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Herein, we propose a new deep neural network model based on invariant information
clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-
one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC
(EIIC) is a type of contrastive learning; however, unlike the original IIC, it is characterized
by transfer learning with labeled data pairs, but without the need for a data augmentation
technique. Each site in LOSO-CV is left out in turn from the remaining sites used for
training and receives a value for modeling evaluation. We applied the EIIC to the resting
state functional connectivity magnetic resonance imaging dataset of the Autism Brain
Imaging Data Exchange. The challenging nature of brain analysis for autism spectrum
disorder (ASD) can be attributed to the variability of subjects, particularly the rapid
change in the neural system of children as the target ASD age group. However, EIIC
demonstrated higher LOSO-CV classification accuracy for the majority of scanning
locations than previously used methods. Particularly, with the adjustment of a mini-
batch size, EIIC outperformed other classifiers with an accuracy >0.8 for the sites
with highest mean age of the subjects. Considering its effectiveness, our proposed
method might be promising for harmonization in other domains, owing to its simplicity
and intrinsic flexibility.

Keywords: deep learning, resting functional connectivity MRI, harmonization, leave-one-site-out cross-
validation, ABIDE

INTRODUCTION

Machine learning discrimination has been widely applied to resting-state functional connectivity
(RSFC) datasets which cover a wide range of neural diseases such as schizophrenia (Shen et al.,
2010), mild cognitive impairment (Chen X. et al., 2016), and autism spectrum disorder (ASD) (Guo
et al., 2017). Monk et al. (2009) demonstrated a difference in the strength of connectivity within

Abbreviations: RSFC, resting-state functional connectivity; ASD, autism spectrum disorder; DMN, default mode network;
ABIDE, Autism Brain Imaging Data Exchange; LOSO, leave-one-site-out; SVM, support vector machine; IIC, invariant
information clustering; EIIC, extended invariant information clustering; HO, Harvard-Oxford; BOLD, blood-oxygenation-
level-dependent; FC, full coupling; BN, batch regularization; CV, cross-validation; RF, random forest.
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the default mode network between ASD and control groups;
the magnitude of this difference was correlated with the severity
of symptoms. Guo et al. (2017) used a support vector machine
(SVM) as a classifier and successfully differentiated between
the two groups with >80% accuracy for data derived from
a single imaging location in the Autism Brain Imaging Data
Exchange (ABIDE) collection. The ABIDE is a dataset that
consists of resting-state functional magnetic resonance imaging
(MRI) images, structural images, and phenotypic data for 539
patients with ASD and 573 healthy developmental controls (TCs),
recorded at 17 locations worldwide.

However, machine learning performs quite poorly on
combined datasets derived from different imaging sites. This
can be attributed to the effects of data heterogeneity, such
as differences in the characteristics of MRI scanner suppliers,
scan parameters (particularly the length of the repetition time
[TR]), and the cohort setting, wherein variability in phenotype,
specifically a deviation in the age and gender group composition,
is unavoidable. Researchers commonly observe difficulty in
harmonization with respect to a multi-source dataset mixture in
the ABIDE analysis. Moreover, we experienced a considerable
drop in the accuracy on excluding the overall data of each
single site to create an independent testing set and featuring
the remaining sites as the provider of the modeling set. This
leave-one-site-out cross-validation (LOSO-CV) technique has
certain complications, particularly in the case of ASD, such as the
diverse age distribution for selecting the subjects. For example,
Chen H. et al. (2016) used RSFC in two frequency bands and
trained a discriminant model using feature selection and SVM.
However, before running the LOSO-CV, they preselected the age
bracket in the range of 12–18 years and removed the sites with
<30 participants.

More recently, with an increasing interest in deep learning,
researchers have proposed studies based on multi-layer network
models for decoding by analyzing the static structure and
dynamic modulation of RSFC. Heinsfeld et al. (2018) applied a
denoising autoencoder model to the overall sites in the ABIDE
and distinguished ASDs from TCs. The average accuracy was
approximately 70% on evenly subtracting some portion of the
data from all sites to leave the hybrid test set and train the
model from the remaining subsets. However, they encountered
a non-negligible fallen accuracy while distinguishing ASDs from
TCs, upon changing the splitting methods for cross-validation.
The average value remained 67% for the LOSO accuracy rates
assigned to each of the left-out sites. Note that the ABIDE sites
recording the largest accuracy decreases for LOSO compared
to each of the single-site modeling results were those in which
the mean ages were the highest or the lowest. The signs and
symptoms of ASD differ across age groups. Moreover, growth and
aging modulate the fundamental network architecture of RSFC
(Supekar et al., 2009). The attention neural network (ANN) might
be an alternative method to LOSO deep learning. Nonetheless,
Niu et al. (2020) excluded five sites from the ABIDE dataset and
supplemented the RSFC data with subject characteristics, such as
gender and handedness.

In addition to the autoencoder (Hinton and Salakhutdinov,
2006), researchers also use adversarial generative networks for

harmonizing MRI data (Yan et al., 2019) which adhere to the
framework of contrastive learning (Ian et al., 2014). Furthermore,
contrastive learning together with the data augmentation
technique have been adopted to overcome the individual
variability and noise in MRI experiments which cause a failure
in machine learning. Contrastive learning is a self-supervised
method that takes advantage of a conjugated data pair sampled
from the mixing set of different categories. The pair of similar
category generates similar output and that of the different
one generates dissimilar output to grasp the category essence.
For example, Ji et al. (2019) proposed invariant information
clustering (IIC) as a discriminant model that learns noise-
independent features from pairs of original images and noise-
added ones. The IIC has been devised to minimize mutual
information loss for paired data samples. The IIC, despite its
simplicity, usability, and potentiality remains, however, in the
early stage of applicability to domains other than simple image
discrimination, which was its original target. Beyond this target
realm, the input modeling level needs to be modified to introduce
the IIC into the ABIDE fMRI dataset, as it is characterized by less
contrastive features and low frequency signal oscillation.

In the wake of previous studies pertaining to the LOSO-
oriented ABIDE analysis, we proposed an IIC-based deep neural
network model based on the original IIC of Ji et al. This model
was developed for discriminating the labeled data of ASD and
TC in the ABIDE dataset only with the RSFC data obtained
from almost all imaging locations. Our bias regulation technique,
the extended-IIC (EIIC), consisted of transfer learning with
labeled data concatenated with contrastive prior learning where
the framework was borrowed from the original IIC. Despite its
efficiency, the original IIC requires data augmentation, such as
image rotation and flipping, so that it cannot be simply applied to
datasets where this technique affects signal quality, since human
intuition-based manual feature extraction is by nature difficult to
perform, as with RSFC analysis.

However, we improved the IIC by the following steps: a data
pair preparatory step with labelled information that precisely
substitutes the data augmentation technique and is useful for
the contrastive learning of this type of datasets, if posterior
supervised learning is provided subsequently to the original
IIC to take over the learned weights conveying the intrinsic
discriminant information. From a modeling perspective, we
examined the decoding feasibility and predictive power of the
EIIC by executing LOSO-CV for the sites of the ABIDE dataset.
In addition, we used several algorithms to evaluate the relative
fit of the models in terms of the effectiveness in harmonizing
multi-data sources of the ABIDE through LOSO. The classifiers
were learned following the extraction of the blood oxygenation
level dependent (BOLD) time-course series from each region of
interest (ROI) of the Harvard-Oxford (HO) brain atlas (Desikan
et al., 2006). We computed traditional classifiers, such as the
support vector machine (SVM) and random forest (RF) as
baselines, which were compared with the performances of the
EIIC. We were also able to identify the best method to adjust for
the issues of LOSO, specifically weakness to the age distribution
bias, to obtain a desirable precision superior to previously
published results.
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METHODS

This study was performed in accordance with the tenets of
the Declaration of Helsinki and was approved by the Ethics
Committee of the Tokyo Institute of Technology (approval
number: 2019091).

Datasets
The ABIDE is available as preprocessed data using a pipeline
software. “ABIDE Preprocessed” (Craddock et al., 2013a) releases
numerous features for analysis, including regional homogeneity,
the amplitude of low-frequency fluctuation, and average time
series data for ROIs of seven different brain atlases. In this
study, we used the average time series of the HO brain atlas,
preprocessed with a configurable pipeline for the analysis of
connectomes (C-PAC) (Craddock et al., 2013b).

An Outline of the Proposed Method
The original IIC is a neural network model developed to perform
image discrimination and segmentation tasks without labels. IIC
models are trained to maximize the mutual information between
outputs that assign classes to paired data. An IIC is able to
learn a model that assigns one data item to each class with
high probability, while avoiding meaningless assignments, such
as attributing all data to a single class. In addition, the IIC
has an overclustering (oc) head, which refers to an output that
assigns more classes than expected, such that it can handle data
comprising severe noise and unexpected classes. According to
the IIC of Ji et al. (2019), the paired data for computing mutual
information comprises an original image and its randomly
perturbed version.

Data augmentation refers to the process of creating a
transformed image from unlabeled data, in the context of self-
supervised models by contrastive learning. It generally involves
transforming the actual data to create one that resembles the
original data. However, we assumed that the actual data in the
ABIDE collection was already augmented for contrastive learning
by the addition of several noises to the unknown functional
connectivity patterns, typical of ASD and TC. Based on this
interpretation, the data pairs were produced according to the
aforementioned labels for prior self-supervised learning.

Extended invariant information clustering is characterized
by an assembly line network that enables the double-purpose
mechanism (paired or independent processing), which in turn
can be summarized as a two-step process for transfer learning.
The first step involves prior learning, which can ignore the output
for discrimination. However, it trains the entire network using
only the IIC loss (described below) of the two outputs as follows:
one for the pair with similar or different labels and the other
for overclustering. Following a sufficient number of epochs for
prior learning, we fixed the values of all weights except those in
the layer immediately before the output, such that no further
training was performed at this stage. Posterior training is the
core part of transfer learning, which trains only the penultimate
layer using the CE loss (described below) for discrimination.
Therefore, the sub-model up to this layer will likely be sufficiently
robust to noise using the IIC framework. Moreover, we will

train the final model for discrimination based on the established
learning results.

Details of the Proposed Method
Figure 1 provides an overview of the above-mentioned EIIC (A:
prior learning; B: transfer learning). The overall flow of analysis,
common to all classifiers, was as follows. First, we applied the
Fisher’s z-transformation to the functional connectivity matrix
(size, 110 × 110), derived from the standardized ROI-averaged
BOLD time series data in “ABIDE Preprocessed.” We also
extracted the lower triangular part of the matrix as the input
vector of 5,995 elements for the subsequent analysis. We excluded
any “NaN” for the BOLD in some ROIs of the HO atlas, thereby
omitting the Carnegie Mellon University (CMU) as a critical
site. This is because only one subject was left following the
screening process.

The basic EIIC architecture is a combination of a fully
connected (FC) layer and a batch normalization (BN) layer (Ioffe
and Szegedy, 2015). While the FC layer adopts a linear sum
over all nodes in the previous one, the BN layer standardizes the
input for each mini-batch in mini-batch learning. The BN layer is
widely used to facilitate learning by preventing internal covariate
shifts among the outputs of each layer. For the activation
function, the softmax function is only used for the output layer,
in contrast to the ReLu function used for the remaining four
intermediate layers.

We used a combination of the following two types of loss
functions for training the model: (i) IIC loss, which aimed to
maximize the mutual information content of the output between
paired data; and (ii) cross-entropy loss, designed to generate
larger output corresponding to the class of correct labels for
each data. In IIC learning, the mutual information content of
the output 8(x) from the paired data (x, x’) is maximized and
expressed in the following formula:

max
Φ

I
(
Φ (x) ,Φ

(
x′
))
.

The output of the neural network can be regarded as the
distribution of the probability of being assigned to each class if
the activation function of the output layer is a softmax function.
By performing a marginalization of the training batch, the
simultaneous probability P of the class assignment for a pair of
data can be expressed as follows:

P =
1
n

n∑
i=1

Φ (xi) ·Φ
(
x′i
)T

The equation assumes the form of a matrix of C×C, where C
is the number of classes. The sum of the rows or columns of this
matrix yields the following:

Pc = P(z = c) and Pc′ = P(z′ = c′)

Moreover, the mutual information can be formulized as
follows:

I
(
z, z′

)
= I (P) =

C∑
c=1

C∑
c′=1

Pcc′ · ln
Pcc′

Pc · Pc′
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FIGURE 1 | Architecture of the two-step EIIC mechanism. (A) Contrastive prior learning (simple IIC structure) for the first step; (B) transfer learning with IIC for the
second step. IIC, invariant information clustering. EIIC, extended invariant information clustering.

Ji et al. (2019) proposed the efficacy of a coefficient λ that
adds weight to the marginal entropy maximization term for the
aforementioned mutual information content. For the training, we
set the value of λ to 5.0 for EIIC in the following formula, where
H(z) represents the marginal entropy of the variable z:

Iλ
(
z, z′

)
=

C∑
c=1

C∑
c′=1

Pcc′ · ln
Pcc′

Pλc ·P
λ
c′

I1
(
z, z′

)
+ (λ− 1) ·

(
H (z)+H

(
z′
))

While training the model, we used the mutual information
introduced by λ multiplied by −1 as the IIC loss, following a
division by the natural logarithm of the number of discriminant
classes. This helped us to transform the problem of maximizing
the amount of information to that of minimizing the loss
function. Furthermore, in the case of a two-class discrimination,
1 – 8(x) can be assumed as the probability distribution for the
class opposite to the one that comprises the predicted x. We
used the cross entropy loss (CE-loss), i.e., −

∑
x p (x) ln

(
q (x)

)
,

as the loss function for discriminating the two classes. We first
trained the IIC head and IIC-oc head by summing the IIC losses
(pre-training). Moreover, we trained the classifier head by CE-
loss, fixing all weights except those directly connected to the

output layer (transfer learning) (Figure 2). In summary, the loss
functions of the EIIC for each training phase were as follows:

� Prior learning

(x1, x2) with similar correct labels.

IIC− loss (IIC (x1) , IIC (x2))

+IIC− loss (IIC− oc (x1) , IIC− oc (x2))

(x1, x2) with different correct labels.

IIC− loss (IIC (x1) , 1− IIC (x2))

� Transfer learning

CE− loss
(
Classifier (x) , y

)
For the above-mentioned models, the optimization method

comprised mini-batch learning with Adam (Kingma and Ba,
2014). Mini-batch learning uses a portion of the training data at
one time, instead of inputting all training data into the model at
once. We defined the update of weights by a mini-batch as one
“iteration.” Moreover, we attempted using different batch sizes
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FIGURE 2 | Computation of IIC-loss for pairs with similar (A) and different (B) correct labels. IIC, invariant information clustering. The multi-class is assumed at the
overclustering head output. In our method, data pairs for contrastive learning were based on single data labels instead of with a data augmentation technique.

of 500, 3,000, and 5,000 at one time. The update of weights was
executed in accordance with the sequential random extraction of
mini-batches from the training data. We regarded one “epoch”
as terminated upon our failure to extract the mini-batch. Please
refer to the Supplementary Material for details on the process of
updating the weights.

Evaluating the Accuracy (LOSO-CV)
We executed LOSO-CV as a splitting strategy, for which the data
with a similar imaging location was considered a subpopulation.
This facilitated testing the performance of the models. The data
of each site was omitted as a test set to be used for computing
the classification accuracy (Figure 3). The remaining sites were
split into the training and validation sets and employed for

learning with an additional fivefold CV to ensure an early
stopping of the training. Considering the balance of ASD and
TC subjects, the composition of the imaging locations in each
of the five folds would be similar to the entire training data to
the maximum possible extent. Herein, we used one split-out fold
as the validation set and the rest as the training set, by changing
the roles in turn.

For EIIC, we updated the parameters of the model using the
training set until the loss function for a validation set did not
further decrease within the predetermined number of epochs for
early stopping of the training. The model with the smallest loss
function for the validation set was determined to be trained. As
the loss function for the validation, we adopted the sum of the
IIC head and IIC-oc head losses for the paired input data for the
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FIGURE 3 | The splitting method for the evaluation of LOSO-CV accuracy. LOSO-CV, leave-one-site-out cross-validation.

pre-training. Five trained models were generated, corresponding
to five separate validation sets. Inspired by the basic idea of
ensemble learning, we inputted the test data to each of the five
validated models to obtain an average of the two output nodes
(corresponding to the category of 0 or 1, respectively) at the
classifier head of transfer learning. We subsequently adopted
the mean value of these five outputs to decide if the predicted
category was 0 or 1 for the corresponding input by rounding
off the value. The input for each model was standardized
using the mean and standard deviation of the training data,
corresponding to the model.

In relation to SVM and RF, we ran the dimensionality
reduction by the principal component analysis (PCA) as well
as the adjustment of hyperparameters through the grid search
nested into CV. The codes for EIIC employed Pytorch (Paszke
et al., 2019). In contrast, those for SVM and RF were implemented
using the Python package scikit-learn (Pedregosa et al., 2011) (all
available at1).

RESULTS

Table 1 summarizes the discrimination accuracy of LOSO for the
three classifiers, i.e., EIIC, SVM, and RF. The accuracy rates of
the EIIC were obtained with the smallest mini-batch size of 500.
The aforementioned parameter setting provided the best score
compared with the larger sizes (for those of 3,000 and 5,000,
refer to the tables in the Supplementary Materials). EEC elicited
significantly higher accuracy than other classifiers. Moreover, the
EIIC recorded>80% accuracy and outperformed other classifiers
for the sites with highest mean age of the subjects (CALTECH:

1https://github.com/nokamot/EIIC

0.81 for 26.5, SBL: 0.84 for 35.2, and USM: 0.80 for 23.7) except
for MAX_MUN (0.55 for 27.9). The classifier did not improve
the discrimination accuracy for the low age group, which in turn
remained flat regardless of any hyperparameter setting (KKI,
OHSU, and STANFORD). However, the EIIC was successful in
providing better models to the sites shifted to infancy (SDSU: 0.79
vs. 0.63 for 14.2, UCLA: 0.72 vs. 0.66 for 13.3, UM: 0.70 vs. 0.64
for 14.5, and YALE: 0.70 vs. 0.65 for 12.8) than the auto-encoder
model of Heinsfeld et al.

DISCUSSION

Autism spectrum disorder is a developmental disorder that
occurs in early childhood and undergoes temporal variation in
RSFC. This necessitates a uniform age group for the subjects.
However, the condition makes it difficult to collect large-scale
data. Therefore, some member organizations of ABIDE were
biased toward a particular age group, which complicated and
led to the occasional failure of LOSO-CV. EIIC succeeded
in recording accuracy values >80% for sites that primarily
comprised older subjects (>20 years), namely the CALTECH,
SBL, and USM, except for MAX-MUN. The low discriminative
power revealed in MAX-MUN might be attributable to the low
temporal resolution with the length of repetition time (TR) set
to 3,000 ms. The aforementioned sites specific to the relatively
elderly generation elicited the largest accuracy drop for LOSO,
compared to each within single-site modeling in the denoising
autoencoder of Heinsfeld et al. The sample sizes of CALTECH
and SBL were quite small (21, 25). Thus, the EIIC was essentially
robust because of the scarcity of data. However, the number
of subjects was larger than 60 in the USM that recorded 80%
accuracy with a mean age of 23. Hence, it would be somewhat
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TABLE 1 | The LOSO-CV accuracy for each classifier and characteristics of each ABIDE site.

Sites EIIC SVM RF Heinsfeld et al. Niu et al. Chen H. et al., 2016 Size Age ± SD

CALTECH *0.81 0.62 0.67 0.68 0.67 NaN 21 26.5 ± 9.7

KKI 0.54 0.67 0.56 0.67 NaN NaN 39 9.9 ± 1.2

LEUVEN *0.67 0.64 0.59 0.65 0.62 *0.73 61 18.1 ± 5.0

MAX_MUN 0.55 0.55 0.48 *0.68 NaN NaN 42 27.9 ± 11.1

NYU *0.67 *0.68 *0.62 *0.66 *0.71 *0.63 169 15.2 ± 6.5

OHSU 0.48 0.52 0.43 0.64 NaN NaN 23 10.9 ± 1.8

OLIN 0.6 0.68 0.60 0.64 NaN NaN 25 17.1 ± 3.4

PITT *0.69 *0.69 0.53 0.66 *0.70 NaN 45 19.2 ± 6.8

SBL *0.84 0.56 0.52 0.66 NaN NaN 25 35.2 ± 8.6

SDSU *0.79 0.71 0.75 0.63 0.69 0.60 24 14.2 ± 1.8

STANFORD 0.47 0.42 0.58 0.66 0.62 NaN 36 10.0 ± 1.6

TRINITY 0.67 *0.74 0.51 0.65 *0.70 NaN 43 17.2 ± 3.4

UCLA *0.72 *0.65 0.56 *0.66 *0.76 *0.65 72 13.3 ± 2.2

UM *0.70 *0.71 *0.63 *0.64 *0.68 *0.71 112 14.5 ± 3.2

USM *0.80 *0.79 0.46 0.64 *0.80 *0.77 61 23.7 ± 8.3

YALE *0.70 *0.79 0.55 0.65 0.60 NaN 47 12.8 ± 2.9

Mean 0.67 0.65 0.56 0.65 0.69 0.68 52.81 17.86

We adjusted the background color based on cell value. The result of each classifier (column) is depicted darker in red if an accuracy rate >0.5 approaches 1 (the perfect
value). In contrast, values<0.5 acquired a darker background shade of blue by approaching 0 (the complete misclassification). The dataset size and the mean participants’
age are also emphasized by a similar gradual color scale between darkest red (maximum value) and darkest blue (minimum value). *p < 0.01, binomial test, chance level
set at 50%. LOSO-CV, leave-one-site-out cross-validation.

unreasonable to impute the effectiveness of EIIC only based on
its robustness to the condition of data paucity.

Compared to the above-mentioned sites, the results were
more conflicting with respect to studies that recruited younger
children. Of the sites with a mean age<18 years, six sites provided
higher accuracy to EIIC than the methods proposed by Heinsfeld
et al. However, the latter outperformed our methods for the
following sites: KKI, 0.54 vs. 0.67 for 9.9; OHSU, 0.48 vs. 0.64 for
10.9; and STANFORD, 0.47 vs. 0.66 for 10.0 (displayed in order
of the site name, the accuracy of EIIC vs. that of the Denoising
Autoencoder, and the mean site age). The graphical index of
RSFC is significantly different between children aged 7–9 years
and those aged 19–22 years (Supekar et al., 2009). Furthermore,
small children generate more noise because of body motion in
the MRI system (Hull et al., 2017), which may exert a significant
effect on the data quality. Hence, composite factors should be
considered for the three sites, in terms of the generalization
capability of the EIIC. OHSU adopted a relatively long TR set to
2,500 ms. In addition, it provided extremely small volumes (82
vols) for each functional scan. Therefore, similar argument for
MAX-MUN might apply to this site. Moreover, an inter-vendor
harmonization might be required since STANFORD employs a
GE MRI scanner, which belongs to a minority site group.

An unexpected finding is that SVM achieved accuracy
comparable with the deep learning models, despite being
known as a classical machine learning strategy. This might be
attributed to the dimensionality reduction by PCA and the
hyperparameter adjustment by grid-search, notwithstanding its
lower effectiveness for RF. However, we can underscore the
advantage of EIIC over SVM, particularly for sites with higher
age groups. We identified this advantage on setting the size of
the mini-batch to 500. The effectiveness of the small mini-batch

size was possibly because the learning number of times within
one epoch increased as it was defined as the proportion of data
size, with respect to the mini-batch size. In other words, the larger
mini-batch size that reduced the learning number of times might
result in an inability to escape from the local solution in which the
learning process is trapped (see the Supplementary Material).
However, further optimization of the mini-batch size is required
to fuel future research.

In sum, the novelty of our methods lies in the fact that we
concatenated two independent processes, i.e., contrastive prior
learning and transfer learning. Therefore, we were able to propose
a solution for the most challenging issues in brain MRI modeling;
specifically, RSFC patterns which are hard to distinguish between
ASD and TC subjects if they visited different sites for their
scans. However, despite the considerable merit of our modeling
strategy, EIIC has some limitations, some of which may be worthy
of future inquiry. As noted above, EIIC might be less suited
to predicting the attribution for cohorts of younger children.
Furthermore, it remains to be specified how we will improve
the loss function for the pairs of different labels in contrastive
learning. It may be that these issues are connected with each
other, which will lead us to unveil the most efficacious method
for multi-site modeling in ASD research.

CONCLUSION

In conclusion, we proposed a new algorithm for multi-site
harmonization of an RSFC dataset, derived from different
sources. EIIC, as an extension of the original IIC, is a type
of contrastive learning. EIIC achieved good generalization
performance in the classification of unknown sites by the new
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application of LOSO-CV to the ABIDE data collection. The
classification accuracy following EIIC application was higher for
the majority of locations than previously used methods. The deep
neural network used in this study was relatively simple, with only
one sequence of an FC layer and a batch regularization layer.
However, there is sufficient room for improvement based on data
augmentation or other machine learning strategies by using the
sliding window approach for the dynamic functional connectivity
(DFC), or extending the maximization of mutual information
to multiple categories to be discerned. Considering the present
effectiveness, our proposed method might be promising for
harmonization in other domains, owing to its simplicity and
intrinsic flexibility. We believe that it will be also effective for
multi-source – but relatively small-sized – datasets, and will
achieve optimal efficacy when the data augmentation technique
does not affect the signal quality.
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