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Abstract

Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant
variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been
developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions
between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and
assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest
neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and
interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools,
such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance
on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including
multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F
feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene
interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold
change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for
detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on
computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes
between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools
used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability:
http://insilico.utulsa.edu/ReliefSeq.php.
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Introduction

Gene expression data measured by next generation sequencing

(i.e., mRNA-seq data), has distributional properties that distinguish

it from microarray gene expression data and genome-wide

association study (GWAS) data. For example, not all genes are

detected in all subjects, resulting in incomplete or zero-filled data

matrices. In addition, the counts have been shown to have over

dispersion that is consistent with the assumptions of the Negative

Binomial distribution [1,2]. Most analytical methods to date have

focused on detecting per-gene differential expression [1,3,4,5,6].

In contrast, biological systems are regulated by nonlinear networks

whose robustness to external and genetic perturbations may buffer

or suppress the phenotypic effect of an individual transcript. For

example, in model organisms there is evidence of the buffering

effect of genes whose inactivation leads to increased phenotypic

effect of other genes in the network [7,8,9,10]. Changes in the

activity of one gene product due to variation in the expression of
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another gene has been referred to as an epigenetic interaction

[11], in contrast to statistical interactions between mutations,

which are usually called epistatic interactions or epistasis. These

effects may lead to non-additive statistical interactions in

expression levels, where one gene mitigates the phenotypic effect

of an interacting partner. Statistical interactions between genes

may also be caused by differential co-expression across phenotype

groups [12]. Thus, to understand how different sources of

variation affect phenotypic outcomes, analytical techniques are

needed that have the ability to detect single-gene effects as well as

collective and interaction effects of multiple transcripts.

Relief-F is a nearest neighbor machine learning feature selection

algorithm that is known for its ability to find relevant features that

involve interactions [13,14,15]. Previous studies have shown that

the quality of Relief-F estimates of conditionally independent

features increases monotonically with the number of neighbor

subjects (k) [16]. When the features are conditionally dependent,

the feature quality is no longer monotonic, but rather reaches a

peak and then decreases as the number of neighbors increases

further. To be specific, conditional dependence refers here to the

dependence between two genes conditional on the phenotype. It

does not refer to the correlation between the two genes. Moreover,

as k increases, Relief-F’s estimates of feature importance become

more myopic, making the scores behave more like a univariate

statistic [17]. Recent work has been done to find a uniform

nearest-neighbor radius rather than specifying a number of nearest

neighbors [18]. However, not only is it likely that different data

sets require a different number of nearest neighbors, but each

feature (e.g., gene) within a data set also likely requires a different

number of nearest neighbors for optimal attribute estimation.

Thus, in this study, we propose a gene-wise adaptive-k (gwak)

Relief-F algorithm for feature selection for RNA-seq data.

The primary goal of the current study is to describe an RNA-

Seq analysis implementation of Relief-F where the number of

nearest neighbors (k) is data driven and adapts to each gene. We

call this implementation ReliefSeq and release it as an open-source

tool for feature selection in RNA-Seq as well as GWAS data. The

second, and essential, goal is to compare the power and assess the

strengths and weaknesses of Relief-F with fixed and adaptive k,

Random Forest, edgeR, and DESeq to detect main effects and

interaction effects in RNA-Seq data. Random Forest is a machine

learning classifier and feature selection algorithm with many

robust properties, such as good prediction when many of the

predictor variables are noise [19]. However, Random Forest has

very limited power to detect gene-gene interactions in high

dimensional data, as we have shown in GWAS data [15,20] and

others have confirmed in depth in Ref. [21]. These methods are a

representative cross-section of statistical and machine learning

methods that have been used either for RNA-Seq data in

particular or high-dimensional data more generally to perform

feature selection or dimensionality reduction. Finally, we apply

ReliefSeq to a recently published data set that includes RNA-Seq

data for virus-stimulated and unstimulated samples from subjects

who received the smallpox vaccine [22].

Methods

Matrix Formulation of Relief-F Feature Selection
Relief-F is a nearest-neighbor-based machine learning feature

selection algorithm that has the ability to identify features based on

main effects or interactions. However, the ability to find these two

different types of effects depends on the number of nearest

neighbors. With a fixed number of nearest neighbors, Relief-F is

better at finding one effect at the expense of the other. Thus, we

introduce a new Relief-F importance weighting method that

adapts the number of nearest neighbors to identify both types of

effects. That is, the adaptive number of nearest neighbors is

allowed to be different for each transcript in order to capture both

main effects and interaction effects. To clarify how the new

method differs from the original, we reformulate the original

Relief-F weight for a transcript a as a difference of means in

matrix form:

Wa,k~DMa,k{DHa,k ð1Þ

where the quantities

DMa,k~
1

m:k

Xm

i~1

Xk

j~1

diff(ga,Ri,Mj(Ri)) ð2Þ

and

DHa,k~
1

m:k

Xm

i~1

Xk

j~1

diff(ga,Ri,Hj(Ri)) ð3Þ

are the mean deviations with respect to transcript a of the m

subjects Ri from their k-nearest-neighbor (kNN) misses [Mj(Ri) in

Eq. 2] and hits [Hj(Ri) in Eq. 3]. The set of misses for a subject Ri,

Mj Rið Þ
� �k

j~1
, is the set of k subjects that are nearest to Ri but are

in a different phenotype class than Ri. Likewise, the set of hits,

Hj Rið Þ
� �k

j~1
, is the set of k subjects that are nearest to Ri while

being in the same phenotype class as subject Ri. The diff function

computes the difference in the abundance of transcript a between

two subjects Ri and Rj:

diff(ga,Ri,Rj)~
Dvalue(ga,Ri){value(ga,Rj)D

max (ga){min (ga)
, ð4Þ

where value(ga,Ri) returns the abundance of transcript or gene ga
for subject Ri, and max and min for transcript or gene ga are

calculated across all m subjects. The diff function is based on a

single transcript a; however, it is also used in a Manhattan metric

to determine the kNN hits and misses in the full space of

transcripts. Thus, although the difference in the numerator of Eq.

(1) is computed for a single transcript at a time, the mean

deviations [Eqs. (2) and (3)] use the distance matrix from the entire

space of transcripts to determine the kNN hits and misses if

kH+kM,m. See Figure 1 for a visual explanation of how the

algorithm works.

ReliefSeq: Gene-wise Adaptive-k Relief-F tool for RNA-Seq
Feature Selection
In the original Relief-F algorithm, the number of nearest

neighbors, k, from the hit and miss subjects is a parameter that

must be specified. However, different types of effects in a data set

warrant different values of k. To illustrate the rationale behind the

selection of k, we plot the Relief-F score versus k for a simulated

main effect along with the average score of 100 background or null

transcripts (Figure 2). For main effects, a larger k is needed because

the Relief-F algorithm becomes myopic and performs like a

univariate attribute/feature estimator. For noise or background

genes, the scores remain low and show little variation with respect

to k. In contrast to main effects, the detection of interactions of the

type described in the introduction requires a more moderate value

ReliefSeq: Feature Selection for mRNA-Seq Data
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of k (Figure 3). We illustrate this effect of k on Relief-F scores for

interacting genes by plotting the Relief-F scores for two interacting

transcripts without individual main effects along with the average

score of 100 null transcripts in Figure 3. The scores of the two

functional transcripts have a maximum for small k, and then for

larger k the scores decay toward zero as Relief-F becomes more

myopic. The Relief-F scores of noise variants again remain near

zero regardless of the value of k.

Because we expect a mixture of main effects and interactions in

a given data set, we expect a mixture of k values will be required

for different transcripts. To address the gene-wise optimal number

of nearest neighbors, we sweep k from 1 to kmax to create a matrix

of Relief-F scores in Eq. 1. Note that the matrices in Eqs. (1–3)

have row indices (a) for transcripts and column indices (k) for the

number of nearest neighbors. We find the k for each transcript row

that maximizes the weight in Eq. 1:

k̂k(a)~max
k

Wa,kð Þ ð5Þ

and the ReliefSeq weight for transcript a becomes

ŴWa~Wa,k̂k(a): ð6Þ

Availability of ReliefSeq Code
All methods used in this study are available as C++ source code

and executable at http://insilico.utulsa.edu/ReliefSeq. The data

are assumed to be counts normalized for between-lane differences

prior to analysis. No scaling is performed prior to applying these

analyses. Sample input files are provided with the source code.

Univariate Comparison Methods: edgeR and DESeq
edgeR and DESeq are analysis tools that can be used to perform

differential expression in mRNA Seq data [1,3,23]. Both assume

over-dispersion is present in data from independent biological

Figure 1. Two-dimensional (two gene) illustration of the gene-wise adaptive-k Relief-F algorithm. First, a subject Ri (green x in the
figure) is selected and its nearest k hits and misses are found in the space of all genes. In the figure, k = 1 is shown as an example, and the nearest hit
of Ri (nearest6symbol) and its nearest miss (nearest circle symbol) are indicated by vectors (arrows) in the full space of genes. To estimate the
contribution of subject Ri to the ability of each gene to discriminate between cases and controls, we calculate the difference (diff) in the expression of
the gene between Ri and its hits and between Ri and its misses. These hit and miss differences are illustrated as projections onto the gene A (blue)
and gene B (red) axes. Subject Ri contributes a positive discrimination for gene B because the difference between the miss projection and Ri is greater
than the difference between the hit projection and Ri. Subject Ri contributes nearly 0 to the importance of gene A because the miss and hit projected
differences are almost the same. These estimates of the differential expression of each gene are averaged for each subject (the above steps are
repeated for each subject Ri). The above Relief-F algorithm is repeated for a range of k, resulting in each gene having an array of scores
corresponding to each k. The highest Relief-F score is used for each gene.
doi:10.1371/journal.pone.0081527.g001

ReliefSeq: Feature Selection for mRNA-Seq Data
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replicates and that the variance increases as a quadratic function of

the mean. This assumption has been empirically assessed and

found to be reasonable [2]. In addition, both tools allow the

dispersion parameter to vary between transcripts. The edgeR tool

uses an approximate Empirical Bayes strategy akin to that used in

the popular LIMMA package [24] for gene expression microarray

data to estimate the dispersion parameter, thus sharing informa-

tion across transcripts in the process. Default settings were used for

function parameters. The DESeq tool implements a local

regression to empirically estimate the dispersion parameter, thus

also sharing information across transcripts in the process. Default

DESeq settings were used.

Machine Learning Comparison Method: Random Forest
Random forest is an ensemble machine learning classifier based

on bagging (bootstrap aggregation) of classification or regression

trees combined with random selection of variables for each node

split [19]. Multiple trees are learned on bootstrap samples of the

data and then either the trees are averaged for regression or polled

for a majority vote in the case of classification. The algorithm has

two main parameters: the number of variables (mtry) selected

randomly for each node split and the number of trees (ntrees) in

each forest. Previous studies have shown that default parameters

are typically effective [25], but we test this for simulated RNA-seq

data. We use three different versions of Random Forest: the

randomForest() version in R that uses the default mtry (the square

root of the number of predictor variables), the tuneRF() version in

R with optimization of mtry through cross validation, and

Random Jungle, which is also part of our evaporative cooling

(EC) tool for GWAS [26].

Simulations
Data were simulated in order to assess the operating charac-

teristics of the feature selection strategies in a situation where truth

is known. Null simulations containing no true differential

expression were generated in order to understand control over

type I error. In order to understand power, data sets were

simulated containing either main effects or buffering interaction

effects between two transcripts. One thousand simulated replicate

data sets were created for each main effect scenario described

below and one hundred replicates for the interaction simulations.

No differences in library size (total number of counts per

sequencing lane) were built into the simulations since these should

be normalized out in the preprocessing. Since the library sizes

were approximately constant, no normalization was performed

when analyzing the simulated data.

Distribution of gene expression. Count data for each gene

were assumed to follow a Negative Binomial distribution with

mean E(y) =m and Variance(y) =m+m2/h where h is the dispersion

parameter in keeping with previous literature [1,2]. An existing

Figure 2. Illustration of the effect of the number of nearest neighbors (k) on the Relief-F score for a main effect transcript (red
circles) from one of the simulated data sets. The vertical axis is the Relief-F importance score (Equation (1)); the horizontal axis is the number of
nearest neighbors, k. For main effects, a larger k is suggested because Relief-F converges to a univariate attribute estimator (myopic). For comparison,
the average scores for 100 random null transcripts (blue triangles) in the data set are plotted versus k. Regardless of k, the Relief-F scores remain low
for noise genes.
doi:10.1371/journal.pone.0081527.g002

ReliefSeq: Feature Selection for mRNA-Seq Data
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mRNA Seq data set of 23 subjects [2,27] was used to create the

population mean vector by calculating the sample mean for each

transcript which ranged from 0.04 to approximately 100,000. The

moderated dispersion parameters as estimated by edgeR on the

same dataset were used in the population dispersion parameter

vector and ranged from 1.5 to 15,000. 16,920 genes were

simulated. For each combination of parameters, 1000 replicate

data sets were simulated for each model unless otherwise specified

in the results. Null simulations (i.e., no study group differences)

were created by using these values to simulate random negative

binomial numbers for n = 48 subjects.

Main effect simulations. For main effect simulations, two

study groups were created of n = 24 each by adding fold changes of

FC=0, 0.25, 0.5, 0.75, 1 on the log2 scale (1, 1.18, 1.41, 1.68, 2

on the raw scale) to the population mean for 96 main effect

transcripts in a background of null genes for a total of 16,920

transcripts. In order to assess performance for transcripts across

the range of distributional characteristics, these 96 transcripts had

mean counts (m) from 1.5 to 1,500. 1000 simulated data replicates

were created, each containing 96 main effect transcripts. Thus,

these 96 genes should have ranks between 1 to 96, and the null

genes should have ranks from 97 to 16,920.

Gene-gene interaction simulations. For interaction simu-

lations, we constructed exclusive OR operator (XOR) models with

negative binomial distributions for the pair of interacting

transcripts. The scatter plots of subjects in Figure 4 illustrate a

pair of interacting transcripts for different negative binomial

parameters. Each gene has no effect by itself (i.e., no marginal

main effect) on the case/control status, but together they predict

the outcome status. The XOR interaction model is one of the most

challenging for statistical methods to identify, and it is motivated

by environmental and genetic buffering and epistatic effects. In the

XOR model, when both of the functional transcripts have a very

high or very low abundance, the regulatory network system buffers

the phenotypic effect, resulting in an individual being unaffected.

However, if the abundance of one of the functional genes is high

while the other is below detection by the feedback mechanisms of

the epigenetic or regulatory network, then there is a threshold

effect that leads to a subject being an affected case with varying

probability or penetrance.

To simulate the two-class (case/control) interaction between

two negative binomial variable genes, we divide the total sample

population of 48 into two groups: 24 low expressed and 24 high

expressed for both genes. For the low expression group, we

generate counts based on the independent negative binomial

distribution. For a given model, the low expression means of these

genes vary from 200 to 10,000 and theta varies from 9.96 to 15.34.

These values represent the baseline levels of a gene with a low

expression. For the high expression group, we generate gene

expression values for the other half of the subjects by adding a fold

Figure 3. Illustration of the effect of the number of nearest neighbors (k) on the Relief-F score for two interacting transcripts (red
circles and green triangles) from one of the simulated data sets. A lower k is optimal for interacting transcripts. For larger k, Relief-F
converges to a univariate attribute estimator (myopic) and the scores of the interacting transcripts tend toward zero because they have no main
effect. For comparison, the average scores and 5th and 95th percentiles for 100 random null transcripts (blue diamonds) in the data set are plotted
versus k. The Relief-F scores for noise genes are low and relatively unaffected by the value of k.
doi:10.1371/journal.pone.0081527.g003

ReliefSeq: Feature Selection for mRNA-Seq Data

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e81527



change of 2 to the low expression population mean for both genes.

The high expression group will, on average, have twice the

expression of the low expression group for the two genes. For the

two genes, the half of subjects with a shifted mean are categorized

as high expressers for that transcript, and the other half are

categorized as low expressers. At this stage in the simulation we

have not assigned a phenotype or class label to the subjects, so

there is not yet an interaction or dependence between the genes

conditioned on the phenotype.

Next we randomly permute the subjects of one of the pair of

genes such that half of the subjects with high levels for the

permuted gene are matched with high-level subjects for the other

gene, and consequently half of subjects with high levels for the

permuted gene are randomly matched with subjects with low

levels for the other gene. Finally, we use the XOR function

between the two genes to assign the case/control status of the

subjects. Specifically, when one or the other gene is over

expressed, but not both, for a given subject we assign this subject

to a case status. Subjects for which both genes are over or under

expressed, we assign to a control status. This process creates a pure

interaction of the type described in the introduction between two

negative binomial genes, and ensures that neither gene has a main

effect except possibly by chance. A variable number of indepen-

dent negative binomial background (noise) genes are appended to

the interacting genes for each replicate simulated data set. The

number of background (decoy) genes ranges from 100 to 12,800.

A final set of separate simulations was performed in order to

understand the effect of the number of null features on the ability

to detect the interactions. The simulated datasets were designed to

have different numbers of null genes for each data set (100, 200,

400, 800, 1600, 3200, 6400 and 12800 total genes). For each

combination of negative binomial parameters and number of null

genes, we generated n= 100 replicate data sets. Each simulated

data set had 48 balanced subjects and one pair of functionally

interacting genes.

Method Comparison Metrics
In order to assess the operating characteristics of the feature

selection strategies, the rank of each transcript was calculated for

each analysis strategy in each simulation. The average rank of

each functional gene was computed across the n= 1000 replicate

simulations of each main effect model. For interaction models, we

used n= 100 replicates for a given model and we averaged the

worst rank of the pair of interacting genes across the replicates.

Using the worst rank of the pair instead of averaging the ranks of

the pair avoids the potential of one transcript having a very good

rank by chance and biasing the performance of the method. For

clarity, the variability is not shown in the plots but is included in

Tables S1–S3.

Figure 4. Example scatter plots of simulated data for two interacting transcripts. Each scatter plot is a replicate of the same XOR simulated
model. Cases and controls are labeled in the 2-dimensional space of the two interacting transcripts (labeled INTERACT1 and INTERACT2). The
simulated data includes approximately 16,000 null genes, but only the two interacting genes are shown. The XOR model is designed so that neither
interacting gene by itself has a statistically significant differential expression between cases and controls (no main effect).
doi:10.1371/journal.pone.0081527.g004

ReliefSeq: Feature Selection for mRNA-Seq Data
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Results

Main Effect Simulation Results
The standard fixed-k Relief-F uses a relatively large, k = 10,

number of neighbors, making it best for estimating main effects.

We compare gene-wise adaptive-k ReliefSeq with k = 10 Relief-F

for a variety of negative binomial main effect models (Figure 5).

Discussed in more detail in the Methods, each simulated data set

contains 96 main effect transcripts together with 16,824 null genes

for a total of 16,920 genes. Effect sizes in each panel are ordered

strongest on the left and weakest on the right. The two methods

perform similarly for large effect sizes, but gwak-ReliefSeq yields

better ranks for weaker main effects. Both strategies perform

similarly for fold changes of 2 and 1.68. Optimized-k ReliefSeq

has lower mean rank in general for fold changes of 1.41. Both

versions of Relief-F have difficulty detecting fold changes of 1.12.

Variability in the rankings increases with the mean rank, but is

within 611 or less of the average rank for all but one gene with

rank less than 100 for ReliefSeq with optimized k (Table S1). The

variability in ranks is larger for Relief-F with fixed k and reaches

620 ranks for several genes.

Two of the established univariate methods for identifying

differentially expressed genes in RNA-Seq data are edgeR and

DESeq. Thus, we compare the rankings by gwak-ReliefSeq,

edgeR, and DESeq in the simulated main effect data sets (Figure 6).

The methods perform similarly and the ability to detect real signal

deteriorates for all methods as the fold change decreases and as the

mean m decreases. The mean rank for a fold change of 2 begins to

increase as the mean counts m is at 30 or fewer counts. For a fold

change of 1.68, the mean rank begins to increase once m is less

than approximately 500. All analytical methods have difficulties

detecting fold changes of 1.12 where all of the average rankings

are well above 1000, regardless of m or h.
Random Forest is one of the most widely used methods for

classification and feature importance ranking from the field of

machine learning. Thus, our last comparison for main effects is

between ReliefSeq and multiple implementations of Random

Forest (Figure 7). For large fold changes and large effect sizes,

Random Forest rankings are competitive with the other methods

compared above. Random Forest average rankings begin to

increase in the same regions as DESeq and edgeR, but they

increase more quickly; Random Forest is essentially unable to

detect fold changes of 1.41 and 1.12. Variability in rankings again

increases with the mean rank, and is at the level of 630 ranks for

genes with average rank in the 809s for Random Jungle and tuned

Random Forest, and 625 ranks for a gene ranked in the 509s for

Random Forest (Table S3).

Interaction Simulation Results
One of the advantages of the nearest neighbor approach of

Relief-F is that nearest hits and misses are determined in the space

of all transcripts, which provides potential interaction information

from other transcripts when ranking the importance of a given

transcript. In contrast, myopic or univariate methods typically

ignore information from other transcripts. In Figure 8 we compare

the ability of multiple methods to detect epistatic interactions of

the form described in the introduction and methods for simulated

datasets with various numbers of null genes. ReliefSeq consistently

gives better rankings than the other methods (edgeR, tune

Random Forest, and k= 10 Relief-F) for this difficult XOR

interaction model. The rankings are lower for larger m, and

ReliefSeq consistently ranks the interacting genes approximately

10% higher than Relief-F with fixed k, tuned Random Forest and

edgeR. The other methods rank the interactions consistently at the

40–55th percentile of features, which is not surprising given these

methods were not designed to detect interactions of the form

studied here. Interestingly, when viewed as a percent rather than

absolute ranking, all analytical methods rank the interacting genes

at a consistent position in the list, regardless of the number of null

genes in the dataset. This consistency is not surprising for

univariate methods, but ReliefSeq’s nearest hit and miss calcula-

tions performed in the whole transcript space have the potential to

become less accurate when irrelevant genes are included. The

relatively flat rankings as a function of number of background

genes suggest that a useful strategy for ReliefSeq may be

backwards elimination or iterative removal as we have done for

GWAS in Ref. [15].

Application to Smallpox Vaccine RNA-Seq Data
In order to test the biological relevance of genes prioritized by

ReliefSeq, we applied the new method to real RNA-Seq data from

a recent study of 44 subjects who received the smallpox vaccine

[22]. Here we use ReliefSeq to identify genes that show differences

between vaccinia virus-stimulated samples versus unstimulated

samples. In order to interpret the relevance of the genes prioritized

by ReliefSeq, we used the Molecular Signatures Database

(MSigDB) gene set enrichment resource [28] to identify significant

overlap between the top 100 ReliefSeq genes in the smallpox

RNA-Seq experiment and differentially expressed genes in

immune system studies curated from public microarray data (c7

collection of MSigDB). Significant overlap (p= 6.25e-5, FDR

q=0.04, Table 1) was found in a set of genes that were previously

found to be up-regulated in peripheral blood mononuclear cells

(PBMC) stimulated with yellow fever vaccine (YF17D) in

comparison with unstimulated PBMC (GSE13484) [29]. This

overlap between two vaccine studies (yellow fever vaccine and

smallpox vaccine) of differentially expressed genes between virus-

stimulated and unstimulated cells suggests that these genes may be

part of a generalized transcriptional response to immunization and

viral infections. These data also demonstrate the robust nature of

ReliefSeq as significant overlap was found despite the fact that the

MSigDB comparison database uses microarray data and different

methods for calculating differential expression. Stronger overlap is

expected if compared with RNA-Seq data and ReliefSeq for gene

prioritization and warrants further investigation in future analyses.

Benchmarking
We benchmarked ReliefSeq, DESeq and edgeR on a Quad

Core Intel Xeon W3520 2.66 GHz CPU, 6 GB RAM desktop.

We timed each method on one of the simulated data sets,

consisting of approximately 16,000 genes and 48 subjects. For a

single processor, ReliefSeq for a fixed k has a runtime of about 3

seconds. ReliefSeq with gene-wise adaptive-k has a runtime of

about 2 minutes. This runtime includes sweeping over all 23

possible nearest hits and misses and identifying the best k for each

transcript. The runtime of DESeq is about 10 minutes and about

25 seconds for edgeR. The single processor implementation of

Relief-F is quite fast for the benchmark data, which is relatively

large by mRNA-Seq standards. However, if a user needs to

analyze larger data sets, ReliefSeq is implemented in openMP for

shared-memory parallelization to take advantage of the multiple

cores available on all modern desktops. The most time consuming

calculation in the Relief-F algorithm is the distance matrix

between all subjects. Thus, we parallelized this matrix calculation

with openMP, which uses dynamic scheduling to balance the load

across the specified number of processors.
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Discussion

We have developed an extension to the Relief-F k-nearest-

neighbor-based feature selection algorithm by incorporating an

adaptive k that adjusts to the effect of each gene in the data set.

This enables Relief-F to detect both main effects and epistatic

interactions of the form described in the introduction. While the

interactions associated with buffering might seem to be rare

statistical effects, they have been shown to be of biological

importance [7,8,9,10] and should be addressed by statistical and

machine learning methods for RNA-seq data. We also expect

ReliefSeq to detect differential co-expression effects that manifest

as statistical interactions. One expects both main effects and

interaction effects that influence phenotypes to be present in RNA-

seq data, and the sensitivity of Relief-F to find either effect depends

on the nearest neighborhood size. We have shown on a panel of

realistic simulated mRNA-Seq data the competitive performance

of the gene-wise adaptive-k (gwak) ReliefSeq tool for detecting

main effects and superior performance for interactions. As with

differential expression, the detected effects cannot be claimed to be

more than associations until further functional studies are

performed.

For main effects greater than 1.5 and mean counts greater than

approximately 100, all of the methods ranked these genes at the

top of the list. For fold changes of 1.41, the rankings begin to

deteriorate with gene means less than 1000. ReliefSeq consistently

ranks buffering interactions higher than the other methods. This is

not surprising given the other analytical tools were not designed to

detect buffering interactions. In previous method development of

Evaporative Cooling feature selection for GWAS data, we

integrated importance scores from Relief-F using the traditional

k = 10 nearest neighbors with those from Random Forest as a

weighted sum in order to jointly utilize the ability of Relief-F to

identify interactions with the ability of Random Forest to identify

main effects [26]. However, due to the poor Random Forest

rankings observed for simulated mRNA-Seq data, there appears to

be no advantage to including Random Forest for the types of

Figure 5. Main effect simulation results comparing gene-wise adaptive-k ReliefSeq with standard Relief-F (k =10). Average ranks of 96
main effects of different size for ReliefSeq with gene-wise adaptive k compared with standard Relief-F with k = 10 nearest neighbors. The 96 main
effect genes are simulated in each data set with a background of null genes for a total of 16,920 genes. The 96 main effect genes are split into four
panels based on fold change (FC) labeled on the raw scale. The horizontal axis of each plot is labeled by the combination of negative binomial
parameters (h:m) of the main effect gene. Genes toward the right of a panel have smaller effect size, making them more difficult to detect. Each plot
point is the average rank across n = 1000 replicate simulations.
doi:10.1371/journal.pone.0081527.g005
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effects considered here, despite evaluating multiple implementa-

tions. Thus, in order to capture the spectrum of effects in mRNA-

Seq data, we used a fast and simple procedure to find the optimum

number of nearest neighbors in Relief-F, which does not appear to

be at risk of false positives due to the adaptive choice of k.

Additional study is needed to determine the features of Random

Forest that may explain the slightly poorer performance. Possible

explanations include that Random Forests has been shown to have

difficulty detecting important variables when there are only a few

important variables mixed in with many unimportant variables

[30], or the non-constant coefficient of variation in Negative

Binomial data. Addressing these issues for Random Forest main

effect analysis of RNA-Seq data will inform further improvements

for gene-gene interaction analysis. For example, forest-based

approaches that have been developed for identifying gene-gene

interactions, like the haplotype-based approach for single nucle-

otide polymorphisms (SNPs) in Ref. [31], may be adapted for

RNA-Seq analysis.

This tool may be used to perform feature selection prior to

higher level modeling such as gene set enrichment analysis (as we

did with MSigDB for real RNA-Seq data), development of

predictive models, or network analysis [32]. As with other

methods, ReliefSeq detects signal best for large m and large fold

changes, and performs reasonably well for fold changes as low as

1.41. When using ReliefSeq as a feature selection tool, it appears

the top 40–50% of the features should be retained from the

perspective of keeping informative features, in line with what

others have found [33]. Since ReliefSeq utilizes group informa-

tion, however, this feature selection step must be incorporated

within any cross-validation loops for model building purposes [34].

For smaller sample sizes on the order of 50, it takes about 2

minutes to sweep all nearest neighbor possibilities and calculate

the best k for all genes. This method makes no distributional

assumptions and so will work for many other data types as well.

The ReliefSeq implementation also supports GWAS and associ-

ated data formats such as the Plink format. Although these

algorithm features were not used in the current study, the open-

source ReliefSeq implementation supports multi-class and contin-

uous phenotypes. For larger sample sizes, it may not be

computationally feasible to sweep over all k values. For such

cases, it may be necessary to set an upper k and search for the local

optimum in the chosen interval. This sample size limitation is

probably not relevant for current RNA-seq data sets, but it would

likely become more of a concern in GWAS data where sample

Figure 6. Main effect simulation results comparing gene-wise adaptive-k ReliefSeq, edgeR, and DESeq. Average ranks of the 96 main
effect genes simulated in each data set with a total of 16,920 genes for Relief-F with optimized k nearest neighbors, edgeR, and DESeq. The results are
split into four panels based on fold change (FC) on the raw scale. The horizontal axis shows the 96 simulated main effect genes, ordered left to right
from high to low main effect strength, and labeled by the combination of negative binomial parameters (h:m) of the main effect gene. Each point is
the average rank across n = 1000 replicate simulations (vertical axis).
doi:10.1371/journal.pone.0081527.g006
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sizes are on the order 103 or even 104. Relief-F is able to

incorporate interaction information when ranking the importance

of a given transcript, but it does not tell you which interactions are

important. In future work, we will explore exhaustive pair-wise

statistical interaction models with the generalized linear model,

similar to epistasis network analyses for GWAS [35].

Our manuscript has both strengths and weaknesses. Strengths

include that, to our knowledge, this is the first work to consider a

gene-wise adaptive choice of k in the Relief-F algorithm. This

enables the algorithm to detect more types of effects. To our

knowledge, this is the first interaction analysis of RNA-Seq data.

Simulation parameters were determined based on data from real

mRNA Seq data, and the effect sizes considered are of a

magnitude observed in biological studies. We applied the method

to a real RNA-Seq data set to demonstrate the identification of

biologically relevant genes. Weaknesses will be addressed in future

work, including the lack of a distribution for computing p-values,

which limits the assessment of false positive rates. We will

investigate the possibility of using the formalism developed in

the current study to identify an asymptotic distribution for

computing p-values, and we will investigate the computational

feasibility of permutation p-values. We tested the effect of the

conditionally dependent genes (interactions) in the data, but we

otherwise simulated genes as independent. Future study is needed

to understand the effects of correlation between genes. In addition,

future development of the Relief-F method is needed to refine the

estimates of k, such as parameter sweeps to minimize the cross-

validation error rate and adaptive metrics.

We hope the comparison of these methods will inform future

analyses of RNA-Seq data and will lead to improved character-

ization of transcriptome signatures for a variety of biological states

that may involve complex statistical models. ReliefSeq feature

selection is able to identify main effects and interactions and is

applicable to data from a wide variety of distributions.

Figure 7. Main effect simulation results comparing gene-wise adaptive-k ReliefSeq and multiple Random Forest implementations.
Same panels and axes as in Figs. 5 and 6, but Relief-F with optimized k nearest neighbors is compared with Random Jungle, Random Forest (R
implementation), and tuned Random Forest with optimized mtry. Average ranks of the 96 main effect genes simulated in each data set together with
null genes for a total of 16,920 genes. The 96 genes are split into four panels based on fold change (FC). The horizontal axis of each plot is labeled by
the combination of negative binomial parameters (h:m) of the main effect gene. Each point is the average rank across n= 1000 replicate simulations.
doi:10.1371/journal.pone.0081527.g007
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Supporting Information

Table S1 Additional statistics on variation for the simulation

results in Figure 5. The first column describes the effect of the gene

in the simulated model: the fold change and negative binomial

parameters. The remaining columns measure the mean, lower 5th

and upper 95th percentile of the rank for the corresponding

methods. The methods compared are Reliefseq with optimized k

nearest neighbors and Relief-F with k = 10.

(XLS)

Table S2 Additional statistics on variation for the simulation

results in Figure 6. The first column describes the effect of the gene

in the simulated model: the fold change and negative binomial

parameters. The remaining columns measure the mean, lower 5th

and upper 95th percentile of the rank for the corresponding

methods. The methods compared are Reliefseq with optimized k

nearest neighbors, edgeR and DESeq.

(XLS)

Figure 8. Interaction simulation comparison of feature ranking methods for different numbers of null genes. Comparison of
optimized-k Relief-F, standard Relief-F using k = 10 nearest neighbors, edgeR, and tuned Random Forest for detecting an interaction between two
genes amongst various numbers of null genes. The panels are sorted in order of increasing negative binomial parameter h. Each point is the average
of the worst ranking gene of the two simulated interacting genes across n= 100 replicate simulations and then divided by the total number of
simulated genes. The number of null or background genes increases from 100 to 12,800 total genes, plotted on the log2 scale. Each simulation
contains one pure interaction (no main effects) XOR model between two negative binomial genes.
doi:10.1371/journal.pone.0081527.g008

Table 1. Differentially expressed genes in virus-stimulated
versus unstimulated cells for smallpox vaccine based on
ReliefSeq that significantly overlap (p = 6.25e-5) with
stimulated versus unstimulated differentially expressed genes
in yellow fever vaccine in the Molecular Signatures Database
(MSigDB:
SE13484_UNSTIM_VS_YF17D_VACCINE_STIM_PBMC_DN).

Gene
Name Gene Description

ISG20 Interferon stimulated exonuclease gene 20 kDa

RASGRP3 RAS guanyl releasing protein 3 (calcium and DAG-regulated)

FANCA Fanconi anemia, complementation group A

TAP2 Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)

ZBP1 Z-DNA binding protein 1

doi:10.1371/journal.pone.0081527.t001

ReliefSeq: Feature Selection for mRNA-Seq Data

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e81527



Table S3 Additional statistics on variation for the simulation

results in Figure 7. The first column describes the effect of the gene

in the simulated model: the fold change and negative binomial

parameters. The remaining columns measure the mean, lower 5th

and upper 95th percentile of the rank for the corresponding

methods. The methods compared are Relief-F with optimized k

nearest neighbors is compared with Random Jungle, Random

Forest (R implementation), and tuned Random Forest with

optimized mtry.

(XLS)
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