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Osteosarcoma (OS) is a common bone cancer in children and adolescents, and

metastasis and recurrence are the major causes of poor treatment outcomes. A

better understanding of the tumor microenvironment is required to develop an

effective treatment for OS. In this paper, a single-cell RNA sequencing dataset

was taken to a systematic genetic analysis, and potential signaling pathways

linked with osteosarcoma development were explored. Our findings revealed

25 clusters across 11 osteosarcoma tissues, with 11 cell types including

“Chondroblastic cells”, “Osteoblastic cells”, “Myeloid cells”, “Pericytes”,

“Fibroblasts”, “Proliferating osteoblastic cells”, “Osteoclasts”, “TILs”,

“Endothelial cells”, “Mesenchymal stem cells”, and “Myoblasts”. The results of

Cell communication analysis showed 17 potential cellular communication

networks including “COLLAGEN signaling pathway network”, “CD99 signaling

pathway network”, “PTN signaling pathway network”, “MIF signaling pathway

network”, “SPP1 signaling pathway network”, “FN1 signaling pathway network”,

“LAMININ signaling pathway network”, “FGF signaling pathway network”, “VEGF

signaling pathway network”, “GALECTIN signaling pathway network”,

“PERIOSTIN signaling pathway network”, “VISFATIN signaling pathway

network”, “ITGB2 signaling pathway network”, “NOTCH signaling pathway

network”, “IGF signaling pathway network”, “VWF signaling pathway

network”, “PDGF signaling pathway network”. This research may provide

novel insights into the pathophysiology of OS’s molecular processes.
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Introduction

Osteosarcoma (OS) is a highly malignant solid bone tumor

characterized by malignant mesenchymal cells producing

pathological osteoid and/or bony matrix; it accounts for

roughly 60% of all pediatric malignancies (Bousquet et al.,

2016; Guo et al., 2022; Ho et al., 2017), and the incidence of

OS in the overall population is two to three million per year (Shao

et al., 2022). Clinical signs of OS affect the proximal tibia,

proximal humerus, and distal femur, and consist

predominantly of local discomfort, edema, and reduced joint

movement (Rothzerg et al., 2021). Currently, this cancer is

treated with surgical excision and chemotherapy with many

agents. Unfortunately, the 5-years overall survival rate for

osteosarcoma patients was just approximately 60% among

patients with localized osteosarcoma but is only 20% among

patients presenting with metastases or recurrent disease (Meltzer

and Helman, 2021). The pathophysiology of OS is characterized

by the substantial infiltration of complex cells, including

malignant mesenchymal stem cells, proliferating osteoblastic

cells, osteoblastic cells, immunological cells, and vascular

networks, indicating the existence of a highly complex tumor

microenvironment (TME) (Kansara et al., 2014). Nonetheless,

the potential cellular communication networks of these cells are

still not fully elucidated.

To understand cancer biology and immunology and to get

the most out of tumor immunotherapy, it is important to

figure out how this ecosystem’s cells work together and how

they might talk to each other. The ultimate unit of biological

activity is a single cell, where genetic processes interact with

the cellular environment to determine the development and

function of complex structures including tissues and organs.

Understanding the biology of virtually all living phenomena

in normal and disease states necessitates dissecting and

characterization of their composition and characterization,

as well as evaluating their interactions, dynamics, and

function at the single-cell level (Ren et al., 2018).

Technically, however, previous genomic, transcriptomic,

and proteomic cancer investigations have been unable to

comprehensively elaborate on TME due to its

complexity.(Liu et al., 2021). The emergence of new

technologies based on single-cell sequencing has enabled

unparalleled resolution and scale in capturing diverse

tumor stages and understanding tumor heterogeneity

(Vegliante et al., 2022). Rapid advancements in single-cell

technology provide us with a potent approach to examine the

multiple allosteric states and potential cellular

communication networks of the TME at the single cell level.

This study employed scRNA-seq to investigate potential

cellular communication networks in the OS’s TME, as well as

trajectory analysis and transcription factor enrichment analysis

among mesenchymal stem cells, proliferating osteoblastic cells,

and osteoblastic cells.

Materials and methods

Data source collection and processing

The 11 OS samples with scRNA-seq data based on the 10X

Genomics platform were downloaded from GSE152048 via the

Gene Expression Omnibus database (https://www.ncbi.nlm.nih.

gov/geo/). The Seurat package (v4.1.1) was used to load the 10X

genomics data for each individual sample into R software (v4.1.

3). We excluded cells with identified genes <300 or a percentage
of mitochondrial genes over 10% of total expressed genes. We

eliminated low-quality cells with ≥7,500 detected genes, as well as
genes detected in fewer than three cells. Furthermore, using the

DoubletFinder package (v2.0.3), we eliminated any doublets that

might have happened during encapsulation or as random

pairings of cells that were not separated during sample

preparation.

This research did not need ethical approval for our work

because we used data from a publicly accessible database.

Identification of cell types

For each cell, gene expression was expressed as a fraction of

the gene multiplied by 10,000, The log (x+1) method was used to

perform natural log transformation.We identified, and scaled the

top 2000 highly variable genes (HVGs) from the normalized

expression matrix before doing principal component analysis

(PCA) on these HVGs. Based on the top 50 PCA components

identified, the batch effects were removed using the R Harmony

package (version 1.0) (Zhou et al., 2020). On the basis of

harmony-corrected data, k-nearest neighbors were estimated,

and a shared nearest neighbor (SNN) graph was formed. The

modular function was then adjusted to achieve cluster

recognition based on the clustering algorithm. On the 2D

map generated with the t-distributed stochastic neighbor

embedding (tSNE) or uniform manifold approximation and

projection for dimension reduction (UMAP) approach, the

identified clusters were displayed.

Using the “FindAllMarkers” function, each cluster’s marker

genes were identified according to the following criteria: logfc.

threshold = 0.25, min. pct = 0.25, and min. diff.pct = 0.25. Using

the “DotPlot” tool in Seurat, the expression pattern of each

marker gene across clusters was shown. The cell groupings

were annotated based on the DEGs and well-known cellular

markers described in the scientific literature (Zhou et al., 2020).

Pseudotemporal ordering of single cells

The Monocle package (v2.22.0) was used to produce the

single-cell pseudotime trajectories. Using pseudotemporal

profiling of scRNA-seq data, Monocle aims to decipher
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cellular changes during differentiation. After inputting the scale

of raw UMI counts into the “newCellDataSet” function with its

clustering information, it was computed into a lower dimensional

space using the discriminative dimensionality reduction with

trees (DDRTree) method, a more recent manifold learning

algorithm. Mesenchymal stem cells, proliferating osteoblastic

cells, and osteoblastic cells were then ordered according to

pseudotime. The plot pseudotime heatmap was used to

compute and illustrate the genes whose expression varied in

tandem with pseudotime.

Cell-cell communication

The CellChat package (version 1.4.0) predicted cell–cell

communication across all cell types based on single-cell RNA

sequencing data (Jin et al., 2021). Only the ligand–receptor

interaction with a p-value 0.05 was utilized to predict cell–cell

interaction in the various cell types.

SCENIC analysis

SCENIC is a technique that uses scRNA-seq data to rebuild

gene regulation networks while also recognizing stable cell states.

Transcription factor enrichment and regulon activity were

assessed using SCENIC package (version 1.3.1) is introduced

(Aibar et al., 2017). Based on co-expression and DNA motif

analysis, the gene regulatory network was created, and the

network activity in each cell was assessed to determine the

cell state. For transcription factor regulatory network

development, two gene-motif rankings (10 kb around the

transcription start site or 500 bp upstream and 100 bp

downstream of the transcription start site) were used as a

guide to set the search space around the transcription start

site. The gene-motif rankings for humans are obtained from

https://resources.aertslab.org/cistarget/. The database used was

Hallmark Gene Set from Molecular Signatures database

(MsigDB) (Liberzon et al., 2015). In addition, Gene regulation

was constructed using the R package GENIE3 (version 1.16.0),

RcisTarget (version 1.14.0) and AUCell (version 1.16.0).

Results

Quality control and removal of batch
effect

Eleven OS patients with scRNA-seq data enrolled in this

research. Using the R Harmony package (version 1.0), batch

effects between samples were eliminated based on the top 50 PCA

components. After removal of batch effect, we used the t-SNE

and UMAP techniques to decrease dimensionality, and then

plotted the result as a 2D scatter plot (Figure 1A). In the process

of quality control, we eliminated cells with fewer than

300 identified genes or a proportion of mitochondrial genes

exceeding 10% of all expressed genes (Figure 1B). Dot plot of data

quality control in scRNA-seq data were shown in Figure 1C.

Identification of 25 cell clusters in
osteosarcoma microenvironment using
scRNA-seq data reveals high cell
heterogeneity

Following the quality control standard, 110,042 cells were

finally included in our analysis. These cells were clustered into

25 primary cell clusters (Figures 2A,B; Figures 3A,C). A value of

adjusted p value <0.01 is displayed in red, whereas a value of

adjusted p value ≥0.01 is displayed in black (Figure 2B). Analysis

of differential gene expression revealing up- and down-regulated

genes in all clusters. The cluster-specific markers were utilized to

label cell types (Figures 3B,D,E): chondroblastic cells (Sox9,

Acan, Pth1r), osteoblastic cells (Runx2, Col1a1, Cdh11, Ibsp),

myeloid cells (Cd74, Cd14, Fcgr3a), pericytes (Rgs5, Acta2),

fibroblasts (Dcn, Col1a1), proliferating osteoblastic cells

(Mki67, Top2a, Pcna), osteoclasts (ACP5, Ctsk, Mmp9), TILs

(IL7R, CD3D, NKG7), endothelial cells (Pecam1, Vwf),

mesenchymal stem cells (Mme, Thy1, Cxcl12, Sfrp2), and

myoblasts (Myl1, Mylpf).

Potential cellular communication
networks in the osteosarcoma
microenvironment

To identify the potential molecular connections between

cells, CellChat package (version 1.4.0) of R was utilized to

find the potential molecular interactions between ligand-

receptor pairings and main cell types in order to build cellular

communication networks. First, CellChat was used to analyze

cellular communication among the chondroblastic cells,

osteoblastic cells, myeloid cells, pericytes, fibroblasts,

proliferating osteoblastic cells, osteoclasts, TILs, endothelial

cells, mesenchymal stem cells, and myoblasts. The results of

the CellChat analysis revealed the numbers and weights of ligand

receptors among all cell types (Figures 4A,B). The outgoing and

incoming signaling patterns were shown in (Figures 4C,D). The

outgoing and incoming interaction strength were shown in

(Figures 4B,C) (B: all signaling pathway networks identified;

C: selected signaling pathway networks). In addition, all of

their ligand-receptor interactions have been identified

(Figure 5D).

The details of all signaling pathway networks identified were

also shown in Figures 6A-C (A: numbers of ligand receptors

among all cell types; B: weights of ligand receptors among all cell
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FIGURE 1
The process of quality control. (A): t-SNE and UMAP plots after harmony. (B): violin plots of feature, count, percent. mt, and percent.HB. (C):
correlation plots for count and feature, percent. mt, percent. HB.
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FIGURE 2
Expression of marker genes in the OS. (A): violin plot of marker genes. (B): columnar scatter plot of DEGs.
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FIGURE 3
Single-cell transcriptomic analysis of OS lesions. (A,C): t-SNE and UMAP analysis showing the results of descending clustering. (B,D,E): t-SNE
and UMAP analysis showing the results of annotation of cell subpopulations in cells of OS tissues.
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types; C: chordal graph of ligand-receptor interactions among all

cell types). Among the total of 57 signaling pathways, the

following signaling pathways were related to osteosarcoma:

COLLAGEN (Baumann and Hennet, 2016; Elenjord et al.,

2009; Levinson et al., 2002; Yamaguchi et al., 2005), CD99

(Manara et al., 2006; Sciandra et al., 2014; Zucchini et al.,

2014), PTN (He et al., 2019; Qin et al., 2022; Sun et al., 2020),

MIF(Liu et al., 2014), SPP1(Dalla-Torre et al., 2006; Li et al.,

2017), FN1(Saba et al., 2019; Zhou et al., 2019), LAMININ(Heino

and Massague, 1989), FGF (Kurogi et al., 1996; Laulederkind

et al., 2000; Li et al., 2019; Xu et al., 2010), VEGF (Ji et al., 2020;

Lei et al., 2018; Oda et al., 2006; Tsai et al., 2017; Zhang et al.,

FIGURE 4
Cell–cell communication network among different cell types. (A,B): the numbers andweights of ligand receptors among all cell types. (C,D): the
outgoing and incoming interaction strength among all cell types.
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FIGURE 5
Overview of all ligand-receptor interactions of cells in OS. (A): all ligand-receptor interactions of cells in OS. (B,C): all signaling pathway
networks identified, selected signaling pathway networks.
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2019), GALECTIN(Gomez-Brouchet et al., 2010; Miao et al.,

2014; Park et al., 2015; Zhou et al., 2014), PERIOSTIN(Ma et al.,

2020; Xu et al., 2022), VISFATIN(Cheng et al., 2015; Wang et al.,

2019, 2016), ITGB2 (Dai et al., 2018), NOTCH(Jin et al., 2017;

Mu et al., 2013; Ongaro et al., 2016; Tanaka et al., 2009; Zhang

et al., 2010), IGF (Armakolas et al., 2016; Giatagana et al., 2022;

FIGURE 6
Detailed view of the ligands expressed by each major cell type. (A): a detailed perspective of the ligands expressed by each major cell type and
the cells expressing the signal-receiving receptors is provided, the thickness of the lines indicated the numbers of ligand-receptor pairs for each
intercellular link. (B): the thickness of the lines indicated the weights of ligand-receptor pairs for each intercellular link. (C): chordal graphs showing
potential cellular crosstalk within the OS microenvironment. (D): the selected ligand-receptor interactions related to OS.
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Gvozdenovic et al., 2017; Molina et al., 2019; Tan et al., 2015),

VWF(Wang et al., 2020), and PDGF (Chen et al., 2009; Egners

et al., 2018; Heldin et al., 1986). The ligand-receptor interactions

of these signaling pathways related to osteosarcoma were shown

in Figure 6D. Furthermore, according to the results of this

research, the potential communication of mesenchymal stem

cells, proliferating osteoblastic cells, and osteoblastic cells mainly

revolved around SPP1 (Figure 7), FGF (Figure 8), NOTCH

(Figure 9).

Differentiation trajectory analysis of
mesenchymal stem cells, proliferating
osteoblastic cells, and osteoblastic cells

Cell state transmission was evaluated using pseudotime analysis

based on the Monocle package. The mesenchymal stem cells,

proliferating osteoblastic cells, and osteoblastic cells were subjected

to differentiation trajectory analysis. We performed pseudotime

analysis to explore the cell-state transitions among mesenchymal

stem cells, proliferating osteoblastic cells, and osteoblastic cells

(Figures 10A–E). Furthermore, we plotted the heatmap of the

differentiation trajectory among these cells (Figure 10F). The

results of trajectory analysis revealed that osteoblastic cells

followed a differentiation trajectory that primarily began with

clusters of mesenchymal stem cells and proliferating osteoblastic

cells, from which they differentiated into osteoblastic cells.

Single-cell regulatory network of
mesenchymal stem cells, proliferating
osteoblastic cells, and osteoblastic cells

A SCENIC analysis was conducted to detect the TFs of

mesenchymal stem cells, proliferating osteoblastic cells, and

osteoblastic cells. The genes of TFs (XBP1(Yang et al., 2015; Yu

et al., 2022), ATF4 (Luo et al., 2017, 2019; Xian et al., 2017), and

SOX9(Y. Chen S. et al., 2020; He et al., 2017;Wang et al., 2018)) were

significantly activated in osteoblastic cells (Figures 11A–D), and were

demonstrated to be expressed in osteosarcoma.

Discussion

Osteosarcoma is the most common malignant bone tumor in

children, teens, and young adults with a median age of 16 years. It

FIGURE 7
SPP1 signaling pathway. (A–C): ligand-receptor interactions of cells. (D,E): the ligand-receptors expressed by each major cell type. (F,G): the
network of SPP1 signaling pathway.
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accounts for approximately 56% of bone sarcomas, and

metastasis is the primary reason why treatment fails and the

prognosis is poor (Chen et al., 2021). Despite previous molecular

biology investigations having offered considerable information

on the pathogenesis of osteosarcoma, the mechanisms that

regulate its several oncogenic insults necessary for

osteosarcoma start and development remain unknown (Isakoff

et al., 2015; Kansara et al., 2014). It remains a serious concern due

to poorly characterized carcinogenesis processes and restricted

therapeutic options. So, it is essential to find important

subpopulation driver mutations that promote diversity,

expansion, invasion, and eventual colonization of other areas

of the body. In addition, the potential cellular communication

networks in osteosarcoma and the influence of tumor

heterogeneity on cell aggregation are crucial.

Single-cell RNA sequencing (scRNA-seq) can show variation

within cell populations. It could discriminate tumor cells from non-

tumor cells and examine intercellular connections within the tumor

microenvironment by analyzing transcripts inside individual cells. It

is helpful to find unique cell types, look into tumor heterogeneity and

potential networks of cell-to-cell communication, and show different

developmental paths. This can give a theoretical foundation for future

research into the molecular processes of OS growth and metastasis

(Guo et al., 2022).

Mounting clinical and experimental data suggests that

osteosarcoma stem cells, which originate from mesenchymal

stem cells, may be the biological genesis of osteosarcomas and

demonstrate osteoblastic differentiation, producing malignant

osteoid (Brown et al., 2017; Xi et al., 2000). In addition,

osteosarcoma is strongly connected with the osteoblastic

lineage and displays osteogenic differentiation-related activities

in proliferation, extracellular matrix secretion, and induction of

ossification (Zeng et al., 2022). So, in this study, potential cellular

communication networks among mesenchymal stem cells,

proliferating osteoblastic cells, and osteoblastic cells were

identified through comprehensive analysis of osteosarcoma

single-cell RNA sequencing (scRNA-seq), illustrating the

complex regulatory network in the advanced osteosarcoma

microenvironment. Moreover, we performed transcription

factor regulatory network analysis and trajectory analysis on

these cells.

The results of cellular communication networks showed

that mesenchymal stem cells, proliferating osteoblastic cells,

and osteoblastic cells are mainly involved in SPP1, FGF, and

NOTCH signaling pathways. The SPP1 gene (osteopontin,

secreted phosphoprotein 1) encodes a protein with several

activities, including bone remodeling, adhesion, tumor

invasion, and metastasis (Dalla-Torre et al., 2006). It is

FIGURE 8
FGF signaling pathway. (A–C): ligand-receptor interactions of cells. (D,E): the ligand-receptors expressed by each major cell type. (F,G): the
network of FGF signaling pathway.
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generated by a variety of cell types, including osteoblasts,

osteoclasts, and endothelial cells (Liu et al., 2013; Wang and

Yang, 2015). SPP1 is now of interest in carcinogenesis,

Lysosomal-associated membrane protein 3 (LAMP3)

enhances osteosarcoma cell invasion via SPP1 signaling (Li

et al., 2017). In colorectal cancer (CRC), SPP1 was highly

upregulated and increased CRC metastasis by promoting

epithelial-mesenchymal transition (EMT) (Xu et al., 2017).

In addition, previous research found inhibition of the

SPP1 gene may have therapeutic benefits for tongue cancer

and may be a useful target for therapy (Zhang et al., 2020).

Moreover, in pancreatic tumor microenvironment factors,

the SPP1-CD44 axis can promote cancer stemness

(Nallasamy et al., 2021). In head and neck squamous cell

carcinoma (HNSCC), SPP1 overexpression is prognostic of

worse survival results (Bie and Zhang, 2021). However, some

scholars found that overexpression of SPP1 was correlated

with improved overall survival, event-free survival, and

relapse-free survival at diagnosis in osteosarcoma (Dalla-

Torre et al., 2006). The results of our study revealed that

through the SPP1-CD44 signaling pathway, myeloid cells,

pericytes, and osteoclast cells can impact on mesenchymal

stem cells and proliferating osteoblastic cells. Moreover, in

these cellular communication networks, osteoclasts play a

role as major senders, mediators, and influencers of the

signal.

Fibroblast growth factor (FGF) signaling is essential for

embryonic organ development and the progression of tumors

(Brewer et al., 2016) and increases proliferation, invasion, and

epithelial-to-mesenchymal transformation of tumor cells. (Bono

et al., 2013). In the majority of malignancies, numerous FGFs are

increased, and different FGF receptor (FGFR) subtypes are

activated on tumor and stromal cells. (Turner and Grose,

2010). In addition, cancer, inflammation, and the resistance of

tumor vascularization to VEGF inhibitor therapy have all been

linked to FGFR signaling. (Beenken and Mohammadi, 2009;

Casanovas et al., 2005; Fischer et al., 2007; Turner and Grose,

2010). Moreover, in the development of cancer, pathological

FGF/FGFR signaling enhances cross-talk between oncogenic

cells and its microenvironment, ultimately causing cancer cell

proliferation, angiogenesis, and migration. (Li et al., 2018). For

example, in the tumor microenvironment of esophageal cancer,

NCAM- and FGF-2-mediated FGFR1 signaling modulates the

survival and migration of tumor-associated macrophages and

cancer cells (Takase et al., 2016). Additionally, FGFs activate

myeloid cells, macrophages linked with tumors, cancer-related

FIGURE 9
NOTCH signaling pathway. (A–C): ligand-receptor interactions of cells. (D,E): the ligand-receptors expressed by eachmajor cell type. (F,G): the
network of NOTCH signaling pathway.
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FIGURE 10
Trajectory analysis of mesenchymal stem cells, proliferating osteoblastic cells, and osteoblastic cells. (A–E): trajectory plots showing the
differentiation of these cell types. (F): heatmap displaying the scaled expression of dynamic genes across time. The rows of the heatmap reflect genes
exhibiting dynamic changes along the pseudotime, and these genes have been grouped into four categories based on their expression pattern over
the pseudotime.
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fibroblasts, and osteoclasts (Berardi et al., 1995; Collin-Osdoby

et al., 2002; Itoh, 2007). Recent studies have found that in the

evolution of osteosarcoma, FGF has emerged as a crucial

regulator. According to previous research, LHX9 is critical for

the proliferation, migration, invasion, and metastasis of OS cells

via the FGF and TGF−/−catenin signaling pathways (Li et al.,

2019). Some scholars have found that through the FRS2/TGF−/

−catenin pathway, FGF-induced LHX9 controls osteosarcoma

development and migration (Li et al., 2019).

Our research found, through the FGF7-FGFR1 signaling

pathway, mesenchymal stem cells, pericytes, and myoblasts

may influence mesenchymal stem cells, proliferating

osteoblastic cells, and osteoblastic cells. High quantities of

FGFR1 and FGF7 were detected in mesenchymal stem cells

and pericytes. In addition, in these cellular communication

networks, mesenchymal stem cells and pericytes serve as

important signal senders, mediators, and influencers.

The Notch pathway regulates various mechanisms that

control morphogenesis, lineage determination, apoptosis, and

proliferation in some malignancies (Bray, 2006), and has been

identified as both a tumor suppressor and an oncogene (Jin et al.,

2017; Tanaka et al., 2009; Zhang et al., 2010). The Delta-Serrate-

Lag (DSL) family of ligands (jagged 1/Jag1, Jag2, delta-like-1/

DLL1, DLL3, and DLL4) on the surface of a cell connect with a

membrane-bound Notch receptor (Notch1-4) on a different cell

to start the Notch signaling pathway, a crucial step in normal

bone growth that is also implicated as a critical mediator in a

variety of different malignancies (Iso et al., 2003).

According to previous research, the notch pathway is

strongly related to the development of osteosarcoma. Erk

phosphorylation promotes osteosarcoma proliferation and

migration in response to Notch stimulation (Qin et al., 2019).

By activating cell division cycle 20, Notch-1 increases the

evolution of osteosarcoma to a malignant state (Gao et al.,

2020). The elevated expression of Jagged1 is intimately

associated with osteosarcoma metastasis and recurrence. On

the contrary, the knockdown of Jagged1 significantly reduced

osteosarcoma cell proliferation, migration, and invasion (Zhang

et al., 2021). Additionally, Notch signaling also regulates the

immune system of the tumor microenvironment. Inhibiting the

Notch signaling system enhances the polarization of TAM

towards the M2 genotype, which in turn promotes the growth

and spread of osteosarcoma (Ren et al., 2020). Our research

found, through the DLK1- NOTCH2 signaling pathway,

myoblasts may influence mesenchymal stem cells, proliferating

osteoblastic cells. Additionally, myoblasts serve as important

signal senders, mediators, and influencers.

One of the most prevalent issues in the development of

human cancer is the dysregulation of transcription factors,

which plays a role in the pathogenesis of the disease. The

FIGURE 11
The SCENIC analysis predicted the TF. (A–C): tSNE plots and histograms show the top three TF activities in mesenchymal stem cells,
proliferating osteoblastic cells, and osteoblastic cells. (D): Heatmap showing the top 50 TF in these cell types.
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SCENIC analysis revealed that the regulon activity of XBP1,

ATF4, and SOX9 were down-regulation in both mesenchymal

stem cells and proliferating osteoblastic cells. X-box binding

protein (XBP1) is a significant transcriptional regulator of the

unfolded protein response. Lack of oxygen stimulated the

transcription and translation of XBP1 mRNA, resulting in

an increase in the activity of XBP1 protein (Romero-Ramirez

et al., 2004). It was initially identified as a crucial regulator of

major histocompatibility complex class II (MHC) gene

expression in B cells (S. Chen Y. et al., 2020). High

XBP1 levels were associated with advanced clinical stages, a

high malignancy index, and a poor tumor necrosis rate in OS.

XBP1 knockdown decreased OS cell growth and survival in

culture (Yang et al., 2015). Recent studies have shown that

XBP1 increases the susceptibility of HOS osteosarcoma cells

to pyropheophorbide- α methyl ester-mediated

photodynamic remedies (Yu et al., 2022). Activating

transcription factor 4 (ATF4), a major regulator of the

integrated stress response system, activates transcription of

a group of transcriptional silencing genes that regulate cell

survival and death (Ishizawa et al., 2016). In recent years,

numerous investigations on the involvement of ATF4 in

osteosarcoma have been reported. In human osteosarcoma,

suppression of GRP78 increases ATF4-induced cell death via

deubiquitination and stability of CHOP(Luo et al., 2017).

Moreover, through endoplasmic reticulum (ER) stress-

mediated PERK/eIF2/ATF4/CHOP activation and Wnt/β-
catenin signal suppresses the development of human

osteosarcoma (Zhao et al., 2020). ATF4 devastates RET by

inhibiting nonclassical GRP78 to increase osteosarcoma

chemosensitivity to bortezomib (Luo et al., 2019). Sex-

determining region Y (SRY)- box 9 protein (SOX9) is a

crucial transcription factor in a variety of illnesses,

particularly in malignancies. Recent research has revealed

that SOX9 plays an important function in the control of

the tumor microenvironment (TME). Furthermore,

SOX9 signaling or SOX9 controlled signaling pathways play

an important role in cancer development and metastasis

(Panda et al., 2021). Additionally, by means of a Sox9-

Mediated positive feedback loop, MAFB contributes

towards the progression of cancer stemness and

tumorogenesis in osteosarcoma (Y. Chen S. et al., 2020).

Moreover, previous study has found the cFOS-SOX9 axis of

chondroblastic osteosarcoma reprograms bone marrow

derived mesenchymal stem cells into chondroblastic cells

(He et al., 2017).

In conclusion, this study uncovered the potential cellular

communication networks between several cell types in advanced

osteosarcoma. The SPP1, FGF, andNOTCH signaling pathwaysmay

play a crucial role in osteosarcoma TME regulation. This research

may bring fresh insights into the pathophysiology of osteosarcoma’s

molecular processes. However, this paper has the following

limitations: no additional experiments were conducted to validate

the dataminingfindings presented in this study; no further validation

using the bulk RNA-seq database of osteosarcoma.
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