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Horizontal gene transfer (HGT) plays an important role in the evolution of microbial

organisms including bacteria. Alignment-free methods based on single genome

compositional information have been used to detect HGT. Currently, Manhattan and

Euclidean distances based on tetranucleotide frequencies are the most commonly used

alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial

sequences and real data sets with known horizontal transferred genomic regions, we

found that more advanced alignment-free dissimilarity measures such as CVTree and

d∗2 that take into account the background Markov sequences can solve HGT detection

problems with significantly improved performance. We also studied the influence of

different factors such as evolutionary distance between host and donor sequences, size

of sliding window, and host genome composition on the performances of alignment-free

methods to detect HGT. Our study showed that alignment-free methods can predict

HGT accurately when host and donor genomes are in different order levels. Among all

methods, CVTree with word length of 3, d∗2 with word length 3, Markov order 1 and d∗2
with word length 4, Markov order 1 outperform others in terms of their highest F1-score

and their robustness under the influence of different factors.

Keywords: horizontal gene transfer, genomic island, alignment-free, d∗

2
, CVTree, kmer

INTRODUCTION

As opposed to vertical transmission in which DNA is transferred from parent to offspring,
horizontal gene transfer (HGT) or lateral gene transfer (LGT) is defined as the movement of genetic
material between organisms that are not in a parent-offspring relationship. HGT plays an important
role in bacterial evolution as it is the primary reason underlying the adaptation of bacteria such as
metabolic adaptation (Pál et al., 2005) and antibiotic resistance (Gyles and Boerlin, 2014). Both
alignment-based and alignment-free methods have been used to infer horizontal gene transfer
(Karlin and Burge, 1995; Karlin, 2001; Tsirigos and Rigoutsos, 2005; Becq et al., 2010; Langille
et al., 2010; Ravenhall et al., 2015; Cong et al., 2016a,b, 2017; Lu and Leong, 2016). Alignment-
based, or phylogenetic methods, are often considered as the gold standard (Keeling and Palmer,
2008) for HGT detection because of their explicit model. Such methods detect horizontal gene
transfer by integrating information from multiple organisms to find genes whose phylogenetic
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relationships among multiple organisms differ significantly from
that of other genes (Ravenhall et al., 2015; Lu and Leong, 2016).
Despite their extensive applications in horizontal gene transfer
detection, finding topological incongruences is time-consuming,
uses large memory, and requires that genomes of interest have
to be annotated and their phylogenetic relationships are known.
In addition, alignment-based methods can only be applied to
gene or protein sequences and thus limit their ability to detect
horizontal transfer in non-coding regions.

On the other hand, alignment-free, also called compositional
parametric, methods detect horizontal gene transfer based on
the detection of regions in a genome with atypical word pattern
(kmer, ktuple, kgram, etc.) composition. These methods are
based on the observation that different microbial species have
their own genomic word pattern signatures (Karlin and Burge,
1995) so that sequences transferred from donor genome are likely
to have different composition signatures from that of the host
genome. DNA acquired via horizontal gene transfer will, over
time, acquire the composition signatures of the host genome
through a process called amelioration (Lawrence and Ochman,
1997). Recently, Cong et al. (2016a,b, 2017) introduced TF-IDF
as a scalable alignment-free approach for HGT detection by
combining multiple genomes and kmer occurrences. However,
this method assumes that the donor genome is in the group
of genomes under study and requires phylogenetic relationships
among these genomes. More widely used alignment-free
methods apply a sliding window to scan a single genome and
calculate the distance between the composition of each window
and the whole genome. Consecutive windows with distance
from the whole genome higher than a threshold are inferred
as HGT. The performances of alignment-free methods depend
largely on the choice of genomic signatures. Commonly-used
genomic signatures include, but are not limited to GC content
(Karlin, 2001), codon usage (Karlin, 2001) and oligonucleotide
(kmer) frequencies (Tsirigos and Rigoutsos, 2005). Becq et al.
(2010) reviewed alignment-free methods on horizontal gene
transfer detection and showed that kmer-based methods with a 5
kbp sliding window outperformed other alignment-free methods
based on features such as GC content (Karlin, 2001), codon
usage (Karlin, 2001) and dinucleotides (Karlin and Burge, 1995).
However, they only tested Euclidean distance with kmer length
4 as genomic signature (Dufraigne et al., 2005) for kmer-based
methods. In fact, the performances of kmer-based methods can
vary largely depending on the choice of the value of k and
dissimilarity measures between kmer vectors.

For kmer-based methods, Manhattan and Euclidean distances
between the kmer frequency vector of a genomic region and
that of the whole genome are the most frequently used measures
for detecting HGTs because of their simplicity. For example,
Dufraigne analyzed HGT regions of 22 genomes by using
Euclidean distance with kmer length 4 (Dufraigne et al., 2005). In
addition, they compared the genomic signatures of HGT regions
with 12,000 species from GeneBank by Euclidean distance
to find their potential donors. Rajan et al. used Manhattan
distance with k-mer length 5 to detect HGT in 50 diverse
bacterial genomes (Rajan et al., 2007). Tsirigos and Rigoutsos
(2005) proposed to use relative kmer frequencies defined by

the absolute kmer frequency over the expected frequency under
the independent identically distributed (IID) model for HGT
detection. They also investigated a few dissimilarity measures
between the relative frequencies of a genomic region and the
whole genome including correlation, covariance, Manhattan
distance, Mahalanobis distance, and Kullback–Leibler (KL)
distance for HTG detection. They showed that kmers of length
6–8 with covariance dissimilarity perform the best under their
simulated situations. Several review papers on the use of kmers
for the detection of HGT are available (Langille et al., 2010;
Ravenhall et al., 2015; Lu and Leong, 2016). As in most studies
of HGT, we concentrate on the use of kmers for HGT detection
by using a single genome in this paper.

Recently, several new dissimilarity measures for sequence
comparison based on kmer frequency vectors have been
developed including CVTree (Qi et al., 2004), d∗2 and ds2 (Reinert
et al., 2009; Song et al., 2013; Lu et al., 2017). They have
been shown to out-perform commonly used measures such
as Manhattan and Euclidean distances for solving different
problems including evolutionary distance estimation (Ren et al.,
2016), virus-host interaction prediction (Ahlgren et al., 2017),
and metagenome and metatranscriptome comparison (Jiang
et al., 2012; Liao et al., 2016). However, these dissimilarity
measures have not been used for HGT detection. It is important
to know whether these new dissimilarity measures have better
performance than available methods for detecting horizontal
gene transfers. In addition, it is important to study the influence
of evolutionary distance between host and donor genomes,
sliding window size, and different host genome compositions on
the performance of kmer-based alignment-free methods on HGT
detection. In this study, we have addressed all these issues.

MATERIALS AND METHODS

Artificial Genome Simulation
We chose Escherichia coli K12 (E. coli) as the host genome
and Bacillus subtilis 168 (B. subtilis), Haemophilus influenzae
Rd KW20 (H. influenzae), Helicobacter pylori 26695 (H. pylori),
Mycobacterium tuberculosis H37RV (M. tuberculosis), and
Streptococcus pneumoniaeR6 (S. pneumoniae) as donor genomes.
Each time, we picked a fragment randomly from the donor
genome with length uniformly chosen from 8kbp to 40kbp and
inserted it into a random position uniformly along the E. coli
K12 genome until the simulated HGT consists of up to 10% of
the artificial genome, since the HGT proportions in most bacteria
genomes range from 2 to 15% (Garcia-Vallvé et al., 2000). We
named the simulated genome as “E. coli_artificial.” To make our
results more reliable, we did 10 simulations. Table S1 in the
Supplementary Material shows the detailed composition of one
of these 10 simulated genomes.

One of the challenges for evaluating HGT detection methods
is the lack of a benchmark data. The host genome may contain
genes historically transferred from other genomes, but they are
not part of the simulated transferred regions. If a HGT detection
method predicts such a gene as a HGT, although the prediction is
correct, the prediction will be reported as a false positive since
the gene is not transferred through the simulation. Therefore,

Frontiers in Microbiology | www.frontiersin.org 2 April 2018 | Volume 9 | Article 711

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tang et al. Alignment-Free HGT Detection

the reported false positive rate maybe higher than the true false
positive rate. On the other hand, such a problem is common to
all the HGT detection methods and their relative performances
are still valid. Therefore, we can still use artificial genomes to
compare the relative performance of different methods.

Distance/Dissimilarity Measures Between
Genomic Sequences
Given two genomic sequences i and j and a given word length k,
we first count the number of occurrences of all kmers in sequence
i and sequence j, respectively. The full set of kmers of length k is
defined as Ak where A = (A,T,C,G) for nucleotide sequences.

For a given kmer w, its occurrences in i is defined as N(i)
w and

the frequency or the relative abundance of this kmer is defined as

f
(i)
w = N

(i)
w

∑

w N
(i)
w

.

Some dissimilarity measures such as d∗2 and dS2 need an m-th
order Markov model for the background sequence. The expected

number of occurrences of word w, EN(i)
w , can be calculated from

the stationary probability of the first m-mer w[1 :m] and the
transition probabilities from the n-th m-mer w[n : n + m − 1]
to the (n+m)-th nucleotide w[n+m]:

EN(i)
w = (L(i)−k+1)µ(w[1 :m])

k−m
∏

n=1

π(w[n : n+m−1],w[n+m])

where L(i) is the length of sequence i, µ is the stationary
probability and π is the transition probability that can be
estimated from the sequence data. The difference between the
occurrences of kmer w and its expected occurrences is defined

as Ñ(i)
w = N

(i)
w − EN

(i)
w .

Manhattan
The Manhattan distance (Ma) is defined as:

Ma =
∑

w∈Ak

|f (i)w − f
(j)
w |

Euclidean
The Euclidean distance (Eu) is defined as:

Eu =

√

∑

w∈Ak

|f
(i)
w − f

(j)
w |2

d2 (Torney et al., 1990)
The d2 distance is defined as:

d2 =
1

2






1−

∑

w∈Ak f
(i)
w f

(j)
w

√

∑

w∈Ak (f
(i)
w )2

√

∑

w∈Ak (f
(j)
w )2







CVTree (Qi et al., 2004)
The CVTree dissimilarity is defined as:

CVTree =
1

2
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where f̂
(i)
w = Ñ

(i)
w

EN
(i)
w

. CVTree calculates EN
(i)
w by assuming a

(k− 2)-th order Markov chain for genomic sequences.

d∗

2 (Reinert et al., 2009)
The d∗2 dissimilarity is defined as:

d∗2 =
1

2
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ds2 (Reinert et al., 2009)
The ds2 dissimilarity is defined as:

ds2 =
1

2
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1
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(j)
w = Ñ
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(j)
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1
4
.

Distance Calculation
As in most studies (Dufraigne et al., 2005; Tsirigos and Rigoutsos,
2005), we used a sliding window approach for the detection of
HGT. Starting from the 5′-end of the E. coli_artificial genome,
we divided the genome into overlapped windows of size b with
sliding step of 500 bps. As suggested by Dufraigne et al. (2005),
we first used b = 5 kbp. We uesd CAFE (Lu et al., 2017),
an accelerated alignment-free sequence analysis tool, to calculate
different dissimilarity measures between each window and the
whole genome by using the different alignment-free dissimilarity
measures with different kmer lengths and Markov orders as
needed. For measure d2, Euclidean, and Manhattan, that do not
require Markov order information, we used k = 3, 4, 5. For d∗2
and ds2, we tested them with k = 3, 4, 5 and Markov order = 0,
1, 2, 3. For CVTree that assumes a Markov chain of order (k −

2), we tested it with k = 3, 4, 5. For all methods, a double-
strand signature was used to remove strand compositional
asymmetry (Karlin, 1999), which means we counted kmer
occurrences in both the sequence and its reverse complementary
sequence.

Predicting HGT Regions
Windows with high dissimilarity with the whole genome are
more likely to be transferred from other genomes. Therefore, a
window is predicted to be a HGT region if its dissimilarity with
the whole genome D is above a certain threshold T. We used the
same criterion as in Becq et al. (2010) to determine the threshold,
that is,

T = Q3 + r(Q3 − Q1),

where Q1 and Q3 are the first and third quartiles of the
distribution of dissimilarity values between all the windows and
the whole genome, and r is a parameter used to set the threshold
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that ranges from 0.25 to 10.00 with a step of 0.25. Therefore,
for each alignment-free method with certain word length k
and Markov order m, we could define 40 thresholds. Windows
with distance from the whole genome above the threshold were
defined as atypical windows. Overlapped atypical windows were
then concatenated to form atypical regions, which were predicted
as HGT regions.

Evaluation Criteria
By comparing the detected HGT and the real transferred
fragments in E. coli_artificial, we calculated the recall (sensitivity)
and precision. Recall is calculated as the length of the overlapped
sequence between detected HGT and simulated HGT divided
by the total length of simulated HGT fragments. Precision is
calculated as the length of the overlapped sequence between
detected HGT and simulated HGT divided by the total length
of detected HGT. A commonly used measure that combines
precision and recall is the harmonic mean of precision
and recall, the traditional F1-measure or balanced F1-score,
defined as

F1 = 2×
precision× recall

precision+ recall
.

Given an E. coli_artificial genome, for each threshold, we
calculated the precision, recall and the F1-score for each method.
We then calculated the average precision, recall and the average
F1-score for each threshold over 10 simulated genomes and
plotted the precision-recall curve.We report the optimal F1-score
for each dissimilarity measure.

Since most parts of the host genome are not transferred from
other genomes, the receiver operating curve (ROC) showing the
relationship between the false positive rate (FPR, 1 - specificity)
and true positive rate (TPR, recall or sensitivity) is not optimal
for comparing the different dissimilarity measures since the area
under the ROC curve (AUC) and the specificity are generally very
high. Therefore, we used the precision recall curve (PRC) and F1-
score as our criterion for comparing the different dissimilarity
measures.

Investigating the Effect of Evolution
Relationship Between the Host and Donor
Genomes and Window Size on the
Performance of Different Methods
In the simulated genome above, we assumed that all the donor
genomes can contribute to the host genome through HGT.
Since closely related genomes have similar kmer frequencies,
it will be difficult to detect HGT from closely related
genomes. On the other hand, if the donor genome has
high evolutionary distance from the host genome, it will
be relatively easy to identify HGT with any reasonable
methods. Therefore, we next investigated how the evolutionary
relationship between the the donor genome and the host genome
affects the relative performance of the different HGT detection
methods.

In our simulations, we still used E. coli K12 that is of
the Proteobacteria phylum, Gammaproteobacteria class,

Enterobacteriales order, Enterobacteriaceae family and
Escherichia genus as host genome and chose 20 donor
genomes having different evolutionary relationships with
E. coli. Four of them are different species of the Escherichia
genus [Escherichia albertiiKF1 (E. albertii), Escherichia fergusonii
ATCC 35469 (E. fergusonii), Escherichia hermanniiNBRC 105704
(E. hermannii), Escherichia vulneris NBRC 102420 (E. vulneris)],
four of them are in different genus of the Enterobacteriaceae
family [Enterobacter cloacae ATCC 13047 (E. cloacae), Klebsiella
pneumoniaeHS11286 (K. pneumoniae), Salmonella typhimurium
LT2 (S. typhimurium), Shigella sonnei 53G (S. sonnei)], four
of them are in different families of the Enterobacteriales
order [Yersinia pestis KIM 10+ (Y. pestis), Photorhabdus
luminescens TT01 (P. luminescens), Pantoea ananatis LMG
20103 (P. ananatis), Brenneria goodwinii OBR1 (B. goodwinii)],
four genomes are in different orders of the Gammaproteobacteria
class [Legionella pneumophila Philadelphia 1 (L. pneumophila),
Pseudomonas aeruginosa PA01 (P. aeruginosa), Vibrio
parahaemolyticus RIMD 2210633 (V. parahaemolyticus),
Xanthomonas axonopodis Xac29-1 (X. axonopodis)], and four
genomes are in different classes of the Proteobacteria phylum
[Burkholderia pseudomallei K96243 (B. pseudomallei), Brucella
abortus 2308 (B. abortus), Campylobacter coli RM4661 (C. coli),
Acidithiobacillus ferrooxidans ATCC 23270 (A. ferrooxidans)].
By transferring fragments between 8 and 40 kbp uniformly
picked from these genomes into E. coli K12, we constructed 20
artificial genomes, each of them consists of 10% HGT from a
certain single donor genome. We then detected the HGT using
the different alignment-free methods and compared them using
the same criteria as above.

In order to study the effect of window length, we continued
to use the 20 artificial genomes generated above. Instead of using
5 kbp as the length of sliding window, we changed the window
size to 3 and 8 kbp, respectively. Finally, we used the F1-score to
evaluate the different methods.

To see if our results are consistent for different host genomes,
we changed the host genome from E. coli to B. abortus and
K. pneumoniae, respectively. Then we did the same analyses as
for E. coli.

Investigation of HGT Within 118 Genomes
and E. faecalis V583
To evaluate the performances of alignment-free methods
on HGT detection over real data, we used a data set
constructed in Langille et al. (2008). In this study, the
authors selected 118 genomes from 117 different strains and
used a comparative genomics approach to detect genomic
islands resulted from horizontal gene transfer. This benchmark
data was constructed using alignments and did not use
nucleotide composition information. Therefore, the data set
can be used to evaluate different alignment-free HGT detection
methods. For each genome, the authors provided positive
and negative regions of HGT. As in Langille et al. (2008),
we used precision, recall and overall accuracy to evaluate
performances of alignment-free methods on HGT prediction
over these 118 chromosomes, where the accuracy is calculated
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by the fraction of true positives and true negatives over all
the predictions. In addition, we also used the optimal F1-
score and the precision-recall curve to compare the different
methods.

We also used the different methods to identify HGT regions of
Enterococcus faecalisV583 (E. faecalis) that contains seven known
genes transferred from other genomes. Since we do not know
the whole set of HGT genes, we just investigated if these seven
genes are ranked higher than other genes. The higher these genes
are ranked by a particular method, the better performance the
method is in predicting HGT.

RESULTS

Background Adjusted Dissimilarity
Measures Outperform Non-background
Adjusted Methods for HGT Detection
Based on the E. coli_artificial Genome
Table 1 shows the precision and recall yielding the highest
average F1-score of the different alignment-free methods for
different word size k and Markov order m when needed. The
highest F1-score of 0.88 is obtained for CVT(4), followed by
CVT(3), d∗2(3, 1) and d

∗
2(4, 1) (the first number in the parenthesis

is the word length and the second number is the order of
MC) with average F1-score at least 0.87. In comparison with
background adusted dissimilarity measures, the widely-used
Manhattan and Euclidean distances both have F1-score at most
0.80.

In addition to comparing the different methods at the
optimal F1 level, we also plotted the precision-recall curves
for the different methods shown in Figure 1. Figure 1D

shows that non-background adjusted methods Ma, Eu and d2
showed similar performace. Figures 1A–C show that background
adjusted methods had better performance than non-background
adjusted methods when k = 3 or k = 4. Among all
methods, CVT(3), CVT(4), d∗2(3, 1) and d∗2(4, 1) had the best
performace in terms of precision-recall curves. The conclusions
about the relative performance of the different methods are
the same based on either the F1-score or the precision-recall
curves.

The better performance of the background adjusted methods
(CVTree, d∗2 and dS2) over the non-background adjusted methods
(Manhattan, Euclidean, and d2) can probably be explained
by the following observations. By removing the background
counts of the word patterns, the signals from the most relevant
kmers representative of the host genome are amplified while
the contributions of irrelevant kmers are mitigated. Therefore,
the background adjusted dissimilarity measures perform well in
HGT detection.

Based on the performances of the different methods shown
in Table 1 and Figure 1, we only present our results for the
top performing methods in the rest of the paper. We chose
CVT(3), CVT(4), d∗2(3, 1), and d∗2(4, 1) to represent background
adjusted methods and Ma(5), Eu(5), and d2(5) to represent non-
background adjusted methods as candidates for the following
studies.

TABLE 1 | Complete evaluation results for different dissimilarity measures with

different word lengths k and Markov orders when needed.

Method Precision Recall Optimal F1 Optimal r

CVT (3) 0.77 ± 0.01 0.99 ± 0.01 0.87 ± 0.00 4.50

CVT (4) 0.81 ± 0.01 0.95 ± 0.02 0.88 ± 0.01 2.75

CVT (5) 0.70 ± 0.02 0.71 ± 0.05 0.71 ± 0.03 1.25

d∗2(3, 0) 0.70 ± 0.04 0.65 ± 0.11 0.67 ± 0.08 4.75

d∗2(3, 1) 0.77 ± 0.01 0.99 ± 0.00 0.87 ± 0.01 4.25

d∗2(4, 0) 0.56 ± 0.01 0.96 ± 0.02 0.71 ± 0.01 2.00

d∗2(4, 1) 0.77 ± 0.01 0.99 ± 0.01 0.87 ± 0.01 3.75

d∗2(4, 2) 0.77 ± 0.01 0.96 ± 0.02 0.86 ± 0.01 2.25

d∗2(5, 0) 0.58 ± 0.01 0.93 ± 0.03 0.71 ± 0.01 2.00

d∗2(5, 1) 0.76 ± 0.01 0.98 ± 0.01 0.86 ± 0.01 3.00

d∗2(5, 2) 0.82 ± 0.01 0.90 ± 0.03 0.86 ± 0.02 2.25

d∗2(5, 3) 0.54 ± 0.03 0.78 ± 0.05 0.64 ± 0.03 1.00

ds2(3, 0) 0.39 ± 0.12 0.82 ± 0.21 0.49 ± 0.03 0.50

ds2(3, 1) 0.75 ± 0.01 0.99 ± 0.01 0.85 ± 0.01 2.50

ds2(4, 0) 0.54 ± 0.10 0.83 ± 0.19 0.63 ± 0.04 0.75

ds2(4, 1) 0.76 ± 0.06 0.79 ± 0.18 0.76 ± 0.09 1.00

ds2(4, 2) 0.74 ± 0.02 0.79 ± 0.13 0.76 ± 0.06 1.00

ds2(5, 0) 0.58 ± 0.02 0.80 ± 0.09 0.67 ± 0.03 1.00

ds2(5, 1) 0.74 ± 0.03 0.89 ± 0.08 0.80 ± 0.03 1.50

ds2(5, 2) 0.83 ± 0.02 0.87 ± 0.06 0.85 ± 0.03 1.50

ds2(5, 3) 0.63 ± 0.02 0.67 ± 0.08 0.65 ± 0.04 1.00

Ma(3) 0.75 ± 0.04 0.79 ± 0.12 0.76 ± 0.07 2.50

Ma(4) 0.80 ± 0.03 0.80 ± 0.12 0.80 ± 0.07 3.00

Ma(5) 0.79 ± 0.03 0.81 ± 0.12 0.80 ± 0.07 3.25

Eu(3) 0.76 ± 0.03 0.78 ± 0.13 0.76 ± 0.07 2.50

Eu(4) 0.80 ± 0.02 0.77 ± 0.12 0.79 ± 0.07 2.75

Eu(5) 0.79 ± 0.02 0.80 ± 0.12 0.79 ± 0.07 2.75

d2(3) 0.80 ± 0.04 0.76 ± 0.12 0.78 ± 0.07 5.00

d2(4) 0.77 ± 0.04 0.82 ± 0.12 0.79 ± 0.06 4.50

d2(5) 0.81 ± 0.03 0.81 ± 0.12 0.81 ± 0.07 4.50

Numbers in the brackets in the first column indicate the word length k and Markov order

used by methods d∗2 and dS2 . For example, d
∗
2 (3, 1) means that d

∗
2 was the dissimilarity

measure with word length 3 and Markov order 1. Optimal F1 is the highest average F1-

score that can be achieved by this method under a certain threshold. Optimal r for each

method is the value of r, which is used to set the threshold, to achieve the optimal F1.

Corresponding average precision and average recall for the optimal F1 are recorded in the

second and the third columns. Standard deviations of precision, recall and optimal F1-

score over 10 simulations are shown as superscripts. Highlighted are the top 4 F1-scores

for the different methods.

The Performance of the Alignment-Free
Methods Increases With the Genetic
Distance Between the Donor Genome and
the Host Genome
We next investigated the influence of evolutionary distance
between the donor genome and the host genome on the
performance of the different methods CVT(3), CVT(4), d∗2(3, 1),
d∗2(4, 1), Ma(5), Eu(5), and d2(5) based on the 20 artificial
genomes described in the “Materials and Methods” section and
the results are given in Table 2. The 20 donor genomes were
sorted by the Manhattan distance of the tetra-mer frequencies
between the donor and E. coli K12.
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FIGURE 1 | Precision-Recall Curves (PRC) for all the methods. (A) Shows PRC for CVTree with different word lengths. (B) Shows PRC for all the d∗2 methods.

(C) Shows PRC for all ds2 methods. (D) Shows PRC for Manhattan, Euclidean and d2.

We divided the donor genomes into three groups separated
by horizontal lines in Table 2. For the top group of donor
genomes with Manhattan distance between the donor and host
genomes less than 0.12, none of the methods have F1 value
greater than 0.30 indicating that none of them can successfully
detect HGT when the donor genome and host genome are very
close. For the second group of donor genomes with Manhattan
distance between 0.12 to 0.31, for eight out of ten donor
genomes except for V. parahaemolyticus and B. abortus, the
optimal F1 scores are moderate between 0.32 to 0.71. Except
for E. cloacae, E. vulneris and K. pneumoniae, the background
adjusted dissimilarity measures outperform the non-background
adjusted measures, some times by a significant margin. For
example, when the donor genome is V. parahaemolyticus, the
F1-scores for CVT(3), CVT(4), d∗2(3, 1), and d∗2(4, 1) are all at

least 0.85, while the F1-scores for Ma(5), Eu(5), and d2(5) are
at most 0.58. Within this group of donor genomes, CVT(4)
seems to perform better than CVT(3) when the Manhattan
distance between the donor and host genomes is between 0.12
and 0.22, while CVT(3) is slightly better than CVT(4) when
the Manhattan distance is between 0.22 to 0.31. The results
are reasonable since when the donor and host genomes are
relatively close, relative long kmers are needed to separate
the transferred fragments from the background. On the other
hand, when the donor and host genomes are relatively far
apart, relatively short-mers are more discriminative. For the
last group of donor genomes with large distances between the
donor and host genomes, all the seven methods perform decently
well with CVT(3), d∗2(4, 1) and Ma(5) generally as the best
performers.
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TABLE 2 | Performance of different alignment-free HGT detection methods over 20 artificial genomes with different donor genomes.

Donor Distance CVT(3) CVT(4) d∗

2
(3, 1) d∗

2
(4, 1) Ma(5) Eu(5) d2(5)

S. sonnei 0.027 0.18 ± 0.03 0.18 ± 0.03 0.17 ± 0.03 0.17 ± 0.04 0.16 ± 0.02 0.16 ± 0.02 0.17 ± 0.03

E. fergusonii 0.038 0.19 ± 0.02 0.15 ± 0.02 0.19 ± 0.02 0.18 ± 0.02 0.17 ± 0.02 0.16 ± 0.02 0.18 ± 0.02

E. albertii 0.044 0.21 ± 0.02 0.17 ± 0.02 0.21 ± 0.01 0.21 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.18 ± 0.02

S. typhimurium 0.090 0.23 ± 0.02 0.19 ± 0.02 0.23 ± 0.02 0.22 ± 0.02 0.25 ± 0.01 0.27 ± 0.01 0.27 ± 0.01

E. hermannii 0.119 0.16 ± 0.01 0.27 ± 0.02 0.14 ± 0.02 0.15 ± 0.02 0.26 ± 0.02 0.26 ± 0.02 0.25 ± 0.02

P. ananatis 0.123 0.23 ± 0.02 0.38 ± 0.02 0.19 ± 0.02 0.21 ± 0.03 0.26 ± 0.01 0.26 ± 0.01 0.25 ± 0.02

B. goodwinii 0.124 0.27 ± 0.02 0.44 ± 0.02 0.27 ± 0.02 0.29 ± 0.02 0.30 ± 0.02 0.32 ± 0.03 0.32 ± 0.02

E. cloacae 0.141 0.23 ± 0.02 0.28 ± 0.02 0.19 ± 0.03 0.21 ± 0.02 0.32 ± 0.02 0.30 ± 0.02 0.30 ± 0.02

Y. pestis 0.160 0.51 ± 0.02 0.61 ± 0.02 0.50 ± 0.02 0.56 ± 0.02 0.33 ± 0.03 0.30 ± 0.03 0.37 ± 0.02

E. vulneris 0.223 0.39 ± 0.02 0.27 ± 0.02 0.29 ± 0.01 0.33 ± 0.01 0.46 ± 0.02 0.44 ± 0.02 0.43 ± 0.02

K. pneumoniae 0.228 0.28 ± 0.03 0.26 ± 0.03 0.21 ± 0.02 0.23 ± 0.01 0.46 ± 0.02 0.46 ± 0.03 0.43 ± 0.01

V. parahaemolyticus 0.261 0.87 ± 0.01 0.85 ± 0.01 0.88 ± 0.01 0.88 ± 0.00 0.55 ± 0.02 0.51 ± 0.04 0.58 ± 0.01

P. luminescens 0.283 0.60 ± 0.02 0.65 ± 0.03 0.59 ± 0.01 0.63 ± 0.02 0.56 ± 0.01 0.55 ± 0.01 0.57 ± 0.01

A. ferrooxidans 0.301 0.71 ± 0.02 0.68 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 0.54 ± 0.01 0.52 ± 0.03 0.52 ± 0.01

B. abortus 0.308 0.86 ± 0.01 0.82 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.63 ± 0.01 0.60 ± 0.01 0.55 ± 0.01

L. pneumophila 0.449 0.84 ± 0.01 0.78 ± 0.01 0.84 ± 0.01 0.87 ± 0.00 0.85 ± 0.01 0.82 ± 0.02 0.84 ± 0.02

X. axonopodis 0.487 0.87 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.85 ± 0.03 0.85 ± 0.03 0.76 ± 0.02

P. aeruginosa 0.550 0.89 ± 0.00 0.79 ± 0.01 0.86 ± 0.01 0.81 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.81 ± 0.01

B. pseudomallei 0.682 0.96 ± 0.01 0.87 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.90 ± 0.02 0.90 ± 0.03 0.88 ± 0.03

C. coli 0.713 0.97 ± 0.00 0.94 ± 0.01 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.97 ± 0.00

The first column shows the donor genome of the artificial genome. The top 12 species have the same order level as E. coli and the bottom 8 species have different order level from

E. coli. The second column is the Manhattan distance between donor genome and E. coli K12 based on tetranucletide frequency. The third to the ninth columns are the optimal F1-score

of different methods over different artificial genomes. The optimal F1 scores for each donor genome are highlighted.

In addition to the comparison of the different methods based
on the optimal F1-score, we also plotted the precision-recall
curves for three donor genomes S. sonnei, B. abortus, and C. coli
in Figure 2 as examples for each group. Similar results for
the relative performance of the different methods as based on
F1-scores were observed.

The Performance of the Alignment-Free
Methods Increases With the Window Size
Within the Range of 3–8 kbp
We further studied the influence of window size on different
methods as the performances of alignment-free methods always
reply on the sequence length that should be long enough to
represent the genomic signature. Besides 5 kbp window size with
500 bp sliding step, we also checked the performance of different
methods based on 3 kbp window size with 300 bp sliding step
and 8kbp window size with 800 bp sliding step by using the same
evaluation approach. Among the 20 artificial genomes that have
been generated to study the influence of the genetic distance
between the donor genome and host genome, we chose 8 of
them in which donors have different order level from that of
E. coliK12. Optimal F1 score of different methods using different
window sizes over these 8 genomes are shown in Table 3. All
methods showed similar trend that their mean F1 score increases
as the window length increases from 3 to 8 kbp. But CVT(3) is

the most robust with different window sizes and its performance
suffers less with the decrease of window size compared with other
methods.

Robustness of the Relative Performance of
the Different Methods With Respect to
Different Host Genomes
To see the robustness of our results on the relative performance of
the different alignment-free HGT detectionmethods with respect
to host genomes, we changed the host genome from E. coli to
B. abortus and K. pneumoniae, respectively. The complete results
are given as Tables S2, S3 in Supplementary Material. From both
tables, it can be seen that the conclusions about the relative
performance of the different methods hold regardless of the host
genome.

Applications to Real HGT Data Support the
Good Performance of Background
Adjusted Dissimilarity Measures
Evaluation of Different Methods Based on 118

Genomes With Known HGT Genomic Islands
We next applied the various dissimilarity measures to identify
genomic islands generated from HGT for the 118 genomes
described in the “Materials and Methods" section. We still chose
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FIGURE 2 | The Precision-Recall Curves (PRC) of different HGT detection methods along artificial genomes using E. coli as host genome. (A) PRC when using

S.sonnei as donor genome, no methods performs well. (B) PRC when using B. abortus as donor genome, CVT (3), CVT (4),d∗2(3, 1) and d∗2(4, 1) outperform other

methods. (C) PRC when using C.coli as donor genome, all methods perform reasonably well.

40 thresholds as in our simulation studies for each method,
and calculated the optimal accuracy that is the highest accuracy
one method can achieve under certain threshold. The results
are shown in part (a) of Table 4. The values of the optimal
accuracy for the different methods are not markedly different,
but we can still see that the background adjusted dissimilarity
measures CVT(3), CVT(4), d∗2(3, 1), and d∗2(4, 1) have slightly
higher accuracy than the non-background adjusted dissimilarity
measures Eu(5),Ma(5), and d2(5). Similarly, we also evaluated
the different methods based on the optimal F1-score as shown in
part (b) of Table 4. The conclusions on the relative performance
of the methods based on F1-score are essentially the same as
that based on optimal accuracy. In addition, we also plotted

the precision-recall curves of the different methods based on
this data set and the resulting figures are shown in Figure 3.
It is clear from the figure that CVT(3), d∗2(3, 1) and d∗2(4, 1)
perform much better than the other methods. In Langille
et al. (2008), SIGI-HMM and IslandPath/DIMOB showed
the highest accuracy of 0.86. We did not include them in
our comparison because they incorporate other information
such as codon uasge, dinucleotide bias, gene expression and
mobility that can only be used when the genome is annotated.
However, in terms of accuracy, d∗2(4, 1) can achieve the
same performance as SIGI-HMM and IslandPath/DIMOB
by detecting HGT purely based on the genomic
composition.
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TABLE 3 | Performance of different methods over artificial genomes by using different window sizes.

Donor WS* (kbp) CVT(3) CVT(4) d∗

2
(3, 1) d∗

2
(4, 1) Ma(5) Eu(5) d2(5)

V. parahaemolyticus 3 0.84 ± 0.01 0.82 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.47 ± 0.02 0.43 ± 0.02 0.53 ± 0.02

V. parahaemolyticus 5 0.87 ± 0.01 0.85 ± 0.01 0.88 ± 0.01 0.88 ± 0.00 0.55 ± 0.02 0.51 ± 0.04 0.58 ± 0.01

V. parahaemolyticus 8 0.95 ± 0.01 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.62 ± 0.02 0.60 ± 0.02 0.64 ± 0.01

A. ferrooxidans 3 0.65 ± 0.02 0.62 ± 0.01 0.58 ± 0.02 0.59 ± 0.02 0.51 ± 0.02 0.47 ± 0.02 0.49 ± 0.02

A. ferrooxidans 5 0.71 ± 0.02 0.68 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 0.54 ± 0.01 0.52 ± 0.03 0.52 ± 0.01

A. ferrooxidans 8 0.82 ± 0.03 0.72 ± 0.02 0.68 ± 0.04 0.66 ± 0.02 0.61 ± 0.03 0.56 ± 0.03 0.56 ± 0.02

B. abortus 3 0.79 ± 0.01 0.77 ± 0.02 0.78 ± 0.01 0.78 ± 0.01 0.55 ± 0.01 0.52 ± 0.01 0.50 ± 0.01

B. abortus 5 0.86 ± 0.01 0.82 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.63 ± 0.01 0.60 ± 0.01 0.55 ± 0.01

B. abortus 8 0.94 ± 0.01 0.88 ± 0.02 0.93 ± 0.01 0.91 ± 0.01 0.68 ± 0.01 0.66 ± 0.02 0.61 ± 0.02

L. pneumophila 3 0.79 ± 0.02 0.73 ± 0.01 0.79 ± 0.01 0.84 ± 0.01 0.79 ± 0.01 0.77 ± 0.01 0.79 ± 0.01

L. pneumophila 5 0.84 ± 0.01 0.78 ± 0.01 0.84 ± 0.01 0.87 ± 0.00 0.85 ± 0.01 0.82 ± 0.02 0.84 ± 0.02

L. pneumophila 8 0.91 ± 0.02 0.82 ± 0.01 0.89 ± 0.01 0.93 ± 0.01 0.88 ± 0.02 0.86 ± 0.01 0.87 ± 0.01

X. axonopodis 3 0.81 ± 0.01 0.81 ± 0.02 0.74 ± 0.01 0.74 ± 0.01 0.78 ± 0.02 0.78 ± 0.03 0.69 ± 0.02

X. axonopodis 5 0.87 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.85 ± 0.03 0.85 ± 0.03 0.76 ± 0.02

X. axonopodis 8 0.96 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.91 ± 0.02 0.86 ± 0.03 0.82 ± 0.02 0.81 ± 0.02

P. aeruginosa 3 0.86 ± 0.01 0.73 ± 0.02 0.79 ± 0.01 0.72 ± 0.01 0.84 ± 0.01 0.83 ± 0.02 0.76 ± 0.01

P. aeruginosa 5 0.89 ± 0.00 0.79 ± 0.01 0.86 ± 0.01 0.81 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.81 ± 0.01

P. aeruginosa 8 0.96 ± 0.01 0.84 ± 0.01 0.95 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.88 ± 0.03 0.86 ± 0.01

B. pseudomallei 3 0.92 ± 0.01 0.83 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.90 ± 0.03 0.91 ± 0.02 0.84 ± 0.03

B. pseudomallei 5 0.96 ± 0.01 0.87 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.90 ± 0.02 0.90 ± 0.03 0.88 ± 0.03

B. pseudomallei 8 0.97 ± 0.01 0.93 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.89 ± 0.02 0.89 ± 0.03 0.86 ± 0.02

C. coli 3 0.96 ± 0.01 0.90 ± 0.00 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.00 0.95 ± 0.01 0.96 ± 0.00

C. coli 5 0.97 ± 0.00 0.94 ± 0.01 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.97 ± 0.00

C. coli 8 0.93 ± 0.01 0.96 ± 0.01 0.94 ± 0.00 0.96 ± 0.01 0.97 ± 0.00 0.96 ± 0.01 0.96 ± 0.00

Values in the second column are the window sizes. All the other columns are the same as in Table 2. The optimal F1 scores for each donor genome by using different window sizes are

highlighted. *WS, window size.

TABLE 4 | Performance of different methods over 118 genomes with known HGT genomic islands in Langille et al. (2008) based on (a) optimal accuracy and (b) optimal

F1-score.

Method (a) Based on accuracy (b) Based on F1 score

Precision Recall Optimal accuracy Precision Recall Optimal F1 score

CVT (3) 0.68 0.41 0.84 0.54 0.60 0.57

CVT (4) 0.62 0.31 0.83 0.50 0.56 0.53

d∗2(3, 1) 0.72 0.38 0.85 0.57 0.58 0.58

d∗2(4, 1) 0.72 0.45 0.86 0.58 0.63 0.61

Ma(5) 0.67 0.26 0.83 0.48 0.68 0.56

Eu(5) 0.58 0.46 0.83 0.50 0.63 0.55

d2(5) 0.60 0.30 0.82 0.45 0.67 0.53

The second and third columns show the precision and recall to achieve the optimal accuracy given in the fourth column. The fifth and sixth columns show the precision and recall

corresponding to the optimal F1-score given in the seventh column.

Evaluation of Different Methods Based on E. faecalis

V583 With Known Seven HGT Genes
In E. faecalis V583, a genomic region that contains 7 genes
(EF2293-EF2299) conferring vancomycin resistance to E. faecalis
has been known to have been horizontally transferred (Tsirigos
and Rigoutsos, 2005). In this case, we calculated the distance
between each gene and the E. faecalis V583 genome using
different methods. We then ranked all 3112 E. faecalis V583
genes by the distance in descending order where the first gene
has the largest distance to E. faecalis V583 genome. Better HGT

detection methods should give EF2293-EF2299 lower ranks.
Ranks of EF2293-EF2299 and the median and mean rank
of these 7 genes for all the methods are shown in Table 5.
d∗2(3, 1) gives lower median and mean ranks for EF2293-EF2299
than other methods. In comparison with d∗2 , the median and
mean ranks given by more commonly-used Manhanttan and
Euclidean distances are larger than 1,000, which are unreasonably
high considering the fact that the HGT proportions in most
bacteria genomes range from only 2 to 15% (Garcia-Vallvé et al.,
2000).
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FIGURE 3 | The Precision-Recall Curves (PRC) of the different methods based

on 118 genomes with known HGT genomic islands.

TABLE 5 | The distances between each gene and E. faecalis V583 genome were

calculated and genes were ranked by their distances.

Gene CVT(3) CVT(4) d∗

2(3, 1) d∗

2(4, 1) Ma(5) Eu(5) d2(5)

EF2293 607 815 688 605 854 1,001 511

EF2294 325 1,874 222 447 1,302 1,373 719

EF2295 138 855 109 219 1,169 1,273 520

EF2296 379 1,613 313 385 1,392 1,491 850

EF2297 618 2,638 665 1,245 1,117 1,165 551

EF2298 660 1,355 702 772 1,978 1,924 1,025

EF2299 687 1,084 477 607 814 820 384

Median 607 1,355 477 605 1,169 1,273 551

Mean 487.7 1,462.0 453.7 611.4 1,232.3 1,292.4 651.4

The first to seventh rows show the ranks of EF2293-EF2299 among all E.faecalis V583

genes calculated by different methods. The eighth and ninth rows show the median and

mean of the ranks of the seven genes.

DISCUSSION

Kmer-based alignment-free methods have been used to detect
horizontal gene transfers in bacterial genomes (Dufraigne et al.,
2005; Tsirigos and Rigoutsos, 2005; Rajan et al., 2007). There
are a number of advantages of kmer-based methods over other
alignment-free methods or alignment-based methods. First of
all, kmer-based methods are time efficient and memory friendly
by avoiding alignment and topological data analysis. Secondly,
kmer-based methods do not rely on phylogenetic relationships
among multiple organisms, which enables them to detect HGTs
from a single unannotated genome. In addition, kmer-based
methods are able to detect HGTs in both coding and non-coding
regions.

In this study, we investigated the potential of using recently
developed alignment-free sequence comparison statistics, in
particular, CVTree, d∗2 and dS2, that adjust for the background
word frequencies, for horizontal gene transfer detection.
Although many composition based methods have been used for
HGT detection, to the best of our knowledge, the background
adjusted statistics have not been used for HGT detection.

We first generated simulated artificial genomes with HGT by
using E. coli K12 as the host genome and inserted sequences
uniformly chosen from other genomes into it. We then evaluated
the performance of kmer-based alignment-free methods of
different distance measures, kmer length and Markov order
on HGT detection of artificial genomes. Based on the results,
we reduced our set to CVTree(k = 3), CVTree(k = 4),
d∗2(k = 3, m = 1), d∗2(k = 4, m = 1), Ma(k = 5), Eu(k = 5),
and d2(k = 5) for more detailed comparisons including influence
of different factors and their performance on real data sets.

As a conclusion, we evaluated the performance of kmer-based
alignment-free methods with different dissimilarity measures,
kmer length and Markov order on both artificial genomes and
real data sets. Our results suggest the background adjusted
dissimilarity measures, CVTree, d∗2 and dS2, generally perform
better than the non-background adjusted measures based on
Euclidean and Manhattan distances or d2. In terms of word
length, k = 3 or k = 4 seems to perform well in both our
simulation and real data analysis.

Although kmer-based alignment-free methods for HGT
detection are more time and memory efficient than alignment-
based methods and they do not depend on genome annotation
or evolutionary tree, they also have limits. First of all, their
performances depend on the evolutionary distance between host
and donor genomes. Our study showed alignment-free methods
are suitable for HGT detection when host and donor genomes
are in different order levels. In addition, the size of sliding
window is the smallest length of HGT that can be detected by
the kmer-based alignment-free methods, so they are not suitable
for identifying HGT smaller than 5 kbp. Furthermore, they
are not likely to detect HGT that occurred in the very distant
past, as these sequences transferred from the donor genome will
ameliorate to reflect the DNA composition of the host genome
over time (Lawrence and Ochman, 1997). Finally, the detected
atypical regions could be explained by some other reasons. For
example, rRNA regions can have their own genomic signatures
(Nicolas et al., 2002; Dufraigne et al., 2005), which differ from the
host signature, but this does not imply that they are horizontally
transferred.

Therefore, alignment-free methods are not aimed to replace
alignment-based methods in all cases. Instead, they are
complementary as each has unique advantages in different
scenarios and they also tend to find complementary sets of
HGT regions (Tamames and Moya, 2008). Alignment-free
methods are preferred when no evolutionary trees are available
or genomes are not annotated, which is common in many
studies. The findings of our study suggest CVTree with word
length of 3, d∗2 with word length 3, Markov order 1 and d∗2
with word length 4, Markov order 1 perform well in most
situations.
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