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Background: Exploiting biologic imaging, studies have been performed to boost dose to gross intraprostatic tumor
volumes (GTV) while reducing dose elsewhere in the prostate. Interest in proton beams has increased due to superior
normal-tissue sparing they afford. Our goal was to dosimetrically compare 3D conformal proton boost plans with
intensity-modulated radiation therapy (IMRT) plans with respect to target coverage and avoiding organs at risk.

Methods: Treatment planning computer tomography scans of ten patients were selected. For each patient, two
hypothetical but realistic GTVs each with a fixed volume were contoured in different anatomical locations of the
prostate. IMRT and proton beam plans were created with a prescribed dose of 504 Gy to the initial planning target
volume (PTV) including the PTV of the seminal vesicles (PSV), 70.2 Gy to the PTV of the prostate (PPS), and 90 Gy to the
PTV of the gross tumor volumes (PGTVs). For proton plans, uncertainties of range and patient setup were accounted
for; apertures were adjusted until the dose-volume coverage of PTVs matched that of the IMRT plan. For both plans,
prescribed PTV doses were made identical to allow for comparing normal-tissue doses.

Results: Protons delivered more homogeneous but less conformal doses to PGTVs than IMRT did and comparable
doses to PSV and PPS. Volumes of bladder and rectum receiving doses higher than 65 Gy were similar for both plans.
However, volumes receiving less than 65 Gy were significantly reduced, i.e, protons reduced integral dose by 45.6 %
and 26.5 % for rectum and bladder, respectively. This volume-sparing was also seen in femoral heads and penile bulb.

Conclusions: Protons delivered comparable doses to targets in dose homogeneity and conformity and spared normal
tissues from intermediate-to-low doses better than IMRT did. Further improvement of dose sparing and changes in
homogeneity and conformity may be achieved by reducing proton range uncertainties and from implementing

Background
There has been a shift of radiation treatment paradigms
towards organ-sparing focal treatments of the biologic-
ally significant lesions in advanced prostate cancer cases.
This approach was envisioned by Ling et al. [1] who pre-
dicted that future radiation therapy would be based on
conforming high doses to lesions of significant cancer,
identified with biological imaging, while delivering lower
doses to surrounding tissues.

This approach has been explored in planning studies
of prostate cancer with intra-prostatic legions with
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intensity-modulated radiation therapy (IMRT) [2-6] as
well as Phase I-II clinical studies [7—10]. The former has
reported increased therapeutic ratios due to the local
dose escalation and the latter reported comparable tox-
icity to treatments without local dose escalation [8—10].
The focal boost idea was extended to the use of proton
beams by Schulte and Li [11].

External beam therapy with protons rather than pho-
tons is a topic of active discussion. At present, only a
few comparative studies between IMRT and passively
modulated proton therapy have been performed for
prostate cancer. It was found that without compromising
prostate coverage better sparing of normal tissues may
be possible with proton beams [12, 13]. In this study, we
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comparatively evaluated boost treatment plans using
passive proton beams and X-ray IMRT in ten prostate
cancer cases by placing two hypothetical but realistic
index GTVs into their prostate. The objective was to
compare proton and IMRT plans with respect to target
coverage and avoidance of normal tissues. To our know-
ledge, this is the first comparison of this kind.

Methods
Patient selection and volume definition
Ten computer tomography images, extending from L4 to
2 c¢cm below the ischium, were selected from patients with
intermediate- and high-risk prostate cancer treated by
passive proton beams at Loma Linda University Medical
Center. The study was approved by the Institutional
Review Board at our institution. The prostate (PS) was de-
lineated and seminal vesicles were contoured bilaterally
and up to 1 cm proximally to the prostate. These regions
formed the clinical target volumes (CTVs). Within PS, we
chose two spherical index lesion GTVs with a volume of
approximately 2 cc as shown in Fig. 1; one lesion was
placed in the left lateral peripheral prostate zone, the most
common location for macroscopic prostate cancer [2, 5],
and centered in superior-inferior direction; the other was
placed in the sagittal midplane adjacent to the bladder.
The selection of the two GT Vs was based on the following
considerations: more than two lesions and/or a larger size
would have excluded the use of a local boost; the size of
2 cc is representative of index lesions [2, 5]; the second
GTV near the bladder, although not a common location,
creates a dosimetric challenge to show a potential advan-
tage of one technique over the other. The GTVs were de-
lineated, giving them a spherical shape with each volume
of 2 cc within +/- 10 %.

Bladder, bladder wall, rectum, and rectal wall were also
delineated. The rectum and its wall were delineated from
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the level of the ischial tuborisities to the recto-sigmoid
flexure. Right and left femoral heads, penile bulb, and
external body were contoured as well. Patients were
immobilized in a low-density foam shell placed inside a
half-cylinder plastic pod. A setup-uncertainty/internal
motion margin (SM) of 5 mm was added to the CTVs and
GTVs according to our institutional policy, based on the
use of rectal balloons [14]. This resulted in the planning
target volumes for the prostate (PPS), the seminal vesicles
(PSV), and the GTVs (PGTVs). Both proton and IMRT
plans were generated on the patients only excluding the
pod in this planning study.

Dose prescription

In our practice, we deliver 50.4 Gy to the PSV and
81 Gy to the PPS. In this study, we boosted the PGT Vs
to a dose of 90 Gy, while reducing the dose to the rest
of PPS with microscopic disease to 70.2 Gy. We main-
tained 50.4 Gy to the PSV. Three sessions of 28, 11, and
11 fractions at 1.8 Gy/fraction can be delivered. As
CTVs were expanded by the SM, some of the resulting
PTVs overlapped with each other. Therefore, the PTVs
effectively included PGTVs, PPS subtracted by PGT Vs
(PPS-PGTVs), and PSV-PPS.

IMRT planning

Planning was performed with 7 equally spaced 6 MV
beams starting from a gantry angle of 0° using a Varian iX
accelerator (Varian Medical Systems, Inc., Palo Alto, CA)
with a leaf width of 0.5 cm. The planning was done on the
Odyssey planning system (Optivus Proton Therapy, Inc.,
CA) with a voxel size of 0.3 x 0.3 x 0.25 cm®. For inverse
optimization, we imposed constraints of the Radiation
Therapy Oncology Group (RTOG) Protocol 0815 as fol-
lows [15]: all target volumes should receive their pre-
scribed doses (PDs) to at least 98 % of their volumes; the

vesicle is in blue

Fig. 1 Coronal (a) and sagittal (b) images with GTVs expanded with a planning margin. The prostate is in purple; the GTV is in red; the seminal
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minimum dose (D,,,;,,) within each target should be greater
than 95 % of each PD; the maximum dose (D,,,,) within
each target should not exceed 110 % of each PD (vari-
ation). Bladder constraints are as follows: no more than
15 % volume receives a dose that exceeds 80 Gy (V80 <
15 %); V75 < 25 %; V70 < 35 %; V65 <50 %. The rectum
constraints are: V75<15 %; V70<25 %; V65<35 %;
V60 < 50 %. The mean penile bulb dose was constrained
to<52.5 Gy. In addition to the RTOG constraints, the
maximum dose to femoral heads was limited to 50 Gy.
The optimization was repeated until the constraints were
met and no significant improvement in tumor coverage
and organ savings was made by further optimization.

Proton planning

Two parallel-opposing lateral beams were applied to the
combination of PPS and PSV to deliver a dose of
50.4 Gy, and a second set of two reduced beams was ap-
plied to the PPS to a total of 70.2 Gy. Finally, a left-
lateral beam was applied to boost the dose to the two
GTVs to a total of 90 Gy. Lateral beams have been trad-
itionally used in proton therapy because they are most
robust with respect to range uncertainties and mostly
exclude bladder and rectum with their distal edges not
pointed toward them [14, 16].

Appropriate distal and proximal margins were added
to ensure coverage of the CTVs by the spread-out pro-
ton Bragg peak (SOBP) of each beam. For the margin
determination, we employed a range uncertainty of
0.3 cm for uncertainties in accelerator energy, beam
scattering foil thickness, and compensator bolus [17].
We used an additional uncertainty of 3.5 % for CT ac-
curacy (CT number conversion to proton stopping
power), as shown in Egs. (1) and (2).

Distal margin = 0.035 « distal CTV depth + 0.3cm (1)

Proximal margin = 0.035 « proximal CTV depth + 0.3 cm

(2)

Perpendicular to the beam direction, we adjusted the
aperture margins until PTVs were dosimetrically cov-
ered, meeting the above target coverage requirements.
This was done to compare the proton plans with the
IMRT plans, which utilized the PTV concept. Of note,
this approach was also adopted by the Children’s Oncology
Group Protocol ACNS0831 when allowing proton therapy
and IMRT [18].

To account for setup uncertainty that can affect pro-
ton range and to ensure full lateral scattering [19], the
compensator (bolus) for each beam was “smeared” per-
pendicular to the beam direction by applying a smearing
radius given by Eq. (3)
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Smearing radius
= {SM? + [0.03 « bolus thickness of range shift]2}0'5.

(3)

Plan evaluation

Plans were evaluated in terms of meeting the imposed
planning constraints, integral dose (Gy cm?®), and the in-
homogeneity coefficient (IC), defined for each PTV as

D max -D min

Dmean

IC = : (4)
where D,,,., D, and D,,.,, are the maximum, mini-
mum, and mean PTV dose, respectively. The highest pos-
sible IC is zero. In addition, a conformity number (CN) as
described in eq. (5) was used [20], which addresses both
target coverage and normal tissue avoidance.

CN — PTV encompassed by 95% isodose
N PTV

(5)

o PTV encompassed by 95% isodose
95% isodose volume

The highest possible CN is one. For comparative dose
evaluation of IMRT and proton plans with respect to
normal tissues, we applied the same dose prescription to
both modalities. The dosimetric data and evaluation pa-
rameters were averaged over the ten cases and statisti-
cally evaluated by the Mann-Whitney test.

Results and discussion

Dose distributions of IMRT and proton plans are shown
in Fig. 2. The dose distribution of the IMRT plan was
contributed by conformal beam arrangement, while that
for the proton plan by lateral arrangement.

Dose volume histograms of the two plans are provided
in Fig. 3. The averaged planning data and plan evaluation
parameters for the PTVs and normal tissues are given in
Tables 1, 2, and 3. Table 1 shows that for both proton and
IMRT plans, each PTV received a D,,,;, greater than 95 %
of the PD. For brevity, the two PGTVs were evaluated to-
gether. For both plans, D,,,, for the PGTVs was smaller
than 110 % of the PD. However, the maximum dose con-
straints for PSV-PPS and PPS-PGTVs were exceeded due
to their proximity to the PGTVs.

The average inhomogeneity indices of PPS-PGT Vs and
PGTVs was larger for IMRT plans (33.3 % and 9.7 %, re-
spectively) compared to the proton plans (29 % and
4.6 %). This characteristic, i.e., the high-dose tail, is com-
mon to IMRT plans, whereas proton plans provide more
homogeneous dose due to SOBP (Fig. 3a). However, for
the PSV-PPS, the proton plan was more inhomogeneous
than the IMRT plan (57.1 % vs. 49.1 %) due to spill over
of higher doses from the PGTV coverage.
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70.2 Gy

Fig. 2 IMRT (a) and proton (b) plans. PGTV(red), PPS(purple), and PSV(blue) are enclosed by various isodose lines

Dose (Gy)

508 ,
g 05 ' \ L \ :
E ——PGTVs_Proton| \ s \ .
2 0.4 - - \PGTVs_IMRT [— .
= | \\ . \ :
||——rpPs- " _
0.3 PGTVs_Proton R \ B \ .
- 'PPS- s . .
0.2 PGTVs_IMRT s +
——PSV- . \ \ '
01H. .. ‘PgﬁjProton N . -
PPS_IMRT . \\lL
0 : . BTSN .
40 50 60 70 80 90 100
Dose (Gy)
(o]
17
'. ——— Lt FH_Proton
0.9 - - ‘Lt FH_IMRT H
& ——— Rt FH_Proton
0.8 177 - - - RtFH_IMRT
07 §; N Penile Bulb_Proton
' N \\ Penile Bulb_IMRT
§ 06 —
©
L 05 T
[0 RN
5 0.4 N \ \
0.3 ‘ l
0.2 \ l
0.1 k . \
0 : tnal i
0 20 40 60 80

0.9

o
©

o
3

o
o

Rectum_Proton
- - ‘Rectum_IMRT

Bladder_Proton ||
- - - Bladder_IMRT

o
S

Volume Fraction
o
(9]

o
w

o
o

0.1

20

40

Dose (Gy)

60 80

100
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Table 1 Average dosimetric data and plan evaluation parameters for the PTVs
Target Plans Prescription Inhomogeneity Conformity
Volume® Dpin® Do’ Dpeart p* IC p* CN p*
PSV-PPS Proton 99.0 % 96.3 % 1751 % 69.3 <0.001 0.571 0.029 0.051 0.796
IMRT 96.6 % 158.7 % 63.7 0491 0.054
PPS-PGTVs Proton 99.2 % 984 % 133.1 % 83.9 0.019 0.290 <0.001 0.328 0.143
IMRT 96.2 % 1350 % 81.7 0333 0.392
PGTVs Proton 98.7 % 99.3 % 104.0 % 91.6 <0.001 0.046 <0.001 0.216 <0.001
IMRT 97.8 % 107.9 % 939 0.097 0.358

*p-value associated with the values to the left; significant values are bold
#Minimum volume covered by the PD

PRelative to PD (%); defined to 0.02 cc

Sin Gy

The average conformity indices were higher for the
IMRT plans, although the difference was only significant
for the PGTVs (35.8 % vs. 21.6 %). This can be explained
by the fact that proton plans employed two lateral beam
directions, whereas the IMRT plans were intensity-
modulated with 7 directions.

The rectal volumes receiving doses >65 Gy were simi-
lar for IMRT and proton plans; the volumes receiving
doses <65 Gy were reduced for protons, leading to an
integral dose (ID) to the rectum reduced by 45.6 %, and
to the rectal wall by 40.9 % (Table 2; Fig. 3b). The differ-
ences between protons and IMRT were somewhat simi-
lar for bladder; the volume receiving doses <45 Gy was
smaller for proton beams (Table 2;Fig. 3b), leading to an
ID to the bladder reduced by 26.5 %, and to the bladder
wall by 17.9 %. Doses delivered to left femoral heads were
significantly higher for the proton plans (Table 3;Fig. 3c),
owing to the left lateral proton beam boosting the PGTV.
The right lateral femoral head and penile bulb received
similar doses for proton and IMRT plans. As seen in the
table, all plans met the RTOG dose constraints. Concern-
ing normal tissues outside the PTVs, proton plans deliv-
ered an ID that was 36.3 % less than that of IMRT plans.

The individual plan data and parameters for ten patients
are provided in Fig. 4 and the appendix. Figure 4 shows the
above trend, found as an average over 10 patients,
individually.

Trofimov et al. [13] and Vargas et al. [12] compared
IMRT and passive proton plans for prostate cancer. Dif-
ferent from our study, these investigators did not use a
focal GTV boost; Trofimov et al., in addition to oppos-
ing lateral beams, adopted oblique beam angles and one
IMPT plan; Vargas et al. optimized beam angles and re-
duced standard aperture margins by up to 30 % to spare
bladder and rectum. Therefore, our findings of normal
tissue coverage are not directly comparable to those by
Trofimov and Vargas et al., although in agreement with
them, substantially smaller dose was received by the vol-
umes of rectum and bladder exposed to low-to-
intermediate doses for proton plans.

Proton beams deliver more conformal and homoge-
neous dose, thanks to proximal and distal dose fall off
and SOBP, than photons do. In this study, this disadvan-
tage of photon beams was compensated by employing
greater beam numbers and intensity modulation. Even
without intensity modulation, passively scattered proton
beams, using a lateral orientation, demonstrated dosimetric
advantages in the low-to-intermediate dose range for crit-
ical organs and competing dose homogeneity and conform-
ity for PTVs. Adoption of different orientations and/or
increased beam number would further improve the proton
plans (i.e. conformity), but we chose not to do so here, as
GTVs are within CT'V, another target, and the lateral beams
are the most “robust” toward range uncertainties [14, 16].

Range uncertainties may decrease, and the conformity to
PGTVs may change if we use scanning beams and improve
imaging techniques [21, 22]. Additional range uncertainty
due to uncertainty in RBE [23] may also be taken into ac-
count by implementing biologically-weighted treatment
planning. Utilization of intensity modulation may also alter
the conformity and the homogeneity to PGTVs and the
homogeneity outside the PGTVs and inside PCTVs (PPS in
this study), while the advantages in the low-do-intermediate
dose and integral dose are retained. Lastly, as intensity
modulation is implemented, there could be an interplay
between interfraction organ motion and IMPT dose deliv-
ery that should be studied using repeated CT studies, de-
formable image registration, and dose summation [16].

For successful boost therapy, enhanced dose conformity
to the PGTVs and homogeneity outside the PGTV would
be better accepted by the treating physician. How much
this will be translated into improved outcomes can only be
demonstrated in future clinical trials. The boosting concept
for intraprostatic dominant lesions is a rather new idea that
has yet to be tested in (best randomized) clinical trials
stratified by boosting technique. Initial single-institution
experiences cited in the introduction of our paper, point
toward feasibility and a favorable clinical outcome, but fur-
ther clinical evidence needs to be accumulated and should
also include novel modalities such as protons.



Table 2 Average dosimetric data and plan evaluation parameters for rectum and bladder

Voo p* V75< 15 %°  p* V70< 25 %°  p* V65< 35 %°  p* V60< 50 %°  p* Dean  P* Dc  p* DS W) p*
Rectum (w=wall) Proton 1.1% 0315 6.7 % 0631 97 % 0315 123 % 0.029 146 % 0009 215 <0001 501 <0001 152  <0.001
IMRT 07 % 73 % 114 % 157 % 204 % 389 92.1 257
Bladder (w = wall) VOO p* VBO< 15%°  p* V75<25%P  p* V70<35%°  p* VE5<50%°  p* Diean p* D€ p* ID € (w) p*
Proton 28% 0089 8.1 % 0.035 100 % 0.075 121 % 0.165 141 % 0218 197 0190 606 0.043 211 0052
IMRT 17 % 50 % 6.7 % 86 % 105 % 245 829 257
*p-value associated with the values to the left; significant values are bold

%in Gy
PRTOGO815 constraint
“Integral dose in Gy cm?

€1Z:0L (5107) ABojoduQ uonpIppy *|p 12 O3

L1 o 9 abed
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Table 3 Average dosimetric data and plan evaluation
parameters for other normal tissues

Dmear” P* 0° p*

Rt Femoral Head Proton 230 0.105 353 0529
IMRT 20.7 314

Lt Femoral Head Proton 327 <0.001 495 0.002
IMRT 194 295

Penile Bulb Proton 286 0.529 13 0481
IMRT 20.7 09

Normal Tissues outside PTVs  Proton 4.8 0.002 7716 0.001

IMRT 7.3 1209.8

*p-value associated with the values to the left; significant values are bold
%in Gy
PIntegral dose in Gy cm?®

This paper intended to perform a dosimetric compari-
son with existing and widely practiced proton beam deliv-
ery techniques. In the future, one could also consider an
integrated simultaneous boost technique rather than se-
quential delivery of the GTV boost. A simultaneous boost
would be potentially more accurate because it would not
require a different patient setup. The implementation of
this technique can be made possible by IMPT.

This study reported reduction of volumes receiving low-
to-intermediate dose and integral dose by proton beams.
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The use of protons for reducing clinical toxicity is a very
active area of ongoing clinical study [24]. and currently
the most convincing data that a reduction of volume
receiving low-to-intermediate dose afforded by proton
therapy to less side effects came from the experience
in head and neck cancer [25]. Regarding the impact of
lower integral doses, the clinical benefits are also demon-
strated in gastrointestinal radiotherapy, e.g., [26, 27]. We
believe that benefits will eventually be seen when more
normal tissue is spared with proton radiotherapy of pros-
tate cancer, but this needs further evidence from prospect-
ive clinical trials.

Conclusions

We have performed a first study that compares proton
plans with IMRT for prostate cancers with intraprostatic le-
sions. Compared with IMRT, passive proton beams pro-
duced comparable doses to targets in dose homogeneity
and conformity and spared normal tissues from
intermediate-to-low doses better. Therefore, passive proton
beams can be an advantageous choice for treating prostate
cancers with a local boost. Further improvement of dose
sparing and changes in homogeneity and conformity may
be achieved by reducing proton range uncertainties and
from implementing intensity modulation.
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Appendix

Table 4 Planned dose in targets

PSV-PCTV PCTV-PGTVs PGTVs
Patient  Plan Prescription  Inhomogeneity Conformity  Prescription  Inhomogeneity Conformity  Prescription  Inhomogeneity Conformity
volume®  Dpi®  Dpa’  Dimean” 1€ CN Volume Dii’ Diwa’  Dieart IC CN volume®  Dpi®  Dpa®  Dear” 1€ CN
1 Proton 99.1 % 972% 1802% 681 0614 0.043 99.3 % 977 % 1329% 835 029 0.342 98.9 % 992% 1038% 919 0045 0.189
IMRT 99.1 % 956 % 1522% 636 0448 0.048 99.3 % 962% 1330% 821 0316 0.404 98.9 % 988% 1070% 933 0079 0319
2 Proton 99.3 % 99.0% 1800% 70.1 0.582 0.039 98.8 % 983% 1329% 851 0.285 0.328 984 % 99.7% 1038% 912 0041 0.197
IMRT 99.3 % 966 % 1581 % 641 0484 0.043 98.8 % 962 % 1340% 827 0322 0422 984 % 963% 1082% 935 0114 0336
3 Proton 985 % 95.0% 1657 % 668 0.533 0.049 98.5 % 993% 131.1% 807 0276 0431 98.2 % 994 % 1022% 911 0027 0.189
IMRT 985 % 956 % 1484% 622 0428 0.052 98.5 % 953% 1339% 810 0334 0.542 98.2 % 968 % 1062 % 933 0091 0.286
4 Proton 994 % 978 % 1782% 670 0604 0076 99.3 % 972% 1323% 841 02% 0.397 98.8 % 992% 1033% 912 0041 0215
IMRT 994 % 980% 1556% 624 0465 0.076 99.3 % 957 % 1336% 829 0321 0.443 98.8 % 973% 1084% 939 0.106 0.346
5 Proton 994 % 954 % 181.7% 729 0597 0.054 99.1 % 986% 1323% 845 0281 0323 98.7 % 989% 1039% 914 0049 0.221
IMRT 994 % 968 % 1526 % 649 0433 0.069 99.1 % 950% 1355% 810 0350 0491 98.7 % 973% 1088 % 945 0.109 0459
6 Proton 98.6 % 96.0% 1835% 713 0619 0.054 99.2 % 983% 1342% 835 0302 0.193 99.3 % 997 % 1048 % 922 0050 0.219
IMRT 98.6 % 952 % 1669 % 651 0554 0.055 99.2 % 963 % 1349% 804 0337 0.220 99.3 % 989% 1066 % 931 0074 0.386
7 Proton 989 % 982% 1819% 727 0581 0.056 99.6 % 993 % 1342% 857 0.286 0.281 98.5 % 984% 1039% 920 0053 0.237
IMRT 989 % 952 % 1772% 634 0652 0.051 99.6 % 9%69% 1370% 814 0347 0313 98.5 % 979% 1100% 953 0.114 0415
8 Proton 98.8 % 954 % 1720% 656 0.589 0.069 99.3 % 98.1% 1359% 848 0313 0313 99.0 % 994 % 1073% 920 0077 0.218
IMRT 98.8 % 964 % 1585% 631 049 0074 99.3 % 96.6% 1345% 810 0328 0.346 99.0 % 99.1% 1082% 940 0.087 0.341
9 Proton 98.2 % 925% 1837 % 728 0632 0.063 99.5 % 979% 1326% 866 0.282 0.259 99.3 % 994 % 1033% 919 0038 0.255
IMRT 982 % 972% 1688% 642 0.562 0.060 99.5 % 980% 1368% 835 0326 0.268 99.3 % 99.0% 1068 % 937 0075 0.349
10 Proton 99.3 % 964 % 1437 % 655 0363 0.012 99.6 % 99.0% 1322% 804 0.290 0414 98.0 % 996 % 1033% 913 0037 0.221
IMRT 99.3 % 992 % 1488 % 649 0385 0.012 99.6 % 959% 1365% 806 0354 0477 98.0 % 96.6% 1087 % 942 0.116 0.341

#Minimum volume to which prescribed dose is planned
PRelative to the prescribed dose in percent
In Gy

€1Z:0L (5107) ABojoduQ uonpIppy *|p 12 O3

L1 jo g abed



Table 5 Planned dose in rectum and bladder

Rectum Bladder
Patient Plans Voo V75 V70 V65 V60 V40 Dpear® 1D IDP (WS V90 V8D V75 V70 V65 V40 Dpear? ID° 1D° (W)

1 Proton 05 44 69 91 108 174 153 548 182 10 36 44 54 6.5 118 104 630 235
IMRT 02 68 10.1 134 168 389 356 127.8 355 05 24 32 42 53 145 148 89.5 293

2 Proton 13 7.1 86 103 121 222 196 382 113 23 6.2 75 87 98 16.1 143 69.0 239
IMRT 05 7.1 929 13.1 168 410 36.0 70.1 209 17 42 54 6.7 81 188 212 1026 307

3 Proton 05 6.7 114 154 185 309 254 596 17.9 29 78 102 127 151 232 19.9 67.1 215
IMRT 05 6.0 99 139 183 439 389 912 260 16 48 6.7 88 108 233 228 770 235

4 Proton 17 79 102 123 143 253 217 694 189 26 73 9.1 107 121 198 175 57.1 202
IMRT 13 10.1 139 182 232 545 419 1343 307 16 47 63 79 96 245 26.1 85.1 282

5 Proton 06 74 103 135 158 261 229 446 163 25 73 90 105 120 186 165 796 317
IMRT 05 49 82 117 157 401 368 717 231 08 25 38 52 6.7 204 2311 116 358

6 Proton 00 27 4.1 59 80 194 174 442 1.7 26 89 113 139 168 280 242 524 17.1
IMRT 00 45 10.1 158 206 452 352 894 225 12 62 90 116 141 257 242 523 16.7

7 Proton 26 79 100 114 139 242 213 473 154 34 13 147 175 202 348 304 520 19.1
IMRT 15 95 137 186 246 512 403 89.3 282 19 50 6.9 90 116 313 346 59.1 27

8 Proton 22 92 114 136 159 253 220 468 13.1 07 26 33 41 49 87 77 520 16.1
IMRT 08 6.8 108 159 216 480 404 859 231 07 26 35 45 56 148 16.1 1089 259

9 Proton 03 5.2 6.8 83 100 184 18.1 322 1.1 23 65 8.1 926 1.1 17.9 15.8 63.1 188
IMRT 05 79 118 159 203 493 394 703 209 2.7 64 79 93 108 227 232 927 240

10 Proton 13 84 173 230 269 381 310 634 180 78 192 226 282 323 472 400 510 188
IMRT 10 93 157 208 257 53/ 443 9038 263 43 108 147 186 225 418 394 50.2 202

Volumes are provided in percent

In Gy

PIntegral dose in Gycm?

‘w implies rectal or bladder wall
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Table 6 Planned dose in other normal tissues

Page 10 of 11

Rt FH Lt FH PB Ext-PCTV
Patient Plans Dina® Drmean” IDP Do Dimean’ 0P Dimear’ IoP Dinean” g

1 Proton 321 299 208 500 414 289 64.7 16 34 8382
IMRT 411 312 217 354 252 176 56.6 14 59 1479.3

2 Proton 307 234 307 481 340 432 439 18 38 3256
IMRT 396 151 19.8 430 129 163 270 11 58 4974

3 Proton 329 204 370 50.2 293 508 340 09 58 992.8
IMRT 474 234 424 545 20.8 359 17.7 05 85 14457

4 Proton 329 243 491 490 336 698 112 09 45 9526
IMRT 421 189 38.1 434 184 38.1 58 0.5 7.1 15113

5 Proton 316 209 274 479 27.9 354 403 16 89 757.3
IMRT 359 167 219 438 143 182 223 09 121 10333

6 Proton 325 243 44.6 492 355 639 6.6 04 45 7456
IMRT 448 213 39.1 452 213 384 4.1 03 6.6 1092.7

7 Proton 329 24.1 451 496 332 592 278 21 37 7868
IMRT 419 20.5 383 420 174 311 209 16 6.0 1298.5

8 Proton 397 205 326 517 317 503 06 00 37 7445
IMRT 444 195 310 432 197 312 20 0.1 62 12688

9 Proton 29.7 19.7 333 496 29.3 509 13 0.0 36 7354
IMRT 419 16.5 279 42.0 19.7 342 3.1 0.1 6.0 12223

10 Proton 329 229 327 492 311 429 556 35 59 8370
IMRT 494 236 337 497 244 337 478 3.0 8.8 1249.1

In left femoral head, D,,.x exceeded 50 Gy in one patient (#3) for both proton and IMRT plans, and in another patient (#8) only for the proton plan. The RTOG
dose constraint of the penile bulb (Deqn < 52.5 Gy) was not met in one patient (#1) for both plans and in another patient (#10) for the proton plan only

In Gy
PIntegral dose in Gycm?

Abbreviations

GTV: Gross intraprostatic tumor volumes; IMRT: Intensity-modulated radiation
therapy; PTV: Planning target volume; PPS: PTV of prostate; PGTV: PTV of
gross tumor volume; PSV: PTV of seminal vesicles; CTV: Clinical target volume;
PPS-PGTV: PPS subtracted by PGTV; PSV-PPS PSV subtracted by PPS;

RTOG: Radiation Therapy Oncology Group; PD: Prescribed doses;

Dpaxe Maximum dose; D,yyin: Minimum dose; Dpeqn: Mean dose; SOBP:
Spread-out Bragg peak; COG: Children’s Oncology Group; IC: Inhomogeneity
coefficient; CN: Conformity number.
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