreases in naïve peripheral T cells, repertoire diversity,

and immunocompetent B cells) (77, 79), and dysfunctional
myelopoietic effector cells (i.e., PMNs, monocytes/Mφ, DCs, and

NK cells) (78). Furthermore, the aged host’s HSCs preferentially

induce myelopoiesis, contributing to the substantial increase
in MDSCs seen in this population as a response to the

initial insult (78). “Inflammaging” is defined as chronic, low-
grade inflammation that occurs with physiologic aging. It is a

unique response seen in aged mammals and differs from the

responses seen in the young. The “cytokine storm” seen in the

younger population can be markedly attenuated or absent in
the aged population, whereas immunosuppression appears to
dominate (73). In these cases, early mortality is due, instead,
to failure of host protective immune mechanisms to adequate
microbial control.

In murine models, sepsis induces a rapid release of mature
and immature myeloid cell populations from the bone marrow
in response to endogenous and exogenous danger signals (55,
60). This creates niches in the bone marrow, which stimulate
emergency myelopoiesis (80). Myelopoiesis predominates at
the expense of lymphopoiesis and erythropoiesis (64, 80).
Interestingly, elderly HSCs have this phenotype and function
prior to critical illness, with myeloid-skewed cell production and
a decreased ability to produce lymphoid cells (81, 82). These
HSCs are also functionally inferior to their younger counterparts,
with a lower functional frequency, delayed proliferative response,
and reduced efficiency for short term homing (81, 82). These
baseline dysfunctions are exacerbated by acute critical illness.

MUSCLE WASTING AND PROTEIN
CATABOLISM SUSTAIN THE CCI
RESPONSE

Skeletal muscle serves as the largest protein reserve in the
body, which can be mobilized for metabolic substrates in times
of stress. Critical illness is characterized by marked protein
catabolism, which results from increased muscle breakdown,
decreased protein synthesis, and the release of potential pro-
inflammatory degradation products (83, 84). In patients who
progress to CCI, this is a self-perpetuating cycle that results
in profound cachexia. The exact mechanism has not been fully
elucidated, but likely involves inflammation- and oxidation-
associated direct mitochondrial and myocyte injury (85). Not
surprisingly, muscle catabolism can result in the release of
DAMPs (including mtDNA, HMGB1, and TFAM) into the
systemic circulation, driving persistent inflammation (83, 86–
88). In animal models, the mtDNA-TLR9-RAGE pathway, which
can be activated by mtDNA or TFAM, has been shown to
be involved in sepsis-induced cardiac inflammation (86, 89).
As with other endogenous alarmins, these increases in both
local tissue damage and systemic inflammation drives ongoing

functional immunosuppression at both the level of the bone
marrow (enhanced myelopoiesis) and functional lymphocyte
populations (Figure 6). The role of MDSCs in cancer cachexia
has been investigated for years, and several therapies are targeted
at altering their function and have shown promise (90, 91).

Muscle wasting not only contributes to the ongoing
inflammatory state seen in CCI, but also leads to a substantial
functional disability (92, 93). Loss of skeletal muscle mass is
associated with profound functional deficits which are most
notable in the aging due to their baseline declining muscle
mass (94). In these populations, even small functional changes
can cause a shift from independent to dependent living (95).
Decreased skeletal muscle mass is also associated with increased
falls in the elderly, which are an independent predictor of 1-
year mortality (96). Functional declines aren’t limited to the
aging population—over 80% of critical illness survivors report a
reduction in physical ability (97). Physical limitations preclude
patients from returning to work and contribute substantially
to their reduced healthcare-related quality of life (97, 98).
As seen with the self-perpetuating cycle of PICS in CCI
patients, reductions in physical capabilities propagate ongoing
mental health issues, economic hardship, and burden on the
healthcare system.

ROLE OF ACUTE KIDNEY INJURY

Organ injury contributes to the ongoing inflammation associated
with CCI. The kidney plays a crucial role in both initial and
long-term survival from sepsis. AKI has been associated with
increased in-hospital mortality and is more prevalent in sepsis
than other critical illnesses (99). This relationship is bidirectional,
as patients with acute and/or chronic kidney injury are also
more likely to develop sepsis (100–103). Failure to resolve
AKI is associated with both increased risk of initial mortality
and progression to CCI (33, 104, 105). Chronic kidney disease
(CKD) is not just a marker of CCI but perpetuates the cycle
as well. Renal tubule epithelial cells are highly susceptible to
oxidative stress and release large quantities of DAMPs. Urinary
analysis of septic patients reveals increased levels of DAMPs
and over expression of several DAMP receptors (106). These
DAMPs act locally to increase secretion of chemokines by renal
parenchymal and dendritic cells (DCs), which further promote
local inflammation (107–109). They also have systemic effects,
which aremediated by PPR toll-like receptors (TLRs) (110). TLRs
are also upregulated in AKI via epigenetic remodeling, priming
the renal tubule epithelial cells to release increased amounts of
cytokines in response to antigen stimulation (111). This “hyper-
responsive state,” concomitant with decreased renal clearance,
leads to amplified systemic inflammation and resultant organ
injury (112, 113).

While the relationship between AKI and acute illness is well-
established, the role of the kidney in CCI is more elusive. Its
role in filtration exposes the kidney to over 30 times the blood
volume daily (114), meaning renal DCs and lymph nodes are
exposed to inflammatory mediators and pathogens significantly
more than other tissues. This results in a positive feedback loop
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FIGURE 6 | The proposed self-perpetuating cycle by which PICS drives muscle loss and inflammation. Modified from Mira et al. (69).

in which exposure to these stimuli result in further oxidative
damage and release of additional inflammatory mediators, both
as a response to the filtered pathogens and to the ongoing tubular
necrosis (115). As previously discussed with sepsis-associated
muscle wasting, these self-perpetuating cycles of ongoing cell
death and inflammation result in development of a persistent
inflammatory state rather than return to homeostasis.

INVESTIGATIVE CHALLENGES

Sepsis is, at its foundation, a heterogenous disease process that
occurs in a diverse patient population, especially aged and those
with pre-existing comorbidities. The resulting CCI in many
sepsis patients is inherently intertwined with the patient’s prior
comorbidities and functional status. This complex pattern of
seemingly infinite variables makes both clinical decision-making
and systematic investigation difficult. Human studies are difficult
to standardize and depend on long-term participation of patients,
many of whom are overburdened with their disease process.

Animal models have been generally successful in the
investigation of early sepsis responses associated with the
“genomic or cytokine storm.” However, they fall short in
modeling long-term processes. To better investigate these
chronic mechanisms driving CCI, continued bidirectional
translational research is required. Our group, along with
several others, have proposed a semi-lethal cecal ligation
and puncture (CLP) model with daily chronic stress to
approximate the PICS endotype seen in human CCI (116–
121). However, this model fails to accurately represent the
sterile inflammation present in most CCI patients, and
replaces it with a peritoneal abscess (122). This model also
relies on young, otherwise healthy mice. It fails to capture
the interplay between aging and comorbidities demonstrated
in human patients. We have demonstrated that the sepsis
response is notably different in aged mice when compared
to their juvenile counterparts (123). Understanding these
complex, interconnected mechanisms is crucial to further
understanding of this disease process and development of
therapeutic interventions.
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MOVING FORWARD

Sepsis and CCI are immune dyscrasias at their foundation,

and PICS is the predominant endotype behind CCI. Thus, a

large majority of interventional studies have focused on the
restoration of immune system homeostasis. Leukocyte growth

factors (e.g., G-CSF) (124–128) immunomodulatory cytokines
(e.g., IL-7, IL-15, and IFN-γ) (129–133) inhibitors of negative

co-stimulatory pathways (e.g., anti-PD-1/PD-L1 Ab, anti-CTLA-
4 Ab, anti-TIM3 Ab, and anti-LAG-3 Ab) (134–140) and the

thymic peptide thymosin-α1 (141) have all been or are being
investigated for potential benefits. These trials have been largely
unsuccessful at finding a “silver bullet” cure, but some have
shown promise in selective populations (124, 125). This is not
surprising given the heterogenous disease process and highlights
the importance of continued investigative efforts in endotyping
these patients as a precision medicine approach. Oncology
research has been successful in developing targeted therapies
for specific cancer patients with PICS-like endotypes. These
approachesmay be applicable to sepsis-induced PICS, but further
research is required.

Nutritional support is paramount in both the acute and
chronic treatment of sepsis and CCI. As discussed before,
the loss of skeletal muscle contributes to both the functional
declines seen in CCI patients and the perpetuation of the PICS
endotype. Early implementation of nutrition is clearly important,
but the optimal protein and nutrient requirements remain
undetermined. However, given their phenotypic similarities to
cancer cachexia and aging sarcopenia, CCI patients likely have a
daily protein requirement of roughly 1.5–2.0 g/kg/day (142–146).
Arginine supplementation in sepsis remains controversial given
its role as an intracellular substrate for nitric oxide. However, the
upregulation of arginase-1 by MDSCs may result in a relative
arginine deficiency (67, 147). Arginine is necessary for proper T-
cell receptor function and wound healing (148, 149). Therefore,
arginine supplementation may counteract the persistent arginine
deficiency due to persistent MDSC expansion during PICS,
promoting lymphocyte proliferation and improved tissue repair.
Leucine is another amino acid that shows promising results,
as it decreases muscle protein catabolism and induces protein
synthesis (150). Leucine and other branched chain amino acids
(BCAA) supplementation resulted in improved nutritional and
immunologic parameters, such as nitrogen balance, prealbumin
levels, and lymphocyte counts (151). It has also been shown to
increase muscle protein synthesis through the mTOR pathway
(152, 153). Studies in large burns have also shown promise
using adjuncts such as insulin, oxandrolone, and propranolol to
maintain an anabolic state (154–156).

Decreases in functional status are closely associated with
decreases in health-related quality of life (QOL) among CCI
patients. Maintaining, or improving, baseline functional status is
the ultimate goal, but the prevention of unnecessary muscle loss
is vital. Early ICU-based exercise and physical therapy programs
have been associated with improved in-hospital outcomes, such
as a reduction in the duration of mechanical ventilation and

ICU length of stay. They are also associated with improved
physical function after discharge (157). These programs, when
combined with adequate nutritional support have demonstrated
substantial improvements in muscle synthesis and functional
outcomes (158). However, these have not been fully evaluated in
the CCI population.

Technology and the field of medicine have developed rapidly
over the past few decades. With the application of the Human
Genome Project and the development of high throughput
sequencing techniques, the development of individualized
therapies has been made possible. These therapies have been
remarkably successful in the treatment of cancer and congenital
disease (159–161). Understanding the transcriptomic landscape
of sepsis and CCI, and how they differ, is crucial to development
of novel therapeutic agents for sepsis-induced CCI. Advances
in technology have also made data collection and interpretation
easier, making large, multicenter databases commonplace. The
addition of biologic variables, in addition to clinical variables, will
likely improve the prognostic power of these data sets and allow
for early endotyping of patients (162–164).

“Big Data” is particularly useful in sepsis and CCI, as
the disease process and patient population are increasingly
heterogeneous. With the ability to quickly endotype a patient,
accurate prognosis and optimal treatment is possible. We have
shown recently that the leukocyte transcriptome within 48 h
post-trauma is highly predictive of outcomes (165, 166). This
technique, using regression-based prediction models, may be
further improved by the use of machine-learning algorithms
and deep-learning technologies (167, 168). Big data provides
large sample sizes allowing for the identification of biomarker
cutoff values with optimal sensitivity and specificity. However,
these static thresholds fail to account for individual physiology;
therefore, it is important that future efforts continue to improve
upon precision medicine by integrating data from multicenter
and multinational repositories with machine-learning and deep-
learning technologies.
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