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Abstract

Purpose: To compare the more complex technique, functional principal component analysis

(FPCA), to simpler methods of estimating values of sparse and irregularly spaced continuous vari-

ables at given time points in longitudinal data using a diabetic patient cohort fromUK primary care.

Methods: The setting for this study is the Clinical Practice Research Datalink (CPRD), a UK

general practice research database. For 16,034 diabetic patients identified in CPRD, with at least

2 measures in a 30‐month period, HbA1c was estimated after temporarily omitting (i) the final

and (ii) middle known values using linear interpolation, simple linear regression, arithmetic mean,

random effects, and FPCA. Performance of each method was assessed using mean prediction

error. The influence on predictive accuracy of (1) more homogeneous populations and (2) number

and range of known HbA1c values was explored.

Results: When estimating the last observation, the predictive accuracy of FPCA was highest

with over half of predicted values within 0.4 units, equivalent to laboratory measurement error.

Predictive accuracy improved when estimating the middle observation with almost 60% pre-

dicted values within 0.4 units for FPCA. These results were marginally better than that achieved

by simpler approaches, such as last‐occurrence‐carried‐forward linear interpolation. This pattern

persisted with more homogeneous populations as well as when variability in HbA1c measures

coupled with frequency of data points were considered.

Conclusions: When estimating change from baseline to prespecified time points in electronic

medical records data, a marginal benefit to using the more complex modelling approach of FPCA

exists over more traditional methods.
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KEY POINTS

• Measuring outcomes in observational studies at

prespecified time intervals is difficult when data are

sparse and irregularly spaced.

• Traditional methods of estimation include techniques,

such as last‐observation‐carried‐forward linear

interpolation, which allow crude estimation of change

in continuous variables at specified time points (eg,

change at 1 year).

• More complex techniques exist, such as FPCA, to model

sparse longitudinal data.

• In patients with diabetes, this study demonstrates that

in the setting of sparse and irregularly spaced data,

using the more complex method, FPCA, has a marginal

benefit.

FIGURE 1 Establishment of cohort of new users of oral hypoglycaemics
during July 2007 – January 2009, with index date of 1 January 2009
and 30‐month follow‐up period from January 2009 – June 2011
1 | INTRODUCTION

Opportunities for research using routinely collected data will increase

significantly over coming years with expansion of electronic health

records (EHR), and investment in e‐infrastructure for research, distrib-

uted data networks, and patient‐centred research.1-3 Analysis of data

collected primarily for healthcare delivery rather than research gener-

ates methodological challenges. Progress is happening in many areas,

for example, studying the same question across different geographical

settings4 with different healthcare systems and adjusting for con-

founders defined and measured differently in different settings.3 Less

attention has been paid to the challenge of dealing with data collected

at irregular time intervals.

One significant challenge in real‐life studies of drug use is defining an

effectiveness outcome comparable between individual patients, given

the varied patterns of assessment timing. In clinical trials, patients are

invited for assessment at prespecified intervals. In reality, patients visit

their doctor at any time. It thus becomes impossible to measure change

in glycosylated haemoglobin (HbA1c) at any given week unless the

patient has visited their doctor then. Yet if we want to use observational

research to assess effectiveness of oral hypoglycaemics (OHG), we

should compare changes in HbA1c over an agreed time interval. Options

for estimating values of continuous variables at given time points exist

such as selecting the closest temporal measurement as a surrogate,5 lin-

ear interpolation or ‘joining‐the‐dots’ assuming linear change between

each sequentialmeasurement,6 averagingmeasures over yearly intervals7

or estimating simple linear regression (SLR) lines using 2ormoremeasure-

ments. More complex techniques are also available, for instance, random

effects (RE) modelling, which allows for population and individual varia-

tions. Certainmethods considermultiple imputation for longitudinal data8

but require data tobemeasured at regular timepoints, thusnot applicable

in this context. A nonparametric statistical technique known as functional

principal component analysis (FPCA) exists to model longitudinal data,9

although notwidely used in epidemiology. This approach views longitudi-

nal data records as functions, where each curve is a single observation,

but the belief is that data are sampled froma process, which is continuous

over time. Statistical emphasis is shifted onto observed data functions

and no longer on individual observations.10 The technique's aim is to

develop a continuous‐in‐time estimation (or ‘trajectory’) of a continuous

variable, based on the individual's own data points as well as patterns of

change within the whole population.

It is unclear whether more complex techniques perform better when

dealing with sparse and irregularly spaced data. Hypothetically, simpler

models may work well when variability of measurements is limited, but

more complex models may work better in certain situations. The study's

aim was to compare FPCA methodology to other simpler methods in a

cohort of diabetic patients fromprimary care. Specific objectives included

(1) removing knownHbA1c observations and calculating prediction error

by comparing estimated to known values at specific time points in the
whole cohort as well as in treatment, gender, and age strata and (2)

exploring whether methods perform differently in certain circumstances,

such as when there are changes in number of medications, length of time

between consecutive measurements, and data sparseness levels within

stable and unstable disease groupings.

2 | METHODS

2.1 | Study population

The setting was the Clinical Practice Research Datalink (CPRD), a UK

database of anonymised primary care EHRs covering an active popula-

tion of over 8 million people.11,12

Adult patients with type 2 diabetes defined by Read codes (code

list available from the authors) or who were prescribed OHG medica-

tion between 1987 and July 2011 were identified from CPRD.

Practices were excluded if their last collection date preceded the

study end date or the practice did not meet minimum data quality

standards, as assessed by CPRD, throughout the study period. We

restricted analysis to new users of OHG medication in the period 1

July 2007 to 31 December 2008 (defined as first ever use of an

OHG) in order to generate a more homogeneous cohort. Patients

were then required to have at least 2 HbA1c measurements in the
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study period 1 January 2009 to 30 June 2011 (Figure 1). The UK

Quality and Outcomes Framework incentivises general practitioners

to measure HbA1c at least once every 15 months for diabetic

patients,13 meaning most patients had 2 or more measurements in our
FIGURE 2 Schematic of a single patient's HbA1c measurements since first
represent true measured values
2 1/2‐year study window. Patients who died or transferred out of prac-

tice, (thus not eligible for the full 30‐month follow‐up) were excluded.

The study was approved by the Independent Scientific Advisory Com-

mittee of CPRD (ref 11_154A).
ever using oral hypoglycaemic medication, where triangles and squares
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2.2 | Statistical analysis

A primary analysis used all available HbA1c observations within the

study period after temporarily excluding the final data point for 1‐in‐4

randomly selected patients (Figure 2a). The temporarily excluded data

point was later reinserted and used to calculate (1) prediction error

defined as the absolute difference between the actual HbA1cmeasure-

ment and its estimated value (d) and (2) squared prediction error. This

was developed to allow estimation of prediction error at times when

outcomes for some patients may not have been measured and could

not contribute to the estimation. The procedure of removing a random

25% of final data points was done 6 times to reflect the variability that

would occur depending on which data points were sampled. Results

across the 6 data sets were pooled with mean and SD values for each

measure of predictive accuracy calculated. Coefficients of variation

(CV), defined as the ratio of SD to the mean, were also generated as a

measure of precision between the 6 replicated data sets.

Linear interpolation methods were used in the primary analysis

when estimating the final observation for each individual, as described

by Genolini,14 and summarised in Table 1.

As an alternative to linear interpolation methods, the arithmetic

mean (AM)methodwas used, which involved simply calculating the aver-

age of the nonmissing HbA1c measures for that individual (Figure 3e).

Another computationally simple method considered was fitting a

regression line in an SLR using each individual's set of nonmissing

HbA1c measures as the outcome variable and time as the predictor

variable where each individual's missing last value was subsequently

estimated from this fitted line (Figure 3f).
TABLE 1 Definition of linear interpolation methods to impute missing
observations

For missing values at the end

Last occurrence carried
forward (LOCF)

Missing value imputed from the
previous nonmissing value
(Figure 3a)

Global Missing value imputed by prolonging
a line joining the first and last
nonmissing values (Figure 3b)

Local Missing value imputed locally by
prolonging a line joining the
penultimate and last nonmissing
values (Figure 3c)

Bisector Missing value imputed from an
intermediate line, the bisector,
between the global and local
lines (Figure 3d)

For missing values in the middle

Last occurrence carried
forward (LOCF)

Missing value imputed from the
previous nonmissing value
(Figure 3a)

Next occurrence carried
backward (NOCB)

Missing value imputed from the
next nonmissing value (Figure 3h)

Global Missing value imputed by drawing
a line between first and last
nonmissing values (Figure 3i)

Local Missing value imputed by drawing
a line between the nonmissing
values immediately surrounding
the missing one (Figure 3j)
One other estimation approach of temporarily excluded values

was the use of RE modelling using random intercepts and constant

slope. Individuals once again were not assumed to be measured at

the same number of time points, but rather at different time points.

This model estimates the individual's values across time on the basis

of whatever data that individual has, enhanced by the time trend that

is estimated for the sample as a whole but with the added bonus of

taking into account the effects of covariates, age and gender, in the

model.15

A final approach was to use FPCA methodology in developing

patient‐specific estimated trajectories, using all data from the whole

population, whichwould then allow estimation of a continuous variable,

such as HbA1c, for each individual, not only at the last data point but

also at any time point of interest throughout the study period

(Figure 3g). It is the only method tested that allows for the possibility

that HbA1c changes nonlinearly with time, or that patterns of change

differ between individuals.

All interpolation methods, including AM and SLR, estimated tem-

porarily excluded values using just that individual's set of data,

whereas with the model‐based approaches of RE and FPCA, it was

necessary to use data available on all subjects in the study cohort

when making estimations at specific time points for particular

individuals.

A secondary analysis sought to examine whether prediction errors

improved for any estimation method by removing the middle data point

for the same 6 sets of 1‐in‐4 randomly selected patients (Figure 2b).

This analysis allows us to use the additional linear interpolationmethod,

next occurrence carried backward (NOCB) (Table 1 and Figure 3h).

Global and local interpolation methods are slightly modified in this

analysis as shown inTable 1 and Figures 3i and 3j.

Predictive accuracy of eachmethodwas assessed usingmean abso-

lute prediction error (MAPE), defined as the average absolute prediction

error across the quarter of patients where either their last data points in

the primary analysis or their middle data points in the secondary analy-

sis were omitted from the estimation. The distribution of squared pre-

diction errors was examined and mean squared absolute prediction

error (MSAPE) was used in method comparisons.

To appreciate the importance of the difference between esti-

mated and true HbA1c, we calculated the proportion of individual

absolute prediction errors that were (i) below measurement error

and (ii) below a clinically meaningful difference. HbA1c measurement

error is considered to be around 0.4% assuming an average HbA1c

value of 8%.16 We defined the clinically meaningful difference as the

change in HbA1c associated with a 10% increased risk of any end-

point related to diabetes, which equates to a change in HbA1c of

0.5%.17

The lowest values for MAPE and MSAPE and the highest propor-

tion of absolute prediction errors (i) within a clinically meaningful dif-

ference and (ii) within measurement error, indicated the optimal

estimation method.
2.3 | Factors influencing prediction error

We anticipated that prediction error would be affected by many fac-

tors, such as medication, gender, age, switching medication, distance



FIGURE 3 Various definitions of estimation methods. (a) LOCF indicates last occurrence carried forward linear interpolation. (b) Global linear
interpolation. (c) Local linear interpolation. (d) Bisector linear interpolation. (e) Arithmetic mean method. (f) Simple linear regression. (g) FPCA
indicates functional principal component analysis. When imputing values missing in the middle: (h) NOCB, next occurrence carried backward; (i)
global linear interpolation, (j) local linear interpolation [Colour figure can be viewed at wileyonlinelibrary.com]
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in time between missing HbA1c measure and its nearest neighbour,

and density of HbA1c measures coupled with disease stability. There-

fore, after first applying all estimation methods to the whole new user

cohort, we performed separate analyses based on the following

subgroups:

Stratum A. metformin‐only new users

Stratum B. female new users

Stratum C. female metformin‐only new users

Stratum D. female metformin‐only new users aged (i) ≤58, (ii) 59–70,

or (iii) ≥71 years

Stratum E. new users with medication changes (i) single and (ii) ≥2

Stratum F. new users whose distance in time between missing

HbA1c measure and its closest neighbour (i) >50th percentile (ii)

>75th percentile and (iii) >90th percentile

Stratum G. new users with 2–3, 4–5, 6–8, or >8 HbA1c measures in

the study window and for whom their range of recorded values is

<2 or ≥2 HbA1c units (representing stable and unstable disease,

respectively)

These sensitivity analyses were done only for a single replicated

data set. With each stratum, we created a homogeneous population

and as such we expected modelling methods to perform better than

other approaches that do not take into account population behaviour.

The exception to this is likely to be stratum G, where we restricted the

population to patients with highly variable HbA1c and as such the

expectation was that all approaches may underperform.
TABLE 2 Prediction error (absolute difference between predicted and act
4009 subjects and proportion of these subjects with predictions within clin

randomly sampled data sets from whole new user cohort using mean, SD,

LOCF Global Local Bisector AM

MAPE

Mean 0.60 1.63 1.63 1.59 0.66

SD 0.009 0.010 0.033 0.023 0.00

CV 1.5% 0.6% 2% 1.45% 1.36

Proportion of absolute prediction errors <0.5*

Mean 60% 37% 37% 34% 55%

SD 0.516 0.816 0.984 0.816 0.75

CV 0.86% 2.21% 2.66% 2.4% 1.37

Proportion of absolute prediction errors <0.4**

Mean 52% 32% 31% 29% 48%

SD 0.753 0.753 0.753 0.753 0.89

CV 1.45% 2.35% 2.43% 2.6% 1.86

Root MSAPE

Mean 0.95 2.93 3.40 2.84 0.99

SD 0.018 0.093 0.445 0.203 0.01

CV 1.84% 3.15% 13.09% 7.15% 1.25

*Clinically important difference.

**Measurement error.

***Age and gender.

LOCF indicates last occurrence carried forward; Global, Local and Bisector, linea
method; SLR, simple linear regression method; RE‐no covs: random effects mo
modelling method with covariates included; FPCA, functional principal compon
The analysis was conducted using Stata V.12.1 (http://www.stata.

com) and R V.3.1.3 (http://www.R-project.org).
3 | RESULTS

Between 1987 and July 2011, 500,643 adult patients were identified

to have either a Read code for diabetes or any prescribed OHG medi-

cation. After excluding approximately 480,000 preexisting users, there

were 20,570 patients found to be new users of this medication type

from 1 July 2007 to 31 December 2008 having also limited to practices

that were ‘up‐to‐standard’ throughout follow‐up and excluding

patients who died or transferred out of practice prior to 30 June

2011. Of these, 16,034 patients had 2 or more measures between 1

January 2009 and 30 June 2011. These patients comprise the whole

new user cohort.

Mean age at study start was 61 years and 43% of patients were

female. The number of HbA1c measurements per individual ranged

from 2 to 17 with a median of 4 (interquartile range, 3–6). The median

period between measurements was 163 days (interquartile range,

104–221).

Table 2 shows results of the primary analysis after applying all esti-

mation approaches to all 6 data sets, in which individuals were ran-

domly selected to have their last HbA1c observation temporarily

dropped from the whole new user cohort. CVs show that the sampled

data sets have low variability because SDs are small compared to their

corresponding means. This suggests that because of the precision of
ual values of last observation), described as MAPE and root MSAPE of
ical acceptability and measurement error. Reporting pooled results of 6

and CV

SLR RE‐no covs RE‐withcovs*** FPCA

0.96 0.65 0.65 0.59

9 0.016 0.005 0.008 0.008

% 1.67% 0.77 1.23% 1.36%

49% 57% 57% 61%

3 0.753 0.837 0.516 1.033

% 1.54% 1.47% 0.91% 1.69%

42% 49% 49% 54%

4 0.516 0.548 0.408 0.548

% 1.23% 1.12% 0.83% 1.01%

1.85 0.97 0.97 0.91

2 0.164 0.011 0.012 0.010

% 8.88% 1.11% 1.26% 1.13%

r interpolation methods for value missing at the end; AM, arithmetic mean
delling method with no covariates included; RE‐with covs: random effects
ent analysis method.

http://www.stata.com
http://www.stata.com
http://www.R-project.org
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just 6 replicated data sets, any differences in performance are real and

not merely due to random variation.

The best performance was achieved by FPCA where a mean of

54% of subjects had prediction errors less than measurement error

compared to a mean of 29% with bisector linear interpolation, the

least performing method. FPCA was only marginally better than

last‐occurrence‐carried‐forward (LOCF), RE, and AM approaches

(Table 2).

Limiting prediction error assessment to strata A‐F, based on a single

data set having removed 1‐in‐4 final data points, produced results that

can be seen in Figures S1a – S1d. The overall performance of approaches

did not change in pattern from that seen in the whole new user cohort, in

that LOCF, AM, RE, and FPCA approaches were optimal followed by SLR,

with the remaining linear interpolation methods performing worst. Simi-

lar results for stratum G (Figures S2a – S2d) found the pattern of predic-

tion errorswithin subgroups remained the same,with LOCF, AM, RE, and

FPCA generating more accurate predictions. See Table S1 for a

summarised version of these results.

Table 3 displays results following removal of the middle data point,

where the best performance was achieved once again by FPCA,

although closely followed by SLR, AM, and RE, whereas low CVs

reflect the fact that these differences in performance are not due to

random variation.

In general, a similar pattern of prediction error was found from all

approaches in this secondary analysis when limiting prediction error

assessment to strata A‐G based on a single data set having removed

1‐in‐4 middle data points (Figures S3a – S3d, Figures S4a – S4d and
TABLE 3 Prediction error (absolute difference between predicted and actu
4009 subjects and proportion of these subjects with predictions within clin

randomly sampled data sets from whole new user cohort using mean, SD,

LOCF NOCB Global Local AM

MAPE

Mean 0.62 0.62 0.93 0.67 0.55

SD 0.010 0.009 0.010 0.008 0.005

CV 1.61% 1.45% 1.08% 1.19% 0.91%

Proportion of absolute prediction errors <0.5*

Mean 58% 58% 51% 61% 63%

SD 0.548 1.095 0.816 0.837 0.516

CV 0.94% 1.89% 1.6% 1.37% 0.82%

Proportion of absolute prediction errors <0.4**

Mean 51% 51% 44% 54% 56%

SD 0.408 0.632 0.00 0.548 0.408

CV 0.8% 1.24% 0% 1.01% 0.73%

Root MSAPE

Mean 1.02 1.00 1.53 1.13 0.85

SD 0.024 0.014 0.026 0.029 0.009

CV 2.36% 1.39% 1.69% 2.57% 1.08%

*Clinically important difference.

**Measurement error.

***Age and gender.

LOCF indicates last occurrence carried forward; NOCB, next occurrence carried
in the middle; AM, arithmetic mean method; SLR, simple linear regression me
included; RE‐with covs, random effects modelling method with covariates inclu
summarised in Table S2) in that AM, SLR, RE, and FPCA generate

the most accurate predictions, with FPCA displaying a marginal

benefit.
4 | DISCUSSION

This study compared methods for estimating values of a continuous

variable, HbA1c, at a given time point using known values of this

sparse and irregularly spaced data point within UK primary care

records of patients with diabetes. Few studies exist, which investigate

the effectiveness of these methods, yet researchers apply them with-

out considering their performance.

In Table 2, when estimating the last observation in the primary

analysis, LOCF and FPCA proved to be optimal approaches, with

FPCA performing marginally better in some assessments, whereas

the remaining linear interpolation methods were equally poor. As the

populations were made more homogeneous, such as restricting to

females or by having single continuous drug use, the more complex

modelling involved in RE and FPCA approaches did not outperform

the simpler LOCF method, although FPCA achieved slightly better

results overall. For example, under FPCA, 59% of female subjects

achieved prediction errors below measurement error compared with

54% under LOCF, whereas the least performing method, bisector lin-

ear interpolation, only achieved 32%. We expected an optimal perfor-

mance from FPCA because of its flexibility to deal with longitudinally

nonlinear changes in HbA1c, yet the advantage in using this approach
al values of middle observation), described as MAPE and root MSAPE of
ical acceptability and measurement error. Reporting pooled results of 6

and CV

SLR RE‐no covs RE‐with covs*** FPCA

0.53 0.56 0.56 0.52

0.006 0.005 0.005 0.005

1.13% 0.89% 0.89% 0.96%

65% 63% 63% 66%

0.408 0.632 0.632 0.753

0.63% 1% 1% 1.14%

58% 54% 54% 57%

0.408 0.516 1.472 0.753

0.70% 0.96% 2.73% 1.32%

0.83 0.84 0.84 0.80

0.017 0.010 0.010 0.010

2.04% 1.19% 1.19% 1.29%

backward; Global and Local, linear interpolation methods for value missing
thod; .RE‐no covs, random effects modelling method with no covariates
ded; FPCA, functional principal component analysis method.
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was only marginal. We could also have extended SLR to allow for non-

linear effects, but this would have involved making assumptions that

were unjustifiable.

When populations are suffering from complexities of sparse (only

a few HbA1c measures) and erratic data (large HbA1c range), more

flexible modelling methods do not convincingly produce better results.

In fact, by looking at levels of prediction error, when we get into sparse

and erratic data, we cannot trust any method in that all methods do

quite badly. Evidence of this can be seen in the subgroup of new users

with 2–3 measures and unstable disease where the proportion of sub-

jects with prediction errors less than the clinical important difference

of 0.5 is at best 20% with LOCF.

This study exhibits a couple of important strengths. Approxi-

mately 16,000 subjects in the original population provide for a very

large study cohort, facilitating the estimation of temporarily excluded

HbA1c values using a whole range of techniques, including linear

interpolation approaches as well as more complex modelling

approaches. Also, knowing what the true measurements are for the

ones we are trying to predict allows us to effectively calibrate

results.

There are, of course, some limitations. First, we have 1 very partic-

ular continuous outcome variable in HbA1c and 1 very particular pop-

ulation in diabetic patients. So our findings may not be generalisable to

different populations where there may be different variability through

time and different associations with other variables. Second, HbA1c

has its own within‐person variability. So it may very well be that for

other outcomes, such as weight, which varies more slowly, these esti-

mation approaches may perform differently. Third, it is very likely that

HbA1c measurements in this population are missing not at random and

unfortunately there is no method of testing available to address this

problem. Although we are predicting observed values from observed

values, it is possible that missing data would have enabled the more

complex modelling methods to work better. Fourth, LOCF, NOCB,

and AM all assume the outcome does not change with time, whereas

RE and SLR both assume it changes linearly, and FPCA allows for non-

linear changes. When deciding therefore which estimation method is

most appropriate, consideration should be given to whether the data

violate any underlying assumptions. Fifth, these methods do not

account for uncertainty associated with missing values and so using

themwill produce estimates that are too precise and will lead to poten-

tial bias in subsequent analyses. Finally, underrepeated sampling, using

the whole cohort only, was justified since the vast majority of CVs

were below 3%. However, it is an assumption that as a consequence

there would be no change in the order of each method's performance

for strata A‐G.

In summary, we have shown that there is a marginal benefit to

using the more complex FPCA model when estimating missing HbA1c

values in a cohort of patients with diabetes, as results for this model

are generally better than all other approaches. However, FPCA is a sig-

nificantly more complex technique to implement, although worth con-

sidering due to the problems attached to using more simple

approaches. Caution is needed in extrapolating these findings to other

settings as the most appropriate method when estimating values at

given time points will likely depend on the variable of interest, the pop-

ulation in which it is measured, where the missing data actually exist,
how homogeneous the population is to start with, and the behaviour

of patients and clinicians.
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