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Abstract Some of the excitatory effects of norepinephrine

on central neurons are mediated by alpha-1 (a1) adreno-

ceptors. These receptors are coupled to the Gq family of

G proteins, and hence stimulate hydrolysis of the membrane

phospholipid phosphatidylinositol-4,5-bisphosphate. Other

receptors of this type can excite neurons by inhibiting the

subthreshold voltage-gated potassium M-current. We tested

this possibility using rat sympathetic neurons transformed to

express a1a receptors. The a1 agonist phenylephrine

strongly inhibited the M-current recorded under voltage-

clamp by 72 ± 11 % (n = 4) and in an unclamped neuron

dramatically increased the number of action potentials pro-

duced by a 2 s depolarizing current step from 2 to 40, without

effect on control neurons devoid of a1 receptors. We suggest

that this might be a potential cause of the increased excit-

ability produced by norepinephrine in some central neurons.
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Introduction

Alpha-1 (a1) adrenoceptors are widely distributed in the

central nervous system (Jones et al. 1985; Day et al. 1997).

There they mediate some of the effects of norepinephrine,

including a membrane depolarization and enhanced action

potential firing (e.g., supra-optic nucleus: Ogata and

Matsuo 1986; cultured spinal neurons: Legendre et al.

1988; cerebral cortex and thalamus: McCormick et al.

1991; lateral geniculate nucleus: McCormick 1992).

These receptors are G protein-coupled receptors

(GPCRs) that link primarily to the Gq family of G proteins

and thereby stimulate hydrolysis of the membrane

phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2)

(Hawrylyshyn et al. 2004). Other receptors of this type can

excite neurons by inhibiting the subthreshold voltage-gated

K? current termed the ‘‘M-current’’ (Delmas and Brown

2005), which normally acts as a brake on firing activity.

However, this action does not appear to have been hitherto

detected in mammalian central neurons following a1-

stimulation. This may be because most of the cells studied

so far did not possess prominent M-currents, or perhaps

because the current is not very responsive to a1 receptor

stimulation (though tests on peripheral parasympathetic

neurons suggest otherwise: Shibata and Taketani 2001).

We have recently had an opportunity to assess the

response of M-currents to specific a1-adrenoceptor stimu-

lation using neurons from the rat superior cervical sym-

pathetic ganglion. These have large M-currents (Constanti

and Brown 1981) but do not seem to possess an appreciable

number of endogenous a1 receptors (Grayson et al. 1998;

Dawson et al. 2010). Hence we inserted a1a adrenoceptors

by intranuclear cDNA injection, as used for other receptors

(see Ikeda 1997; Filippov et al. 2000). We show that this

receptor is indeed well capable of inhibiting the M-current,

and can thereby strikingly enhance excitability.

Materials and Methods

Superior cervical sympathetic ganglia were isolated from

18-day-old rats (killed by UK Home Office approved meth-

ods), neurons dissociated, plated and cultured in vitro for
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1–2 days as described by Filippov et al. (1998). To express

a1a receptors, a cDNA plasmid encoding the receptor (pro-

vided by Dr. John Pediani, Glasgow University; see Pediani

et al. 2000) was injected into individual cell nuclei 4 h after

initial plating, together with a cDNA plasmid encoding the

jellyfish enhanced green fluorescent protein (eGFP) to mark

the injected neurons. For electrophysiological recording, cells

were patched with electrodes containing (in mM) 90 potas-

sium acetate, 20 KCl, 3 MgCl2, 40 HEPES, and 0.1 BAPTA

(pH-adjusted to 7.4 by KOH), and back-filled with the same

solution containing 0.125 mg/ml amphotericin B as a mem-

brane permeabilizing agent, to provide ‘‘perforated-patch’’

recording. (This is essential to retain the normal cytosolic

constituents and maintain normal M-currents and excitabil-

ity.) Cells were maintained in flowing Krebs’ solution at

20–22 �C containing (in mM) 120 NaCl, 3 KCl, 1.5 MgCl2,

2.5 CaCl2, 10 HEPES, and 11.1 glucose (pH-adjusted to 7.3

with NaOH). Recordings were made, data collected and

analyzed as described by Filippov et al. (1998).

Results

M-Current

When these sympathetic neurons are clamped at a depo-

larized membrane potential, potassium M-channels open

and generate a steady outward current (they do not inac-

tive). Then when the cells are briefly hyperpolarized

M-channels slowly close, producing a slow inward tail-

current (see Fig. 1a). The amount of M-current lost during

the hyperpolarization can be measured from the initial

amplitude of this deactivation tail-current at the point of

hyperpolarization. This procedure isolates M-current from

other membrane currents (Adams et al. 1982a).

In neurons that had not been transformed to express a1a

adrenoceptors, the a1-agonist phenylephrine (10 lM) had

no effect on either the amount of steady outward current or

the amplitude of the deactivation tail-current (Fig. 1a, top

trace; Fig. 1c). In contrast, in the same neuron the mus-

carinic acetylcholine-receptor agonist oxotremorine-M

(oxo-M, 10 lM) clearly reduced both steady outward

current and deactivation current-tail (Fig. 1a, lower trace),

signaling M-current inhibition (see Adams et al. 1982b).

Mean inhibition in three such neurons measured from the

extrapolated initial amplitude of the deactivation tail-cur-

rent (Adams et al. 1982a) was 59 ± 14 % (Fig. 1c).

In contrast to the negative effect of phenylephrine in

Fig. 1a, this a1-agonist clearly did reduce the M-current if

a neuron had been pre-injected with a1a receptor cDNA

(Fig. 1b), to a mean extent of 72 ± 11 % (n = 4; Fig. 1c).

Thus, in an a1a-expressing neuron, phenylephrine inhibits

the M-current just like a muscarinic agonist.

Excitability

M-current confers strong spike-frequency adaptation on

these neurons, so one effect of M-current inhibition is to

facilitate repetitive firing during sustained depolarization

(Brown 1983). Figure 2a shows such an effect of oxotre-

morine-M. A 2 s depolarizing current injection initially

generated only two action potentials at the beginning of the

pulse but a sustained train of action potentials after adding

oxotremorine-M, rising to 50 action potentials (25 Hz)

with increasing current injections (Fig. 2c). Phenylephrine

had no effect on induced action potential firing in normal

cells but precisely replicated the effect of oxotremorine-M

in a neuron pre-injected with the a1a cDNA (Fig. 2b, c).

Thus, M-current inhibition by a1a-adrenoceptors would be

expected to increase neuronal excitability.

Discussion

These experiments show that, when present in a neuron,

a1-adrenoceptors are well capable of strongly inhibiting

the M-current and greatly increasing neuronal excitability,
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Fig. 1 M-current inhibition by oxotremorine-M (oxo-M, 10 lM) and

phenylephrine (phe, 10 lM). Left side voltage-clamp current records

from a a normal (wild-type) neuron and b a neuron pre-injected with

cDNA encoding the a1a-adrenoceptor. Neurons were held at -20 mV

to activate the M-current as a steady component of outward current.

Records show responses to a -20 mV 1 s hyperpolarizing step.

M-current deactivation is seen as a slow inward current-tail. c Bar
charts showing mean% inhibition measured from deactivation

current-tail amplitudes. Bars SEMs, n number of cells tested.

Currents reverted to control on drug washout. Note that phenylephrine

inhibited M-current in a1a-expressing neurons but not in control

neurons
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just like an endogenous Gq-coupled GPCR such as the

muscarinic M1-receptor.

It could be argued that this is an artifact of receptor

overexpression, and that any endogenous a1-receptors are

somehow insulated from exerting such an effect. For

example, muscarinic receptor overexpression in these

neurons can overcome endogenous barriers that otherwise

restrict downstream Ca2?-signaling pathways (Zaika et al.

2011). However, we think this type of exclusion zone

unlikely to confer resistance of M-channels to inhibition,

since, in previous tests, we found that overexpression of the

small number of endogenous P2Y1 purinoceptors, while

amplifying the signals, did not qualitatively alter their

actions on M-channels and Ca2?-channels (Filippov et al.

2010). Further, endogenous a1-adrenoceptors have been

reported to inhibit M-currents in other peripheral neurons

(Shibata and Taketani 2001).

In previous experiments on central neurons (see

‘‘Introduction’’), the depolarization produced by a1-

receptor activation was usually accompanied by a reduced

K? conductance but in only one case (cultured embryonic

spinal neurons: Legendre et al. 1988) did the depolariza-

tion show some, though not all, of the properties expected

for M-current inhibition. Probably M-currents were

insufficiently prominent in the other cells tested. Not-

withstanding, bearing in mind the wide distribution of

both M-channels and a1 receptors in the brain, it seems

likely that more of the a1-mediated effects of norepi-

nephrine on central neurons will prove to be caused by

M-channel inhibition when examined in detail. There are

only a few thousand noradrenergic neurons in their main

site of origin in the locus coeruleus, but their axons

ramify widely throughout the c.n.s. (Berridge and

Waterhouse 2003), and their activation of a1-receptors are

thought to be involved in many aspects of central nor-

adrenergic function, including memory and cognition

(Gibbs and Summers 2002; Ramos and Arnsten 2007),

sleep (Berridge et al. 2012), depression (Stone et al.

2003), and pain (Pertovaara 2006). Hence, further test for

M-current inhibition would seem worthwhile. From the

data of Legendre et al. (1988), a plausible start-point

might be the spinal cord.
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Fig. 2 Effects of a oxotremorine-M (oxo-M, 10 lM) and b phenyl-

ephrine (Phe, 10 lM) on action potential firing in two neurons

induced by 2 s depolarizing current injections (120 pA in a, 160 pA

in b). Neuron A: wild-type; neuron B: pre-injected with a1a cDNA.

c Plots of the number of action potentials (‘‘spikes’’) recorded in 2 s

(ordinates) against the amplitude of the depolarizing current injection

(abscissae) for the two cells illustrated in a and b. Discharges reverted

to control after drug washout
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