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Lactoferrin is a nutrient classically found in mammalianmilk. It binds iron and is transferred

via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid.

It has important immunological properties, and is both antibacterial and antiviral. In

particular, there is evidence that it can bind to at least some of the receptors used

by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate

Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2),

as based on other activities lactoferrin might prevent severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more

specifically enteric-coated LF because of increased bioavailability) may consequently be

of preventive and therapeutic value during the present COVID-19 pandemic.

Keywords: lactoferrin, coronaviruses, iron, membrane receptors, HSPGs

INTRODUCTION

Lactoferrin (LF) or lactotransferrin has recently come under the spotlight, particularly with regards
to the new coronavirus pandemic that started in 2019 (COVID-19). Diet and supplements support
a well-functioning immune system, and favorably influence the body’s ability to fight infection.
Although LF is produced by the body itself, as a secretion by exocrine glands (such as maternal milk
or tears) and secondary granules of human neutrophils (1), it can also be taken as a supplement,
where it then acts as nutraceutical or functional food. Our particular focus is on its role as an oral
supplement. Here we also collate some of the evidence that shows how LF may be an important
nutrient to support host immunity, including as an antibacterial and antiviral agent, but particularly
with the current COVID-19 pandemic in mind.

We summarize what is already known about LF, including its immunological properties, as
well as its antibacterial and antiviral activities. We also discuss how LF uses Heparan Sulfate
Proteoglycans (HSPGs) on cell surfaces to facilitate entry. This is of particular importance to
coronaviruses, as these viruses are considered to bind to the host cell by attaching first to HSPGs
using them as preliminary docking sites on the host cell surface. LF is known to interfere with
some of the receptors used by coronaviruses, it may thus contribute usefully to the prevention
and treatment of SARS CoV-2 infections. In COVID-19 infection, LF may therefore have a role
to play, not only sequestering iron and inflammatory molecules that are severely increased during
the cytokine burst, but also possibly in assisting by occupying receptors and HSPGs. LF might also
prevent virus accumulation by the host cell, as well as rolling activity and entering of the virus via
the host receptor angiotensin-converting enzyme 2 (ACE2). It has been 20 years since the discovery
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of ACE2, and since its discovery it has been found to be expressed
in numerous tissues, including the lungs and the cardiovascular
system (2). During 2020, there has been a renewed interest in this
receptor, due to the interactions of novel coronaviruses and their
interactions with ACE2 (3–5). South and co-workers in 2020
also investigated whether ACE2 blockade is a suitable option
to attenuate COVID-19 (5). The use of recombinant human
ACE2 (rhACE2) as ACE receptor competitor for binding has also
been investigated (6, 7). There is also interest in the therapeutic
targeting of HSPGs, andHondermarck and co-workers suggested
that is seems an easy way to inhibit SARS-Cov-2 infectivity (8).
Here we also suggest that LF might be used as both a preventive
and therapeutic supplement in the COVID-19 pandemic, by
preventing interactions between the virus and both HSPGs and
possibly ACE2. We summarize the layout of this paper in
Figure 1.

DISCOVERY AND STRUCTURE

Human LF is a cationic glycosylated protein consisting of
691 amino acids (9) folded into two globular lobes (80 kDa
bi-lobal glycoprotein) (10), that are connected by an α-helix
(11, 12). Bovine LF contains 689 amino acids (13). LF was
first discovered and isolated from bovine milk in 1939 (14),
and is a member of the transferrin family (60% amino acid
sequence identity with serum transferrin) (11). LF and transferrin
have similar amino acid compositions, secondary structures
(including their disulphide linkages), and tertiary structures,
although they differ in terms of biological functions (11, 15, 16)
(see Figure 2). There are also three different isoforms: LF-α
is the iron-binding isoform, while LF- β and LF-g both have
ribonuclease activity but do not bind iron (11, 17). When it
is iron-rich it is referred to hololactoferrin and when iron-free
apolactoferrin (18). The tertiary structures of the two forms are
significantly different: apolactoferrin is characterized by an open
conformation of the N-lobe and a closed conformation of the
C-lobe, while both lobes are closed in the hololactoferrin (18).
Human LF and bovine LF possess high sequence homology and
have very similar antibacterial, antifungal, antiviral, antiparasitic,
anti-inflammatory, and immunomodulatory activities (19–21).
Consequently, it is common to give the bovine form rather than
say a recombinant human form as a supplement. Bovine LF is
also deemed a “generally recognized as safe” substance by the
Food andDrug Administration (FDA, USA), and is commercially
available in large quantities (19).

Abbreviations: LF, Lactoferrin; lactotransferrin; SARS-CoV, acute respiratory

syndrome coronavirus; LRP-1/CD91, LDL receptor-related protein-1; TLR2 and 4,

Toll-like receptor 2 and 4; CXCR4, cytokine receptor 4; GAG, glycosaminoglycan;

AP-1, activator protein 1; NF-κB, NF-kappa beta; IRF, Interferon regulatory factor;

MAPK, Mitogen-activated protein kinase; HSPG, Heparan sulfate proteoglycans;

ACE2, Angiotensin-converting enzyme 2; IL, Interleukin; G-CSF, Granulocyte

colony-stimulating factor; GM-CSF, Granulocyte-Macrophage Colony Stimulating

Factor; IFN, Interferon; TNFα, Tumor necrosis factor alpha; IP10, Interferon

gamma-induced protein 10; MCP1, Monocyte Chemoattractant Protein-1; (MIP1)

A and B, Macrophage inflammatory protein 1 (A and B); LMWH, Low molecular

weight heparin; vWF, von Willebrand Factor; PAD4, protein arginine deiminase 4;

NETS, Neutrophil extracellular traps.

Due to its similarities to transferrin, which is the main iron
transporting molecule in serum (22, 23), α-LF possesses iron
binding capabilities (24, 25), and it can chelate two ferric irons
(Fe3+) (26). LF binds one ferric iron atom in each of its two lobes;
however, an important attribute is that it does not release its iron,
even at pH 3.5. This is of importance as this property assures
iron sequestration in infected tissues where the pH is commonly
acidic (27). In the context of its iron-binding capabilities, it means
that when it binds ferric and siderophore-bound iron, it limits the
availability of essential iron to microbes (27).

In healthy individuals, iron is largely intracellular and
sequestered within ferritin or as a co-factor of cytochromes and
FeS proteins, and as haem complexed to hemoglobin within
erythrocytes. Circulating iron is rapidly bound by transferrin
(28, 29). When erythrocytes lyse and hemoglobin or haem is
released into the circulation, their hemoglobin is captured by
haptoglobin, and haem by hemopexin (30). Here, circulating
serum ferroxidase ceruloplasmin is of importance, as LF can
bind to ceruloplasmin, such that a direct transfer of ferric iron
between the two proteins is possible (31). A direct transfer
of ferric iron from ceruloplasmin to lactoferrin prevents both
the formation of potentially toxic hydroxyl radicals (32) and
the utilization of iron by pathogenic bacteria. LF is therefore
an important player in preventing bacteria from acquiring and
sequestering iron, which [with the possible exception of Borrelia
burgdorferi (33)]; they require for growth and virulence. LF
also acts as biomarker, as it is commonly upregulated when the
host is suffering from various kinds of disease. See Table 1 for
selected references.

LACTOFERRIN AND ITS MEMBRANE
RECEPTORS

LF is thought to exert its main biological activities following
interaction with receptors on target cells. There are in fact
many LF receptors, though sometimes one is referred to
as “the” lactoferrin receptor. They have been detected in
multiple tissues and cell types including intestinal epithelial
cells and lymphocytes (60, 61). Receptors that bind LF include
CD14 (62), LDL receptor-related protein-1 (LRP-1/CD91)
(63–65) intelectin-1 (omentin-1) (66), Toll-like receptor 2
and 4 (TLR4) (67) and cytokine receptor 4 (CXCR4) (68)
(see Table 2). Importantly, LF also binds to heparan sulfate
proteoglycans (HSPGs), which are cell-surface and extracellular
matrix macromolecules that are composed of a core protein
decorated with covalently linked glycosaminoglycan (GAG)
chains (86, 87, 98, 99). See Table 2. Different receptors
express at vastly different levels in different tissues; thus
intelectin-1 is really expressed only in the intestine (https://
www.proteinatlas.org/ENSG00000179914-ITLN1/tissue), while
LRP1 is far more widely distributed https://www.proteinatlas.
org/ENSG00000123384-LRP1/tissue. These multiple receptors
arguably underpin the substantial and widespread effects that
LF can induce, since only when multiple targets are hit
simultaneously can one normally have major effects (103, 104).
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FIGURE 1 | Overview of this review of lactoferrin (LF). We discuss (1) discovery and structure of LF; (2) LF membrane receptors and some of the bacteria, their

products and viruses that might also bind to these receptors, (3) including how acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (causing COVID-19) may

interact with host cells (see Figure 6 and Conclusion for a detailed discussion); (4) and how LF assists with host immunity. Diagram created with BioRender (www.

biorender.com).

The entry of bacteria, bacterial products or viruses into host
cells may also occur via some of these receptors. Such binding
evokes signaling systems and pathways involving, amongst
others, mitogen-activated protein kinase (MAPK) (105), NF-κB
(106), activator protein 1 (AP-1) (107), and various interferon
regulatory factors (IRFs) [for a comprehensive review see (108)].
During infection, activation of these signaling pathways results in
a cellular response that shares multiple cytoplasmic components,
leading ultimately to the activation of a complex biomolecular
network. Phosphorylation of relevant substrates (e.g., enzymes,
microtubules, histones, and transcription factors) plays a crucial

role in determining the host’s cellular response (109). Viruses
(110, 111), as well as bacteria (112), interact with and bind
to HSPGs, using this proteoglycan as entry into the cell (see
also Figure 1). LF acts as an important element in host defense
mechanisms by binding to these receptors, but also binding
to HSPG on cells, since these are locations where binding to
bacteria and their cell wall products as well as viruses occur.
The membrane-penetrating peptide HIV-tat, released from HIV-
infected cells, also enters surrounding cells using HSPGs (86,
98). This binding capacity allows LF to compete with such
molecules for receptor occupancy (113, 114), and therefore plays
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FIGURE 2 | Crystal structures of bovine lactoferrin (PDB code = 1BLF), human lactoferrin (1B0L), and rabbit serum transferrin (1JNF). Adapted from Vogel (10). Pink

spheres represent ferric iron (Fe3+) binding sites.

TABLE 1 | Lactoferrin as a major player in host defense and iron binding, and its

use as biomarker for various diseases.

Area of action References

Protecting neonates via breast milk (34–41)

LF in cervicovaginal mucosa and female reproductive

tract; antibacterial, antifungal antiparasitic, antiviral

(42–45)

LF in the airways (46, 47)

Mucosal surfaces, allergen-induces skin infections (48)

Neutrophil extracellular trap (NET) production (49)

Saliva and its antimicrobial activities and iron binding (50–52)

Saliva as biomarker for neurological diseases (53–55)

Saliva as biomarker for periodontal disease and oral

dryness

(56–59)

a vital role in host immunity (20). LF can also serve to prevent
nephrotoxicity, e.g., of cisplatin (115).

LACTOFERRIN TRANSPORT

Small molecules, including pharmaceutical drugs, require solute
carriers of the SLC family (116) to effect their uptake (117–
124). Lactoferrin, as a protein, is far too large to exploit such a
route, and instead passes from the stomach via epithelial cells
and into the blood using endocytosis (125, 126), especially via
Peyer’s patches (127), and when it is encapsulated (“enterically
formulated”) in liposomes (128–130). This uptake then occurs
mostly via the lymphatic rather than the portal circulation
(131, 132). LF can also enter, and be reabsorbed from, the
bile (125). Blood LF can further be transported to the CNS
via cerebrospinal fluid (133, 134) and via the Blood Brain
Barrier (63, 133).

LACTOFERRIN: AN IMPORTANT ELEMENT
IN HOST DEFENSE

Neutrophils and Lactoferrin
LF plays an important role in host defense, upon its release
from the neutrophil (26). LF also enhances natural killer cell
activity in immune defense (135) and can restrict the entry of

TABLE 2 | Receptors for lactoferrin, cells where these receptors are present, and

other molecules and/or components that might bind to these receptors.

Receptor for

lactoferrin

Cell types where receptor are

present

Selected

references

Lactoferrin

receptor/LRP-

1/CD91/apoE receptor

or the chyclomicron

remnant receptor

Multiple tissues and cell types

including intestinal epithelial cell

lymphocytes, fibroblasts, neurons,

hepatocytes, endothelial cells

(62)

(60, 69–71)

Intelectin-1 (omentin-1) Visceral (omental and epicardial) fat,

mesothelial cells, vascular cells,

airway goblet cells, small intestine,

colon, ovary, and plasma

(66, 72)

TLR2 and TLR4 Endothelial cells, platelets,

neutrophils

(73–80)

CXCR4 Platelets, endothelial cells,

neutrophils, T-cells

(78, 81–83)

CD14 Macrophages, neutrophils (62, 84, 85)

Heparan sulfate

proteoglycans

(HSPGs),

Epithelial cells, endothelial cells,

fibroblasts, lymphocytes

(86, 87)

Interleukin 1 Various cells

Selected molecules and entities that bind to these receptors, other

than lactoferrin

Receptor Molecule or cellular entity References

Lactoferrin receptor Bacteria (30)

LRP-1 Amyloid beta (Aβ) (69, 88–90)

Intelectin-1 (omentin-1) Microbial sugars, including

β-D-galactofuranose (β-Galf),

D-glycerol 1-phosphate,

d-glycero-D-talo-oct-2-ulosonic

acid (KO), and

3-deoxy-d-manno-oct-2-ulosonic

acid (KDO)

(91)

TLR4 Bacterial lipopolysaccharides (LPSs)

Herpex simplex

(78, 92–94)

CXCR4 Viruses (including HIV) (78, 95, 96)

CD14 LPS, H7N9 Influenza virus (92, 97)

Heparan sulfate

proteoglycans (HSPGs)

Various viruses, including HIV and

SARS-CoV

(86, 87, 98–102)

the virus into host cells during infection. As part of the host’s
inflammatory response, leucocytes, including neutrophils, release
LF from their granules, where it is normally stored. Activated

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 1221

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kell et al. Lactoferrin in Coronaviruses

FIGURE 3 | Bacterial binding to various receptors, e.g., Toll-like receptors 2 and 4 (TLR2 and 4), as well as complement receptors, leads to protein arginine deiminase

4 (PAD4) activation, followed by chromatin decondensation, hypercitrullination of histones 3 and 4 in the nucleus, and nuclear membrane disruption. Granules also

release lactoferrin. Neutrophil Extracellular Traps (NETs) and their protein constituents (including lactoferrin) are released from the neutrophil. Adapted from Jorch and

Kubes (142) and Law and Gray (143). Bacteria are expelled and trapped in the NETs. Diagram created with BioRender (https://biorender.com/).

neutrophils also release chromatin fibers, known as neutrophil
extracellular traps (NETs), which trap and kill, amongst others,
bacteria (1, 136). These NETs likewise modulate both acute
and chronic inflammation (137, 138). NETs are also found in
various autoimmune conditions such as rheumatoid arthritis,
systemic lupus erythematosus (139, 140). Interestingly, 106

human neutrophils can release 15 µg of LF (26). In addition to
DNA and histones, NET fibers contain extranuclear proteins and
proteins such as elastase, myeloperoxidase (MPO), and LF (141).
LF may also serve as an intrinsic inhibitor of NETs release into
the circulation, and may therefore be central in controlling NETs
release (1). See Figure 3.

Bacteria and Lactoferrin
One of the most well-known characteristics of LF is that it is
antibacterial (19, 144–148), antiviral (99, 149–151), antifungal
(152–154), anti-inflammatory (26), and anti-carcinogenic (155).

Its ability to of limit iron availability to microbes is one of its
crucial amicrobial properties. Bacteria have, however, developed
various ways to sequester iron (156). Figure 4 shows how
bacteria acquire iron through receptor-mediated recognition
of transferrin, hemopexin, hemoglobin, or hemoglobin-
haptoglobin complexes and also LF (30). As well as binding it
directly from the environment, bacterial siderophores can obtain
iron by removing it from transferrin, lactoferrin, or ferritin
(32). These siderophore-iron complexes are then recognized by
receptors on the bacterium (30). Host innate immune functions
are supported by the circulating protein, siderocalin, also known
as Neutrophil gelatinase-associated lipocalin (NGAL), lipocalin2
or Lcn2 as it inhibits siderophore-mediated iron acquisition and
release (30).

Although LF has various means to counteract bacteria as part
of its immune function (131), it is also capable of being hijacked
to benefit the activities of bacteria. Thus, bacteria can also exploit
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FIGURE 4 | Ways by which bacteria acquire iron [adapted from (19, 30)]. Transferrin receptor, lactoferrin receptor, hemophore (Hp), hemophore receptor, and

hemopexin. Siderophores remove iron from lactoferrin, ferritin and transferrin, and also from the environment. Stealth siderophores are modified in such a way as to

prevent siderocalin binding. A primary bacterial defense against siderocalin involves the production of stealth siderophores. Modified from Rosa et al. and Skaar

(19, 30). Diagram created with BioRender (https://biorender.com/).

LF by removing its bound ferric iron (19, 30). This process
involves (1) synthesis of high-affinity ferric ion chelators by
bacteria, (2) iron acquisition through LF or transferrin binding,
mediated by bacterial-specific surface bacterial receptors, (3) or
iron acquisition through bacterial reductases, which are able to
reduce ferric to ferrous ions (19, 144–148).

Several Gram-negative pathogens including members of the
genera Neisseria and Moraxella have evolved two-component
systems that can extract iron from the host LF and transferrin
(157). N. meningitidis is a principal cause of bacterial meningitis
in children. While the majority of pathogenic bacteria employ
siderophores to chelate and scavenge iron (158), Neisseria has
evolved a series of protein transporters that directly hijack
iron sequestered in host transferrin, lactoferrin, and hemoglobin
(159). The system consists of a membrane-bound transporter
that extracts and transports iron across the outer membrane
(TbpA for transferrin and LbpA for lactoferrin), and a lipoprotein
that delivers iron-loaded lactoferrin/transferrin to the transporter
(TbpB for transferrin and LbpB for lactoferrin) (157). LbpB

binds the N-lobe of lactoferrin, whereas TbpB binds the C-lobe
of transferrin (157). However, more than 90% of LF in human
milk is in the form of apolactoferrin (160), which competes with
siderophilic bacteria for ferric iron, and disrupts the proliferation
of thesemicrobial and other pathogens. Similarly LF supplements
may play an important role to counteract bacterial processes. LF
is consequently a significant element of host defense (19), and its
levels may vary in health and during disease. It is hence known to
be a modulator of innate and adaptive immune responses (161).

Viruses and Lactoferrin
LF has strong antiviral activity against a broad spectrum of
both naked and enveloped DNA and RNA viruses (99, 149–
151). LF inhibits the entry of viral particles into host cells, either
by direct attachment to the viral particles or by blocking their
cellular receptors (discussed in previous paragraphs) (149). Some
of the viruses that LF prevents from entering host cells e.g.,
Herpes simplex virus (162), human papillomavirus (163), human
immunodeficiency virus (HIV) (164), and rotavirus (165). These
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FIGURE 5 | Simplified platelet signaling and receptor activation during disease with main dysregulated molecules thrombin, fibrin(ogen), von Willebrand Factor (vWF)

interleukins (IL) like IL-1α, IL-1β, and IL17A and cytokines like TNF-α. Diagram created with BioRender (https://biorender.com/).

viruses typically utilize commonmolecules on the cell membrane
to facilitate their invasion into cells, including HSPGs (Figure 1).
HSPGs provide the first anchoring sites on the host cell surface,
and help the virus make primary contact with these cells (99,
162). HSPGs can be either membrane bound, or in secretory
vesicles and in the extracellular matrix (86). It has been shown
that LF is able to prevent the internalization of some viruses by
binding to HSPGs (86).

COVID-19 and Lactoferrin
COVID-19 is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Many COVID-19 patients develop
acute respiratory distress syndrome (ARDS), which leads to
pulmonary edema and lung failure, and have liver, heart, and
kidney damages. These symptoms are associated with a cytokine
storm (166, 167) manifesting elevated serum levels of interleukin
(IL) IL-1β, IL-2, IL-7, IL-8, IL-9, IL-10, IL-17, granulocyte colony-
stimulating factor (G-CSF), Granulocyte-Macrophage Colony

Stimulating Factor (GM-CSF), interferon (IFN)γ, tumor necrosis
factor (TNF)α, Interferon gamma-induced protein 10 (IP10),
Monocyte Chemoattractant Protein-1 (MCP1), macrophage
inflammatory protein 1(MIP1)A and MIP1B (168). IL-22, in
collaboration with IL-17 and TNFα, induces antimicrobial
peptides in the mucosal organs. IL-22 also upregulates mucins,
fibrinogen, anti-apoptotic proteins, serum amyloid A, and LPS
binding protein (169); therefore, IL-22 may contribute to the
formation of life-threatening oedema with mucins and fibrin
(170), seen in SARS-CoV-22 and SARS-CoV patients (168).

The 2003 SARS-CoV strain, that also causes severe acute
respiratory syndrome, attaches to host cells via host receptor
ACE2 (171). This type I integral membrane protein receptor is
a well-known receptor for respiratory viruses, and is abundantly
expressed in tissues lining the respiratory tract (111). During
COVID-19 infection, SARS-CoV-2 also enters host cells via the
ACE2 receptor (172). ACE2 is highly expressed on human lung
alveolar epithelial cells, enterocytes of the small intestine, and
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TABLE 3 | Lactoferrin sources as supplements, and examples where it has been

used to treat various conditions.

Lactoferrin sources as supplements

Product References

Bovine and human milk
Morinaga Industries in Japan (183)

DoMO Food Ingredients, a

subsidiary of Friesland Dairy Foods,

in the Netherlands (184)

Human recombinant lactoferrin Talactoferrin from Agennix, Inc.,

Houston, Texas, USA (184)

Lactoferrin expression in transgenic rice Ventrus Biosciences, New York City,

New York, USA (184)

Transgenic cattle expressing human

lactoferrin

(185, 186)

Transgenic maize Meristem therapeutics,

Clermont-Ferrand, France (184)

Lactoferrin supplementation in treatment of various diseases

Might be useful in treating sepsis or

necrotizing enterocolitis in preterm

neonates

(184)

Support for vaginal health (187)

LF may play a protective role in host

defense against SARS-CoV infection

through binding to HSPGs and blocking

the preliminary interaction between

SARS-CoV and host cells (cell culture

study)

(99)

LF is a modulator of innate immune

responses in the urinary tract and has

potential application in novel therapeutic

design for urinary tract infection (animal

study)

(188)

Possible therapy against Candida albicans

in the oral cavity (a hypothesis)

(189)

Protection against Chlamydia trachomatis

(cell culture study)

(190)

Treatment of taste and smell abnormalities

after chemotherapy

(52)

LF supplements and food with high levels

of LF for oral health

(99, 191)

LF treatment of black stain associated

with of iron metabolism disorders with

lactoferrin

(192)

Aerosolized bovine LF counteracts

infection, inflammation and iron

dysbalance in a cystic fibrosis mouse

model of Pseudomonas aeruginosa

chronic lung infection

(193)

LF inhalations for lung health (194)

LF for optimal skin moisture (195)

the brush border of the proximal tubular cells of the kidney
(99). HSPGs are also one of the preliminary docking sites on
the host cell surface and play an important role in the process
of SARS-CoV cell entry (99). There is no current confirmed
information that SARS-CoV-2 binds to HSPGs, however, LF
blocks the infection of SARS-CoV by binding to HSPGs (99). It
is not presently known whether LF binds to ACE2, but it does

bind to HSPGs (99). Whether SARS-CoV-2 also enters host cells
via HPSGs in the same way, as does (the 2003) SARS-CoV clearly
warrants further investigation.

Of particular interest, and in the context of this paper,
is the set of interactions between SARS-CoV-2 and host
platelets. This is of importance, as COVID-19 infection, can
cause hyperinflammation due to a cytokine storm (166).
Pathogens like the influenza virus and Francisella tularensis,
do trigger life-threatening cytokine storms (173). Such a
cytokine storm will significantly affect platelets, as platelets
have many receptors where these inflammatory molecules
may bind (173) (see Figure 5). Circulating cytokines and
inflammagens will hyperactivate platelets, causing low
platelet count (thrombocytopenia), and a significant chance
of hypercoagulation. Thrombocytopenia is associated with
increased risk of severe disease and mortality in patients with
COVID-19, and thus serves as clinical indicator of worsening
illness during hospitalization (174, 175). Patients with type
2 diabetes are also particularly prone to increased levels of
circulating inflammatory cytokines and hypercoagulation (76).
COVID-19 patients without other comorbidities but with
diabetes are at higher risk of severe pneumonia, excessive
uncontrolled inflammatory responses and a hypercoagulable
state (176). Guo and co-workers in 2020 also found that
serum levels of IL-6, C-reactive protein, serum ferritin, and
D-dimer, were significantly higher in diabetic patients compared
with those without, suggesting that patients with diabetes
are more susceptible to an inflammatory storm eventually
leading to rapid deterioration of the patient with COVID-19
(140). Acute pulmonary embolism has also been reported in
COVID-19 infection (177). Focal accumulation of activated
platelets within the oedematous area ex vivo correlated well
with the size of the pulmonary embolism (178). Interestingly,
anticoagulant therapy, mainly with (intravenous) heparin (and
mainly with low molecular weight heparin, LMWH), appears
to be associated with better prognosis in severe COVID-19
patients (179).

In COVID-19 infection, LF may have a role to play in not
only sequestering iron and inflammatory molecules that are
severely increased during the cytokine burst, but also possibly
in assisting in occupying receptors and HSPGs to prevent virus
binding. Receptor occupancy is an important characteristic of
LF, when taken as supplement. Furthermore, it may assist
in preventing thrombocytopenia, and hypercoagulation, both
prominent features of COVID-19 infection.

LACTOFERRIN AS A NUTRACEUTICAL

There is little doubt that oral LF can be of health benefit to the
host, and while it is not considered to be absolutely necessary
for mammalian life (so it is not a vitamin), it is reasonable
to class it as a nutraceutical along with a variety of other
molecules such as those mentioned in various papers (180, 181).
As a nutraceutical, the bioavailability of LF would clearly be
an important consideration in its use for the prevention or
treatment of COVID-19. Enteric coating of LF capsules has
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FIGURE 6 | Possible action of (1) lactoferrin by occupying binding sites of (2) SARS-CoV-2 that causes COVID-19. (3) Entry into host cells occur when SARS-CoV-2

first attaches to Heparan sulfate proteoglycans (HSPGs). This attachment initiates the first contact between the cell and the virus, concentrating the virus on the cell

surface, (4) followed attaching of the virus to the host receptor (ACE2) and association and entering are then facilitated via clathrin-coated pits (5) Virus replication can

then happen inside the cell. (6) One of the characteristics of Lactoferrin, is that it attaches to HSPGs. (7) Currently we do not know if ACE2 is also a receptor for

lactoferrin. (8) Lactoferrin may block the entry of SARS-CoV-2 into the host cell, by occupying HPSGs, thereby preventing SARS-CoV-2 initial attachment and

accumulation on the host cell membrane. COVID-19 infection template adjusted from www.biorender.com.

been proposed as a measure to maximize the uptake of LF by
the receptors located in the brush-border of the small intestine
(182). Enteric coating allows LF release some distance from
LF-degrading pepsin activities in the stomach, allowing it to
remain intact, in the form capable of binding small intestinal
LF receptors for uptake and eventual transfer into the systemic

circulation (182). In a rodent study, the “absorption” of enteric-
formulated LF was approximately 10-fold higher than that of
regular LF introduced into the stomach of experimental animals
(128). In view of these investigations, the authors of this paper
regard enteric-coated LF as superior to regular LF supplements
with respect to bioavailability and potential application for the
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prevention or therapy for coronaviruses such as the SARS-Cov-2
involved in COVID-19.

Nutritional Sources, Availability and Uses
for Lactoferrin as Supplement
There is considerable LF availability in various forms and sources.
Table 3 shows some of the sources and the references to research
where it has been used to treat various conditions.

CONCLUSIONS

Lactoferrin clearly has immunological benefits, as well as having
an important antibacterial and antiviral role. Because it is known
to interfere with some of the receptors used by coronaviruses,
it may contribute usefully to the prevention and treatment of
coronavirus infections. Figure 6 shows a possible scheme on
how LF might interfere with SARS-CoV-2 binding. The binding
of LF to HSPGs prevents the first contact between virus and
host cells and thus prevents subsequent infection (99). HSPGs
themselves are not sufficient for SARS-CoV entry. However,
in SARS-CoV infections, the HSPGs play an important role in
the process of cell entry (99). The anchoring sites provided by
HSPGs permit initial contact between the virus and host cells
and the concentration of virus particles on cell surface. SARS-
CoV bound to HSPGs then rolls onto the cell membrane and
scans for specific entry receptors, which leads to subsequent cell
entry (99). LF enhances natural killer cell activity and stimulates
neutrophil aggregation and adhesion in immune defense (135)

and can restrict the entry of the virus into host cells during
infection. We suggest that this process might be the same for

COVID-19 (see Figure 6 for a visual representation), thereby
offering useful strategies for prevention and treatment. Currently,
there is also a renewed interest in ACE2 and HSPG blocking,
as discussed in the introduction (5–8). LF may therefore be
an excellent supplement to take, not only as a contribution to
prevention but perhaps as a therapy in the event COVID-19
is diagnosed.
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