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ABSTRACT

Background: Preeclampsia (PE) is a hypertensive pregnancy disorder linked to placental 
dysfunction, often involving pathological lesions like acute atherosis, decidual vasculopathy, 
accelerated villous maturation, and fibrinoid deposition. However, there is no gold standard 
for the pathological diagnosis of PE and this limits the ability of clinicians to distinguish 
between PE and non-PE pregnancies. Recent advances in computational pathology have 
provided the opportunity to automate pathological analysis for diagnosis, classification, 
prediction, and prediction of disease progression. In this study, we assessed whether 
computational pathology could be used to identify PE placentas.
Methods: A total of 168 placental whole-slide images (WSIs) of patients from Seoul National 
University Hospital (comprising 84 PE cases and 84 normal controls) were used for model 
development and internal validation. For external validation of the model, 76 placental 
slides (including 38 PE cases and 38 normal controls) were obtained from the Boramae 
Medical Center (BMC). To establish standard criteria for diagnosing PE and distinguishing 
it from controls using placental WSIs, patch characteristics and quantification of terminal 
and intermediate villi were employed. In unsupervised learning, K-means clustering was 
conducted as a feature obtained through an Auto Encoder to extract the ratio of each cluster 
for each WSI. For supervised learning, quantitative assessments of the villi were obtained 
using a U-Net-based segmentation algorithm. The prediction model was developed using 
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an ensemble method and was compared with a clinical feature model developed by using 
placental size features.
Results: Using ensemble modeling, we developed a model to identify PE placentas. 
The model showed good performance (area under the precision-recall curve [AUPRC], 
0.771; 95% confidence interval [CI], 0.752–0.790), with 77.3% of sensitivity and 71.1% of 
specificity, whereas the clinical feature model showed an AUPRC 0.713 (95% CI, 0.694–0.732) 
with 55.6% sensitivity and 86.8% specificity. External validation of the predictive model 
employing the BMC-derived set of placental slides also showed good discrimination (AUPRC, 
0.725; 95% CI, 0.720–0.730).
Conclusion: The proposed computational pathology model demonstrated a strong ability to 
identify preeclamptic placentas. Computational pathology has the potential to improve the 
identification of PE placentas.

Keywords: Placenta; Preeclampsia; Artificial Intelligence; Unsupervised Learning

INTRODUCTION

Preeclampsia (PE) is a hypertensive disorder specific to pregnancy and occurs in 3–5% of 
pregnancies globally.1-3 It leads to varying placental malperfusion levels and the release 
of substances into the maternal circulation.4 A set of distinctive pathological lesions have 
been identified in preeclamptic placentas, including acute atherosis, decidual vasculopathy, 
accelerated villous maturation, and fibrinoid deposition, collectively offering insights into 
the intricate interplay between placental abnormalities and PE development.5-7

Despite these critical pathological insights, it is currently difficult to distinguish PE and non-
PE cases because of the absence of a universally accepted gold standard for the pathological 
diagnosis of PE. This lack of consensus regarding a definitive diagnostic pathologic criteria 
hinders the precise delineation of PE and non-PE cases.

Recent advances in artificial intelligence (AI), including whole-slide image (WSI) and 
AI solutions, have brought about significant changes in the field of pathology.8-12 These 
innovations allow us to delve into information beyond what human vision can perceive. This 
usage can be broadly categorized into two types of research: supervised and unsupervised 
learning. The primary distinction between these approaches lies in the presence of annotations 
for regions of interest. Supervised learning is effective when there are clear differentiators 
between regions with and without lesions, as observed in cases such as lung cancer 
segmentation through the study of various cancerous and normal patches.8 Additionally, the 
development of an end-to-end deep learning framework for WSI segmentation and subsequent 
analysis of various histopathological tasks has been explored.9 On the other hand, unsupervised 
learning offers the ability to discover hidden patterns and structures in unlabeled data, enabling 
insights that may go unnoticed in supervised approaches, while also having the advantages of 
being scalable and effective for anomaly detection and data preprocessing tasks.

Similar to these approaches, we used unsupervised learning to cluster patches based on the 
most compact features, while incorporating both supervised and unsupervised learning 
techniques to extract meaningful features from WSIs. In this study, we aimed to investigate 
the potential of harnessing these emerging computational pathology techniques to effectively 
differentiate preeclamptic and normal placentas.
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METHODS

Study population
In this study, we enrolled women who underwent singleton deliveries at Seoul National 
University Hospital between 2004 and 2019 and underwent placental pathological examinations. 
Among them, we selected patients for whose placental pathology slides were clearly identifiable 
for the presence or absence of PE by clinical diagnosis. For model development and internal 
validation, we matched 84 patients with PE to 84 controls based on age, underlying conditions, 
and gestational age at delivery. For external validation, we used placental slides from a 
geotemporal cohort of women who delivered their babies at the Boramae Medical Center (BMC).

Outcomes
PE was defined as the occurrence of hypertension, proteinuria, and multiorgan damage 
(thrombocytopenia, renal insufficiency, liver involvement, cerebral symptoms, and pulmonary 
edema). Participants without hypertensive disease during pregnancy (gestational hypertension, 
PE, eclampsia, chronic hypertension, and superimposed PE) were defined as controls.

Image acquisition
The techniques we employed are described below.

Unsupervised learning
In the unsupervised learning phase, 84 cases were employed, evenly divided into 42 cases of PE 
and 42 normal control cases. This stage involved the utilization of an Auto Encoder (AE)13 and 
K-means clustering.14 Half of the 84 cases were designated for AE training, and the remainder 
for K-means clustering. The AE model was trained on a dataset that was divided into 90% for 
training and 10% for testing. Within the training set, 10% was allocated for validation.

Supervised learning
Of the 84 WSIs utilized in the unsupervised learning phase, 18 WSIs that had been annotated 
with villi information were selected. Specifically, 90% of the dataset was allocated for training, 
and the remaining 10% was evenly divided: half for validation and the other half for testing.

For machine learning (ML) purposes, another set of 84 WSIs (comprising 42 cases of PE and 42 
normal controls) were employed to develop and assess a classification model. This model aimed 
to predict PE using the features extracted in the previous two steps. Due to the limited size of the 
dataset, the training and test sets were created across 100 iterations. Of the 84 WSIs, 80% were 
allocated for training, and the remaining 20% were reserved for testing. External validation was 
performed using a separate set of 76 WSIs (including 38 PE cases and 38 normal controls).

Data pre-processing
The original image size of WSIs (approximately 20 billion pixels; 100 K × 100 K) had 
put limits on computing memory that hindered its use in model learning. We therefore 
divided each WSI into lower-sized patch units (pWSI). For unsupervised learning, patches 
were extracted at a 2.5× magnification to a size of 128 × 128 pixels to identify pathological 
patterns, observe cellular-level details, while considering memory and computational costs. 
Intermediate and terminal villi annotations were performed for supervised learning. To 
minimize labeling time, two specific 2,048 × 2,048 size boxes were selected for each pWSI, 
with both villi within these boxes labeled. A patch size of 256 × 256 at 10× magnification was 
employed to capture the villi structures.
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Patch clustering (unsupervised learning)
To extract the most essential information from each pWSI, we employed the AE algorithm 
to compress the key details within each patch. Clustering was performed using the K-means 
clustering method. For the AE hyperparameters, we utilized the Adam optimizer with a 
learning rate of 0.001 and employed the mean squared error as the loss function. The batch 
size was set to 64, and the model was trained for 1,000 epochs, with early stopping if there 
was no improvement in 10 consecutive epochs. The latent vector dimension was 256 that was 
reduced to 50 feature dimensions using principal component analysis. We determined the 
optimal number of clusters, denoted as K, using the elbow method to identify the point at 
which the inertia experiences a significant change. Consequently, we categorized the pWSI 
into seven clusters using K-means clustering (Fig. 1). We assessed cluster distribution in WSIs 
and statistically compared normal and PE groups using the Mann-Whitney U test (Fig. 2).

Villi quantification (supervised learning)
We aimed to quantify terminal and intermediate villi using pWSI through supervised 
learning. Segmentation models for terminal and intermediate villi classes were developed 
using the U-Net algorithm15 with a ResNet3416 as the backbone that was pre-trained with 
ImageNet.17 For the hyperparameters of both models, we selected Adam as the optimizer, 
set the learning rate to 1e-5, and employed dice loss as the loss function. The batch size was 
configured as 4, and the models were trained for 1,000 epochs, with early stopping in case 
there was no improvement for 10 consecutive epochs.

ML
In the final step, features extracted from pWSI, including patch clustering and villi 
quantification results, were utilized as inputs for ML. We evaluated the performance of 
these features using ML methods to assess their significance in predicting PE. In parallel, 
we compared the performance of models derived from clinical features, which incorporated 
placental width, length, and height.
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Fig. 1. An example of unsupervised learning-based patches by K-means clustering (K = 7).



In this study, a total of five ML methods were employed. Random forest (RF)18 combines 
multiple decision trees to mitigate overfitting and deliver robust performance in complex 
datasets. Support vector machine18 effectively classifies data in high-dimensional spaces 
by maximizing margins to enhance classification accuracy. Gradient boosting machine18 
progressively corrects errors and learns intricate data patterns, ensuring high predictive 
accuracy. Logistic regression18 models linear decision boundaries, making it useful for binary 
classification with interpretable results and rapid learning. Lastly, CatBoost19 automates 
handling of categorical variables, streamlining preprocessing while maintaining excellent 
predictive performance.

A final ensemble of the three highest efficiency models was developed by comparing the 
area under the precision-recall curve (AUPRC).20 Instead of using all extracted features, we 
applied feature selection, employing an embedded method that assesses feature importance 
through a ML model. Their importance was determined using the feature importance 
attributes of the RF model.
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Fig. 2. Cluster distribution of the internal and external dataset. (A) Internal validation set. (B) External validation set. (C) Whole validation set (internal 
validation set + external validation set). 
PE = preeclampsia (1: preeclampsia, 0: normal).



Statistical analysis
As evaluation metrics,21 area under the receiver operating characteristic (AUROC), AUPRC, 
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) were used. External validation was conducted to evaluate the generalization 
performance of the model, compare the performance using seven metrics as in the internal 
test set, and obtain the final model and performance by assembling the three models with 
the highest average AUPRC. The Delong test calculated P values to assess the statistical 
significance in AUPRCs and AUROCs between the deep learning feature model and the 
clinical feature model.

Experiment environment
All processing in this study was carried out in a shared computing facility consisting of Intel 
Core i7-10700 CPUs and NVIDIA RTX 2080Ti GPUs.

Ethics statement
This study was approved by the Institutional Review Boards (IRBs) of Seoul National 
University Hospital (IRB Number: 2311-039-1482). Informed consent was waived because of 
the retrospective nature of the study.

RESULTS

Table 1 shows the baseline characteristics of the study population. Women with PE were 
more likely to be nulliparous, have higher body mass index scores, more likely to deliver 
a small for gestational age baby and more likely to deliver a lower 5-minute Apgar score 
baby. Supplementary Table 1 presents the characteristics of the external validation cohort 
based on the presence or absence of preeclampsia. The baseline characteristics of the 
model development, internal validation, and external validation cohorts are presented in 
Supplementary Table 2.

The model development process involved three stages: 1) unsupervised learning (patch 
clustering), 2) supervised learning (villi quantification), and 3) ML (Fig. 3). In the first step, 
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Table 1. Characteristics and pregnancy outcomes of the study population (Seoul National University Hospital)
Characteristics PE (−) (n = 84) PE (+) (n = 84) P value
Age, yr 32.2 ± 6.6 34.5 ± 4.1 0.404
Nulliparity 46 (54.8) 64 (76.2) 0.003
BMI (before delivery) 25.0 ± 4.6 27.0 ± 4.0 < 0.001
Pregnancy outcomes

Gestational diabetes 3 (3.6) 7 (8.3) 0.192
Cesarean section 78 (92.9) 75 (89.3) 0.417
Gestational age at delivery 33.9 ± 2.9 33.9 ± 3.1 0.422

Neonatal outcomes
Neonatal sex, male 39 (46.4) 42 (50.0) 0.643
Birth weight 2,198 ± 744 1,650 ± 656 < 0.001
SGA 24 (28.6) 58 (69.0) < 0.001
1-min AS < 7 42 (50.0) 38 (45.2) 0.537
5-min AS < 7 22 (2.62) 9 (10.7) 0.010
NICU admission 42 (50.0) 37 (44.0) 0.440
Cord pH 7.275 ± 0.133 7.240 ± 0.096 0.038

Data are presented as number (%) or mean ± standard deviation.
PE = preeclampsia, BMI = body mass index, SGA = small for gestational age, AS = Apgar score, NICU = neonatal 
intensive care unit.



the patches were classified into seven clusters. In Fig. 1 only eight patches within each cluster 
were randomly selected and visualized. Fig. 2 shows the cluster distributions of both the 
internal and external datasets. In this step, cluster distribution was used to obtain seven 
cluster ratios (‘cluster1,’ ‘cluster2,’ ‘cluster3,’ ‘cluster4,’ ‘cluster5,’ ‘cluster6,’ ‘cluster7’) to be 
used as features for each pWSI.

In the second step, villi were quantified to compare differences in the ratio of terminal 
villi to intermediate villi observed in PE and normal pWSI. The mean dice scores for each 
segmentation model were 0.802 (95% confidence interval [CI], 0.745–0.859) and 0.570 (95% 
CI, 0.270–0.684), respectively, for the test set. During this step, six features were extracted, 
including the total tissue region (‘foreground region’), the region and number of terminal 
villi (‘terminal villi count’) and the region of intermediate villi (‘terminal villi region,’ 
‘intermediate villi region’), as well as the ratio of the corresponding villus area to the total 
pWSI (‘terminal villi region ratio,’ ‘intermediate villi region ratio’).

In the third step, the model was trained and validated by adding clinical features to the 
nine features selected from the features derived from the previous two steps (deep learning 
features). Within the model ensemble, the performance of the model combining deep 
learning features with clinical features exhibited a higher AUPRC value than the model that 
relied solely on clinical features (Tables 2 and 3).

Table 2 shows that in the internal validation set, the model ensemble combining deep 
learning features with clinical features exhibited the highest AUPRC value of 0.771 (95% CI, 
0.752–0.790) and AUROC of 0.744 (95% CI, 0.724–0.764). In contrast, the model ensemble 
consisting solely of clinical features displayed a relatively lower AUPRC performance of 0.713 
(95% CI, 0.694–0.732) and AUROC performance of 0.647 (95% CI, 0.625–0.669).

The external validation set exhibited a similar pattern to the internal validation set results 
as displayed in Table 3. The AUPRC value for the model ensemble combining deep learning 
features with clinical features was 0.725 (95% CI, 0.720–0.730), while the AUPRC value for 
the model relying solely on clinical features was 0.668 (95% CI, 0.665–0.671). The difference 
in AUROC values between the two models was statistically significant.
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A. Pre-processing B. Machine learning

Fig. 3. Overview of the proposed method. 
PE = preeclampsia.



The results of comparing pregnancy outcomes based on the presence or absence of PE, as 
confirmed by the predictive model, are presented in Supplementary Table 3. According to 
the results, the group predicted to diagnosed as PE delivered at an earlier gestational age and 
gave birth to infants with lower birth weights.

We conducted an experiment to compare AUPRC and AUROC by the number of features 
in the ensemble model to identify the appropriate number of features through feature 
importance (Supplementary Fig. 1). As a result, the most robust AUPRC and AUROC were 
obtained when using nine features (Supplementary Fig. 2). Supplementary Table 3 presents 
the clinical outcomes between the groups diagnosed with PE and those not diagnosed with 
PE using the prediction model. It was observed that the group predicted to have PE delivered 
at an earlier gestational age and had lower birth weights of neonataes.
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Table 3. Performance metrics for deep learning features combined with clinical features and clinical features alone using the external dataset
Machine learning AUPRC (95% CI) AUROC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)
Deep learning feature + clinical feature

Ensemble 0.725****  
(0.720–0.730)

0.717****  
(0.711–0.723)

0.692 (0.688–0.696) 0.616 (0.596–0.636) 0.767 (0.748–0.786) 0.737 (0.726–0.748) 0.672 (0.664–0.680)

RF 0.667 (0.659–0.674) 0.664 (0.655–0.672)0.647 (0.641–0.653) 0.639 (0.605–0.673) 0.655 (0.622–0.688) 0.668 (0.655–0.680) 0.670 (0.652–0.687)
SVM 0.735 (0.731–0.739) 0.722 (0.719–0.725)0.704 (0.701–0.708) 0.592 (0.575–0.609) 0.817 (0.802–0.831) 0.774 (0.763–0.785) 0.670 (0.664–0.677)
GBM 0.649 (0.641–0.658) 0.631 (0.623–0.640)0.636 (0.629–0.643) 0.622 (0.581–0.662) 0.650 (0.609–0.690) 0.673 (0.655–0.690) 0.659 (0.643–0.674)
LR 0.703 (0.700–0.706) 0.715 (0.712–0.718)0.694 (0.691–0.698) 0.619 (0.604–0.634) 0.770 (0.753–0.787) 0.737 (0.727–0.747) 0.672 (0.666–0.678)

CatBoost 0.678 (0.670–0.685) 0.671 (0.663–0.679)0.660 (0.654–0.666) 0.619 (0.588–0.650) 0.701 (0.671–0.732) 0.695 (0.681–0.710) 0.663 (0.651–0.676)
Clinical feature

Ensemble 0.668 (0.665–0.671) 0.695 (0.693–0.697)0.690 (0.687–0.693) 0.700 (0.683–0.717) 0.680 (0.664–0.696) 0.691 (0.685–0.697) 0.701 (0.693–0.709)
RF 0.618 (0.612–0.624) 0.667 (0.661–0.672)0.671 (0.668–0.675) 0.728 (0.706–0.751) 0.614 (0.592–0.637) 0.661 (0.653–0.669) 0.708 (0.696–0.720)
SVM 0.655 (0.653–0.658) 0.703 (0.701–0.705)0.693 (0.691–0.696) 0.725 (0.708–0.741) 0.661 (0.646–0.677) 0.685 (0.680–0.691) 0.713 (0.705–0.721)
GBM 0.623 (0.616–0.631) 0.633 (0.625–0.640)0.642 (0.636–0.648) 0.648 (0.619–0.678) 0.635 (0.607–0.663) 0.652 (0.641–0.662) 0.659 (0.647–0.671)
LR 0.644 (0.643–0.646) 0.666 (0.664–0.668)0.675 (0.670–0.679) 0.624 (0.608–0.641) 0.725 (0.708–0.742) 0.699 (0.693–0.706) 0.662 (0.656–0.668)

CatBoost 0.644 (0.660–0.667) 0.687 (0.664–0.690)0.687 (0.683–0.692) 0.684 (0.667–0.702) 0.691 (0.675–0.706) 0.693 (0.686–0.699) 0.693 (0.684–0.701)

AUPRC = area under the precision-recall curve, AUROC = area under the receiver operating characteristic, PPV = positive predictive value, NPV = negative 
predictive value, CI = confidence interval, RF = random forest, SVM = support vector machine, GBM = gradient boost machine, LR = logistic regression.
****P < 0.0001 (P value with ensemble model AUPRC and AUROC of clinical features).

Table 2. Performance metrics for deep learning features combined with clinical features and clinical features alone using the internal dataset
Machine learning AUPRC (95% CI) AUROC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)
Deep learning feature + clinical feature

Ensemble 0.771****  
(0.752–0.790)

0.744****  
(0.724–0.764)

0.761 (0.746–0.776) 0.773 (0.739–0.807) 0.748 (0.711–0.785) 0.653 (0.601–0.705) 0.801 (0.777–0.825)

RF 0.750 (0.731–0.770) 0.738 (0.718–0.757) 0.752 (0.739–0.765) 0.743 (0.704–0.783) 0.761 (0.728–0.794) 0.649 (0.596–0.703) 0.785 (0.759–0.811)
SVM 0.750 (0.730–0.769) 0.720 (0.698–0.741) 0.748 (0.732–0.763) 0.734 (0.701–0.768) 0.761 (0.726–0.797) 0.635 (0.580–0.690) 0.767 (0.744–0.790)
GBM 0.733 (0.714–0.753) 0.721 (0.702–0.740) 0.747 (0.733–0.761) 0.762 (0.731–0.794) 0.732 (0.701–0.764) 0.663 (0.617–0.709) 0.782 (0.758–0.805)
LR 0.751 (0.733–0.769) 0.690 (0.670–0.711) 0.730 (0.716–0.744) 0.640 (0.606–0.674) 0.820 (0.787–0.853) 0.579 (0.513–0.644) 0.713 (0.695–0.732)

CatBoost 0.743 (0.722–0.763) 0.731 (0.711–0.750) 0.756 (0.741–0.770) 0.760 (0.725–0.787) 0.751 (0.716–0.787) 0.661 (0.611–0.712) 0.792 (0.768–0.817)
Clinical feature

Ensemble 0.713 (0.694–0.732) 0.647 (0.625–0.669) 0.712 (0.697–0.727) 0.556 (0.523–0.589) 0.868 (0.845–0.891) 0.528 (0.457–0.599) 0.672 (0.656–0.688)
RF 0.609 (0.590–0.628) 0.528 (0.504–0.552) 0.643 (0.629–0.657) 0.483 (0.437–0.529) 0.802 (0.763–0.841) 0.523 (0.460–0.586) 0.633 (0.613–0.653)
SVM 0.719 (0.698–0.739) 0.658 (0.637–0.679) 0.719 (0.703–0.735) 0.611 (0.574–0.648) 0.828 (0.791–0.864) 0.509 (0.439–0.580) 0.702 (0.681–0.723)
GBM 0.624 (0.605–0.642) 0.536 (0.513–0.559) 0.639 (0.625–0.653) 0.500 (0.447–0.553) 0.778 (0.726–0.829) 0.445 (0.379–0.510) 0.654 (0.628–0.679)
LR 0.721 (0.703–0.740) 0.661 (0.642–0.680) 0.713 (0.699–0.727) 0.604 (0.568–0.641) 0.822 (0.787–0.857) 0.537 (0.470–0.604) 0.698 (0.678–0.719)

CatBoost 0.663 (0.643–0.683) 0.576 (0.553–0.599) 0.674 (0.660–0.688) 0.492 (0.453–0.531) 0.856 (0.824–0.887) 0.442 (0.372–0.512) 0.643 (0.626–0.659)

AUPRC = area under the precision-recall curve, AUROC = area under the receiver operating characteristic, PPV = positive predictive value, NPV = negative 
predictive value, CI = confidence interval, RF = random forest, SVM = support vector machine, GBM = gradient boost machine, LR = logistic regression.
****P < 0.0001 (P value with ensemble model AUPRC and AUROC of clinical features).



DISCUSSION

Utilizing an ensemble modeling approach, we successfully developed a model to identify 
PE placentas. This model demonstrated AUPRC value 0.771 (95% CI, 0.752–0.790), with 
a sensitivity of 77.3% and a specificity of 74.8%. In contrast, the clinical features model 
exhibited a lower AUPRC value of 0.713 (95% CI, 0.694–0.732), with a sensitivity of 55.6% and 
specificity of 86.8%. Furthermore, external validation using a BMC-derived patient dataset 
confirmed the robust discrimination ability of the model, with an AUPRC value of 0.725 (95% 
CI, 0.720–0.730).

PE is characterized by distinctive placental findings, including vascular lesions such 
as atherosis and infarction and non-vascular lesions such as hyperplasia. Additionally, 
inflammatory lesions such as umbilical vasculitis, chorionic plate vasculitis, acute 
chorioamnionitis, and chronic villitis are commonly observed in preeclamptic placentas.7,22 
These pathological changes in the placenta provide valuable insights into the underlying 
mechanisms of this pregnancy complication.6,23 For these reasons, many obstetricians, 
gynecologists, and pathologists have conducted extensive research on the placenta, aiming 
to unravel the pathophysiology of PE. However, even when certain distinctive placental 
findings (such as inflammatory and vascular lesions) accompany PE, confirming the presence 
of PE based solely on placental pathology using conventional methods has proven to be a 
challenging task.

The Tables 2 and 3 reveal that the AUPRC of the ensemble model, trained with clinical 
features, is 71.3% in the internal validation set and 66.8% in the external validation set. These 
results suggest the relevance of the actual size of the placenta in differentiating between PE 
and normal groups. As depicted in Table 2 for the internal validation set, the ensemble model 
exhibited improvements of 5.8% in AUPRC, 9.7% in AUROC, 4.9% in accuracy, 21.7% in 
sensitivity, 12.5% in PPV, and 12.9% in NPV. Similarly, in Table 3 for the external validation 
set, the ensemble model displayed improvements in AUPRC by 5.7%, AUROC by 2.2%, 
accuracy by 0.2%, specificity by 8.7%, and PPV by 4.6%. Hence, it can be inferred that the 
extracted deep learning features contribute significantly to the prediction of PE.

We selected a model based on a high AUPRC for the ensemble of models. Various metrics 
are commonly employed to assess model performance in binary classification, metrics 
other than AUPRC and AUROC heavily depend on the chosen thresholds for dichotomizing 
prediction probabilities.24,25 In contrast, AUPRC and AUROC operate independently of 
specific thresholds, offering a comprehensive reflection of overall model performance, 
thereby elevating their significance as performance indicators. Sensitivity (recall) holds 
paramount importance in medical diagnostics, particularly in the early detection of diseases. 
AUPRC places a greater emphasis on recall, rendering it a more suitable assessment metric in 
the medical domain.

AI-based placental analyses have several clinical implications. An AI-Clinical Decision 
Support Systems (CDSS) improves assessment and management, enhancing convenience and 
sensitivity/specificity. Digital pathology, ideal for AI-CDSS, enhances clinical assessment. 
ML-derived features in WSIs surpass standard pathology methods. Their implications 
on neonatal/pregnancy outcomes require further study. PE links to long-term maternal 
cardiovascular outcomes. Placental implantation’s role in PE pathology suggests AI-based 
analysis could aid outcome prediction.
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Recent technological advancements have led to the development of techniques that utilize 
histopathological image analysis and ML for data analysis. A key feature contributing to the 
remarkable success of deep learning algorithms in the field of digital pathology is their end-
to-end learning approach. Unlike previous methods that relied on incorporating pre-existing 
knowledge into the algorithm design, these adaptive algorithms have the ability to learn 
directly from datasets and predict labels from pixel values.

While there is an international consensus established based on the Amsterdam criteria,26 it 
is important to acknowledge that the diagnosis still presents many challenges. In contrast 
to the typical cancer diagnoses, placental pathology presents a unique aspect where the 
integration of clinical manifestations in obstetrics is of utmost importance. Insufficient 
understanding of obstetric clinical situation often leads to challenges in making accurate 
placental diagnoses.27

In addition, especially in the pathological diagnosis of preeclamptic placentas, quantitative 
parameters often assume a critical role, yet they are beset by indistinct and ill-defined cutoffs. 
For example, there exists no established normative threshold for the lumen size of spiral 
arteries at different gestational stages, rendering it challenging to define, and diagnose the 
point of failure of the spiral artery transformation. Additionally, the assessment of complete 
muscle loss in spiral arteries28 relying solely on hematoxylin and eosin staining is sometimes 
ambiguous if alpha smooth muscle actin immunohistochemical staining cannot not be 
performed. Moreover, in the diagnosis of hypoplastic villi, there remains a conspicuous 
absence of precise quantitative criteria determining the success of spiral artery transformation 
based on the quantification of spiral artery lumen size poses difficulties. This underscores the 
complexity of manual, human-driven reading and interpretation in placental pathology.

However, as vascular pathologies such as acute atherosis, observed in preeclamptic placenta, 
continue to be crucial indicators for predicting long-term maternal outcomes,29 the 
precise diagnosis of preeclamptic placenta remains critical. In this regard, AI-driven digital 
pathology computational analysis is poised to play a significant role.

To our knowledge, the current study is the first to identify the characteristics of pre-
eclamptic placentas using AI-based placental analysis. The results of this study demonstrate 
the potential to diagnose PE using a hybrid-based approach combining unsupervised and 
supervised learning rather than relying solely on traditional histopathological interpretation. 
This approach effectively harnesses the strengths of unsupervised and supervised learning 
to partition histopathological images into clusters, thereby unlocking new possibilities for 
analyzing such images across diverse scenarios. It also offers a novel perspective for tackling 
topics necessitating intricate pathological image analysis.

Our study had certain limitations since we were unable to compare the performance of our 
automated diagnostic system with that of actual pathologists when examining the placental 
pathology of PE. In future work, we aim to analyze and compare the diagnostic performance 
and correlation between pathologists and AI using only WSI. Additionally, we plan to conduct 
further studies to validate the practicality and accuracy of the AI model, not only on the 
dataset already collected but also on prospectively collected real clinical case. Secondly, the 
dice score for intermediate villi segmentation was 57%, indicative of a performance level that 
did not reach a notably high standard. Due to the considerable time and financial resources 
required for meticulous annotation, obtaining a sufficient number of labeled datasets for villi 
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segmentation proved challenging. Consequently, we posit that the constrained performance 
can be attributed to the limitations imposed by learning with a restricted labeled dataset. We 
anticipate that with an increased number of labels in future iterations, a higher dice score can 
be achieved. Thirdly, we did not consider quantitative measures to evaluate clustering quality. 
Relying solely on qualitative assessments based on expert opinions, we aim to introduce 
quantitative measures such as silhouette score and Davies-Bouldin index30 in future studies 
for a more objective approach.31

The computational pathology model we developed in this study demonstrated a strong ability 
to predict PE.32 Computational pathology has the potential to improve the identification of 
PE placentas.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Characteristics and pregnancy outcomes of the study population (Boramae Metropolitan 
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Supplementary Table 2
Characteristics and pregnancy outcomes of the study population

Supplementary Table 3
Pregnancy outcomes based on the results of the predictive model

Supplementary Fig. 1
Feature importance of random forest using training set.

Supplementary Fig. 2
Comparison of AUPRC and AUROC for ensemble model based on the number of features.
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