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ABSTRACT

SH3-Hunter (http://cbm.bio.uniroma2.it/SH3-
Hunter/) is a web server for the recognition of
putative SH3 domain interaction sites on protein
sequences. Given an input query consisting of one
or more protein sequences, the server identifies
peptides containing poly-proline binding motifs
and associates them to a list of SH3 domains, in
order to compose peptide–domain pairs. The
server can accept a list of peptides and allows
users to upload an input file in a proper format.
An accurate selection of SH3 domains is available
and users can also submit their own SH3 domain
sequence.
SH3-Hunter evaluates which peptide–domain pair
represents a possible interaction pair and produces
as output a list of significant interaction sites for
each query protein. Each proposed interaction site
is associated to a propensity score and sensitivity
and precision levels for the prediction. The server
prediction capability is based on a neural network
model integrating high-throughput pep-spot data
with structural information extracted from known
SH3-peptide complexes.

INTRODUCTION

Identifying interacting partners of a given protein is a
crucial step towards the discovery of its function. Often
proteins communicate by means of protein recognition
modules (PRMs), i.e. well-conserved domains character-
ized by a specific function and interacting with short
peptides. The SH3 domain family is one of the most
representative PRMs, having a pivotal role in intracellular
signal transduction and being widely involved in pathol-
ogies such as cancer and AIDS. Several experimental
strategies have been proposed to investigate the issue of
SH3 domains specificity: from low-throughput analyses

focused on specific SH3 domains (1,2) to high-throughput
approaches where libraries of peptides are synthesized and
their binding ability is confirmed by different in vitro
experiments (3–5). The high-throughput approaches,
however, work within the limits of the current technology
for peptide synthesis. The number of short peptides
matching the recognition consensus, even in the relatively
simple yeast proteome, is in the order of 107 (4) while
domain or protein family databases contain thousands of
SH3 domains. Furthermore, computational methods have
been developed (6–8) to help restrict the sequence space of
putative SH3 domain binders and to provide experimen-
talists with powerful tools for the construction of
appropriate peptide libraries and for the investigation of
domain–peptide interactions.
In such scenario, we present a new web server that

permits the inference of SH3 domain interaction specifi-
city on protein sequences. The server is based on a
recently published well-performing neural network pre-
dictor (8). SH3-Hunter can be used either to predict
putative SH3 interactors or to help validating high-
throughput experiments, or to support molecular bio-
logists in defining peptide libraries. Furthermore,
SH3-Hunter can also be interrogated to investigate the
specificity of uncharacterized SH3 domains.

RESULTS

The SH3-Hunter web server analyzes protein sequences to
identify putative SH3 domain binders. Users can submit
one or more sequences, or even a list of peptides as
possible interactors of one or more SH3 domains. To
submit large collections of sequences or peptides, users
can directly upload an input file. The input sequences can
be processed in simple or advanced mode (see Figure 1).
In simple mode, a list of inferred interactions is proposed
with the whole list of SH3 domains available (see http://
cbm.bio.uniroma2.it/SH3-Hunter/help.html). Otherwise,
a fine selection of test domains can be prepared with the
possibility for the user to submit its own SH3 domain.
In both cases, proteins are first scanned by a pattern
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matching algorithm to detect poly-proline motifs (9,10).
The identified motifs are then combined to the complete
list of SH3 domain (scan) or to selected domains
(advanced scan) to arrange the input information for the
neural network predictor (8). The output consists of a list
of significant domain–peptide pairs that the predictor
recognizes as reliable interacting pairs.

Input

The server requires input in a single protein sequence,
a list of proteins or a list of peptides. The submitted
input can be pasted on the available textbox area or
uploaded as a text file. Four types of formats are

allowed for the input sequences: FASTA, bare sequence
(sequence without header), interspersed data
(as GenBank/GenPept flatfile) and SwissProt flatfile
format (as detailed in the server’s help). In the quick
scan application, this represents the only input informa-
tion that users have to supply. For advanced scan, after
the sequence submission, users are required to submit the
sequence of an SH3 domain or to select specific SH3
domains from the available server list and, if a list of
proteins or peptides was submitted, specific domain–
sequence pairs can be chosen for evaluation. By default,
each submitted protein sequence is checked to verify the
presence of one or more proline-rich peptides conforming

Figure 1. The SH3-Hunter web server. The home page in the background presents the input session characterized by the upload file button and,
below, by the text area where the user can paste directly the protein sequences. On the right of the text area, the user can select the peptide filter used
to identify putative interacting sites and below the two buttons for scan mode and advanced scan mode represents the two available kinds of
submission. The first type of submission allows users to analyze the query sequence checking its interaction propensity with the entire list of
SH3-domains of the server (see Table H1 in http://cbm.bio.uniroma2.it/SH3-hunter/help.html). The corresponding output page (on the right)
represents a list of significant interaction sites on the query protein with different domains. The last three columns in the output page define
respectively the significance (score) and the reliability (sensitivity and precision) of the prediction. On the right side of the table, a graphical
representation combines sensitivity and precision levels. Above the results table, two buttons allow users respectively to download the results in a text
format and to recover the input page for a new search. The advanced scan submission requires an intermediate session (bottom part in the figure) in
which users are required to select one or more among the available SH3 domains. An input text line is also provided for the submission of a user
SH3 domain. If a list of proteins is provided in input, one or more of them can be selected for prediction. Then, the scan button submits the chosen
peptide–domain pairs to the neural network predictor, thus producing the output list.
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to class I or class II binding motifs ([RKHYFW]xxPxxP
and PxxPx[RK], respectively). If consensi are not found,
the submitted sequence is considered as non-interacting
and a warning message is visualized. However, if the
requirement of this filter is considered too stringent, users
can relax the filter by choosing the PxxP motif for the
peptide selection. If proline-rich peptides are identified,
every one of them is combined with an SH3 domain from
either the complete server’s list or a user-defined sub list.
If an SH3 domain is added by the user, its possible
interactions with the selected peptides are evaluated. Each
resulting peptide–domain pair represents an input for the
predictor. Each input is transformed into a set of real
numbers (see Methods) that can be classified by the neural
network.

Output

Each peptide–domain pair undergoes the predictor
evaluation and is reported in output if the score is
higher than a given threshold. Therefore, the output
consists of a list of peptide–domain pairs, sorted
according to the predictor’s score, which is a measure
of the reliability of the inferred interaction (see Figure 1).
For a more correct interpretation of the results, each
score is also associated to the sensitivity and precision
levels of the neural network prediction. The sensitivity
measures the expected true positives rate detected by the
neural network with that given score, while the precision
measures the reliability of the prediction. The two
measures clearly have opposite tendencies and the user
can decide whether to collect results with higher
sensitivity, involving much more true positives as
possible, but with a higher risk of false positives, or
select only results with higher precision levels, avoiding
false positives but with a higher probability to loose a
portion of true positives. A graphical representation of
sensitivity/precision levels lies at the right margin of the
numerical measures.

Users must be aware of the fact that the absence of any
output for their submissions means that no interaction
scored above the chosen significance threshold. However,
the full list of results can be downloaded as a text file.

METHODS

SH3-Hunter is based on a neural network predictor, which
infers the specificity of interaction between a peptide
and an SH3 domain (8). The neural model integrates
both sequence and structure information of the peptide–
domain pair, involving a knowledge-based numerical
encoding of the input information. The sequences of
each peptide-SH3 pair are processed by selecting only
amino acids lying on the interaction surface and
involved in an inter-molecular contact. Each peptide–
domain pair is represented by a fixed number of contact
residue–residue pairs, the former belonging to the peptide,
the latter to the domain (8). Contact residues on SH3
domain and peptide can be identified directly on crystal-
lized SH3 domain–peptide complexes or indirectly by
homology modeling (8,11), while the numerical encoding

of the residue–residue pairs is based on their occurrence
in a dataset of interacting and non-interacting peptide–
domain pairs (8). Contact information for a list of
SH3 domains were previously evaluated and represent
a fundamental knowledge for the server prediction
(see Table H1 in http://cbm.bio.uniroma2.it/SH3-hunter/
help.html). The list will be progressively upgraded in
order to extend interaction prediction to a wider number
of SH3 domains.
The server application consists of a three-step process

aimed at the discovery of SH3 domain–binding sites on
protein sequences.
The first step consists of a pattern matching algorithm

that scans the submitted proteins in order to check if they
contain either the class I [þ@]xxPxxP or the class II
PxxPx[þ] patterns (9,12), where theþ identifies positively
charged amino acids (His, Arg or Lys), @ corresponds to
aromatic amino acids (Phe, Tyr, Trp), x means any amino
acid and P is proline. Note that in the class I pattern, the
first position is also extended to aromatic residues with
respect to the standard motif. Such choice is motivated by
pep-spot experimental results (4) on yeast SH3 domains.
The result of the first step provides a list of 10-residue long
peptides conforming to the SH3 typical binding motifs.
The presence of such a filtering procedure is required since
the neural network predictor was trained by class I and
class II interaction data (4,13). From a methodological
point of view, a neural network is able to generalize to
some extent its predictive capability (14). Therefore
we expect that SH3-Hunter will produce meaningful
prediction even for peptides that do not fit precisely with
the class I and class II motifs. However, in order to limit
the loss of reliability of the server predictions, we
allow a different kind of filter based only on the PxxP
consensus. Users can select the appropriate filter for their
submission. Sequences not conforming to the chosen
filter are discarded. It is worth noting that the use of the
PxxP filter produces predictions of lower reliability.
Besides, the PxxP filter does not avoid the class I and
class II distinction: the two types of binding orientations
are still considered by selecting class I or class II peptides
as showing the PxxP motif respectively at the C terminal
or at the N terminal, according to the peptide alignment
requirements of the predictor (8).
In the second step, each peptide is combined to the SH3

domains of the server’s list, to compose a peptide–domain
pair. This corresponds to the simple ‘scan’ submission.
An ‘advanced scan’ submission is also available, which
permits the selection of one ore more SH3 domains. Here
the user can submit its own SH3 domain sequence, which
can be appended to the selected domains from the server list
or analyzed separately (see Figure 1). A previously and
accurately evaluated multiple alignment of SH3 domains is
used as a profile to align the user domain and infer its
contact positions (see earlier discussion and 8). Specifically,
the server uses the ClustalW algorithm (15) to provide the
alignment and assigns the name Sh3Usr to the user
submitted domain. We want to stress that the identification
of surface contact positions of the user domain is based only
on the domain sequence information and on an automated
alignment procedure. For a more reliable prediction, users
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are encouraged to submit new SH3 domain sequences via
email asking for a manual alignment.
Furthermore, if a list of proteins or peptides is submitted,

the advanced option allows the selection of one or more list
of members. Finally, each peptide–domain pair is trans-
formed in a set of real variables (8) representing the input of
the neural network predictor.
The third step applies the neural network described in

(8) to the peptide–domain pairs. The neural network is
trained by a dataset of experimentally verified interacting
and non-interacting peptide–domain pairs (4,13). Input
peptide–domain pairs are processed and an output
response is given that measures the peptide–domain
interaction propensity. Each propensity is then standard-
ized and normalized in order to obtain a score ranging
between 0 and 1.

Sensitivity and precision measures

The neural network model is characterized by different
levels of sensitivity and precision, corresponding to
specific thresholds on its output score. Sensitivity is
defined as the rate of true positives recognized by the
neural network with respect to the total number of true
positives: TP/(TPþFN), where TP and FN represent
respectively true positives and false negatives. Similarly,
precision is defined as the fraction of true positives
recognized by the model with respect to the number of
cases that the model classifies as positives: TP/(TPþFP),
where FP identifies false positives. TP, FN and FP clearly
depend on the value of a decision threshold: if the output
of the neural network is higher than or equal to
the threshold value, the peptide–domain pair is classified
as interacting, otherwise it is classified as non-interacting.
We defined a set of thresholds, which can be used to
interpret the output of the neural model (i.e. the score
assigned to each peptide–domain pair) and the corre-
sponding values of sensitivity and precision (see Table H2
in http://cbm.bio.uniroma2.it/SH3-hunter/help.html).
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