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Abstract

Decreasing ambient fine particulate matter (PM2.5) concentrations over time together with 

increasing life expectancy raise concerns about temporal confounding of associations between 

PM2.5 and mortality. To address this issue, we examined PM2.5-associated mortality risk ratios 

(MRRs) estimated for approximately 20,000,000 US Medicare beneficiaries, who lived within six 

miles of an Environmental Protection Agency air quality monitoring site, between December 2000 

and December 2012. We assessed temporal confounding by examining whether PM2.5-associated 

MRRs vary by study period length. We then evaluated three approaches to control for temporal 

confounding: (1) assessing exposures using the residual of PM2.5 regressed on time; (2) adding 

a penalized spline term for time to the health model; and (3) including a term that describes 

temporal variability in PM2.5 into the health model, with this term estimated using decomposition 

approaches. We found a 10 μg/m3 increase in PM2.5 exposure to be associated with a 1.20 

times (95% confidence interval [CI] = 1.20, 1.21) higher risk of mortality across the 13-year 

study period, with the magnitude of the association decreasing with shorter study periods. MRRs 

remained statistically significant but were attenuated when models adjusted for long-term time 

trends in PM2.5. The residual-based, time-adjusted MRR equaled 1.12 (95% CI = 1.11, 1.12) 

per 10 μg/m3 for the 13-year study period and did not change when shorter study periods were 

examined. Spline- and decomposition-based approaches produced similar but less-stable MRRs. 

Our findings suggest that epidemiological studies of long-term PM2.5 can be confounded by long­

term time trends, and this confounding can be controlled using the residuals of PM2.5 regressed on 

time.
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Introduction

Over the last 2 decades, ambient air pollution concentrations have decreased steadily across 

the United States primarily as the result of emissions controls instituted as part of the Clean 

Air Act Amendments. In the United States, PM2.5, annual concentrations have dropped by 

24% from 2001 to 2010, with 2010 mean concentrations ranging, by location, between 3 and 

18 μg/m3.1 These lower concentrations are projected to result in substantial health benefits. 

A 2011 US Environmental Protection Agency report, e.g., estimated that the Clean Air Act 

Amendments will prevent 230,000 early deaths in 2020, with most early deaths attributable 

to reductions in ambient PM2.5.1

Despite these reductions, PM2.5 concentrations continue to be linked with adverse health 

impacts.2–6 Numerous multicity studies, including the American Cancer Society, Six 

Cities, Women’s Health Initiative, Nurses’ Health Study, and National Institutes of Health­

American Association of Retired Persons (NIH-AARP) Diet and Health Cohort, have 

shown positive associations between long-term exposure and mortality.2–7 The observed 

associations in these studies vary widely, with null associations in Health Professionals 

Follow-Up Study prospective cohort8 and significant effect estimates ranging from a 3% 

increase (per 10 μg/m3 in PM2.5) in the NIH-AARP cohort7 to 26% in Nurses’ Health 

Study.9 Variability in effect sizes has been attributed to differences in cohort characteristics, 

PM2.5 composition, modeling approaches, and confounding by correlated air pollutants or 

unmeasured covariates.10–13

Another possible, but little studied, explanation for the variation in PM2.5-associated 

mortality risks is confounding by long-term time trends in both PM2.5 and mortality, 

where decline in ambient PM2.5 concentrations is accompanied by increased life expectancy. 

Several studies provide evidence of the impact of long-term time trends on PM2.5-associated 

mortality.14 In a simulation study, Griffin et al15 showed that the length of the study 

period may adversely affect the performance of the Cox proportional hazards model, 

increasing bias and mean and squared error (MSE) and reducing power as the strength 

of the linear association between exposure and time increases, as may occur with the 

temporal trends observed for PM2.5. Similarly, linear models may also produce biased 

effect estimate, if linear trends exist between both PM2.5 and time, and mortality and 

time. Consistent with this, Janes et al,16 Greven et al,17 and Pun et al18 found evidence 

of unmeasured confounding of the association of PM2.5 and all-cause mortality. They 

did so by decomposing PM2.5 into two orthogonal components describing temporal and 

spatiotemporal variability, which they term “global” and “local” PM2.5, respectively. When 

both terms were included in the health model, the coefficient for temporal PM2.5 was larger 

and statistically significant compared with the spatiotemporal coefficient, which was null. 

The unequal temporal and spatiotemporal coefficients led the authors to conclude that PM2.5 
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associations with mortality were confounded by unmeasured variables, such as long-term 

time trends.

To examine the possibility that temporal confounding is present in the mortality and PM2.5 

relationship, we analyzed data for over 20 million Medicare enrollees from 2000 to 2012 

to assess the impact of long-term time trends on the association between 1-year–averaged 

PM2.5 concentrations and mortality.

Methods

The protocol was reviewed and approved by the Institutional Review Boards of Northeastern 

University.

Medicare beneficiary and mortality data

We obtained monthly mortality counts for 2000–2012 in the United States (except for 

Alaska and Hawaii) using data from the Centers for Medicare and Medicaid Services 

Medicare enrollment file, which provides demographic (age and sex), ZIP code of residence, 

and survival, including date of death and data for all Medicare enrollees (≥65 years).

PM2.5 exposure

We compiled daily PM2.5 concentrations from Environmental Protection Agency’s Air 

Quality System from 2000 to 2012. We did so for monitoring sites (“site”) with daily 

measurements for at least eight calendar years, with each year having 9+ months with 

4+ daily measurements. For the 798 sites that met these criteria, we calculated long-term 

concentrations following Greven et al.17 Briefly, we smoothed the time series at each site 

using a linear regression with the daily pollutant values as the response, and thin plate 

splines of time with four degrees of freedom per year as the predictor. For gaps longer 

than 90 days, we smoothed the PM2.5 time series before and after each gap separately. We 

used the predicted daily values to calculate yearly moving averages for PM2.5 each month. 

Yearly averages were considered valid when 350+ days were available. Sites were classified 

based on their geographical region: “East” of the Mississippi River, “Center” between the 

Mississippi River and the Sierra Nevada mountain range, and “West” of the Sierra Nevada 

mountain range.17

Data linkage

We linked data for Medicare beneficiaries (65–120 years) to PM2.5 monitors that met the 

study criteria for each month of the study, which restricted our sample to those beneficiaries 

living in ZIP codes with centroids within six miles of a valid monitor. We then linked 

data for beneficiaries living in these ZIP codes to the closest corresponding site’s PM2.5 

concentration for the previous 12-month period ending in that study month. We performed 

the ZIP code identification and linkage by year to reduce exposure error introduced by 

residential moves and changes in ZIP code boundaries. For each month, we calculated the 

total number of Medicare beneficiaries at risk and the number of deaths associated with each 

site.
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Statistical analysis

All analyses were conducted for the entire study population living in the United States 

as well as separate analyses for Medicare beneficiaries living in each of three US regions 

(East, Central, and West). In general, we examined the variation in MRR estimates per 10 

μg/m3 increase in exposure; although for analyses comparing MRRs for base to those for 

time-adjusted models, we make comparisons based on an interquartile range (IQR) increase 

in exposure given their different variabilities. We further present graphical summaries of this 

variation using linear regression. SAS statistical software package (SAS Institute Inc., Cary, 

NC, 2003) and R-Studio, Inc., (Boston, MA) were used for all analyses.

Base models

To examine the association between PM2.5 exposure and monthly rate of all-cause mortality, 

we fit an age-stratified log-linear model including offset terms for the size of the population 

at risk as our base model:

logE Y atc = log ℎ0
c a + βPMt

c + βcBRFSS (1)

where (Yat
c) is the number of deaths at time t, in age category a, associated with site C. 

The exposure measure PMt
c is the 1-year average PM2.5 concentration at site C, preceding 

the month (t) of death. For each age group a and site C, mortality counts are offset by 

both the baseline hazard of death, ℎ0
c a , and the total population at risk at time t, Nat

c . The 

Poisson model was selected (over the quasi-Poisson) as overdispersion parameter values 

varied from 1.02 to 1.25. To reduce the computational burden of this large dataset, we 

assumed a constant baseline hazard of death for all age groups above 90 years of age and 

models were fit via the backfitting algorithm.17–19

To adjust for potential, measured confounders, we performed additional analyses adjusting 

for county-level behavioral covariates from the Selected Metropolitan/Micropolitan Area 

Risk Trends of the Behavioral Risk Factor Surveillance System (BRFSS), including 

proportions of non-whites, current smokers, diabetes, asthma, individuals possessing health 

care plans, and mean income and body mass index.20 βc is the vector of BRFSS adjustment 

variables. Because the BRFSS data are only available for 465 of the 798 sites with PM2.5 

monitoring data, we performed these analyses using the corresponding subset of the cohort. 

As appropriate, we converted results from previous studies into percent change per 10 

μg/m3 PM2.5 increase to compare with our results.16–18 Additionally, we assessed whether 

unmeasured confounding of our base models remained by decomposing PM2.5 into two 

orthogonal components that capture temporal and spatiotemporal variability, following 

methods described by Greven et al.17 Briefly,

• The temporal component describes national trends in exposures by centering the 

average exposure nationally in month t, PMt, by the average concentration for all 

sites over the entire study period, PM:

Temporal PMt = PMt − PM
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• The spatiotemporal component describes site-specific temporal trends in 

exposure by centering the exposure in month t at site c, PMt
C, by the average 

exposure at site c, PMc, and the national trends, PMt − PM :

Spation‐temporal PMtC = PMtC − PMc − PMt − PM

We included the temporal and spatiotemporal components jointly in our base models and 

compared their effect estimates, interpreting a difference in their estimates as evidence of 

unmeasured confounding.17

Evaluation of temporal confounding

We evaluated long-term time trends as a potential source of unmeasured confounding. To do 

so, we ran our base models using data for the entire 13-year study period (2000–2012) and 

for shorter study periods, ranging between 3 and 12 years in length, with each of these study 

periods ending in 2012 (e.g., 2001–2012, 2002–2012, 2003–2012, etc., to 2009–2012). We 

compared mortality risk ratios (MRRs) for the entire 13-year period with those from each of 

these shorter study periods, assuming that in the absence of temporal confounding, MRRs 

would be uniform irrespective of the study period length.

In addition to fitting our base model, we also examined three approaches to control for 

long-term time trends in PM2.5. In our first approach, we adjusted for long-term time trends 

in PM2.5 using a new exposure measure calculated as the residual rtc of the linear regression 

of PM2.5 on time in 4-year intervals December 2000–2004, 2005–2008, and 2009–2012:

PMtc = β0 + β1year2005–08 + β2year2009–12 + ttc

The term rtc was subsequently used as the exposure measure in the log-linear model:

logE Y at
c = log ℎ0

c a + βrtc (2)

Our second approach adjusted for long-term time trends in PM2.5 by adding a penalized 

spline term for time, δc(t), modeled as two knots per study year, to our base log-linear 

model:

logE Y at
c = log Nat

c + log ℎ0
c a + β1PMt

c + β2δ t (3)

For our third approach, we included the temporal component of decomposed PM2.5 into the 

base model as follows:

logE Y at
c = log Nat

c + log ℎ0
c a + β1PM2.5 + β2 Temporal PMt (4)

where “temporal PM2.5” was calculated by decomposing PM2.5 into its orthogonal temporal 

and spatiotemporal components as above and in the study by Greven et al.17

Eum et al. Page 5

Environ Epidemiol. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each of these time-adjusted approaches, we ran models using data for study periods 

ranging between 3 and 13 (2000–2012) years in length and examined whether MRRs varied 

by length of study period.

Sensitivity analyses

We ran several sensitivity analyses to examine alternate specifications of our methods to 

adjust for long-term time trends in PM2.5. Specifically, for the calculation of residuals for 

our residual-based approach, we adjusted for time as each year rather than for each 4-year 

interval as in our main analysis:

PMtc = β0 + β1year2001 + β2year2002 + ⋯ + β12year2012 + rt1
c

as well as for years grouped into 2-, 3-, and 6-year intervals:

PMtc = β0 + β1year2003–04 + β2year2005–06 + ⋯ + β5year2011–12 + rt2
c

PMtc = β0 + β1year2004–06 + β2year2007–09 + β3year2010–12 + rt3
c

PMtc = β0 + β1year2007–12 + rt6
c

We subsequently used the residuals from these sensitivity analyses as exposure measures 

in our log-linear health models and compared their ability to control for confounding by 

time trends. Additionally, we assessed our ability to account for long-term time trends using 

penalized splines for time calculated using three, four, or five knots instead of the two knots 

used in our main analysis.

Results

We examined 20.7 million Medicare enrollees, observing 5.5 million deaths between 

December 2000 and December 2012 near 798 sites across the contiguous United States 

(Table 1). Monthly, our analyses include on average over 9 million enrollees. PM2.5 

concentrations varied regionally, with sites located in the East having the highest mean 

concentrations. Yearly PM2.5 concentrations decreased steadily during our study period 

(Figure 1), with larger decreases in the East and West as compared to Center. Declines 

in PM2.5 concentrations were steepest between 2000 and 2009, with yearly concentrations 

more uniform during 2010–2012. The correlation between PM2.5 and the residual-based 

exposure measure equaled 0.92, suggesting that this residual-based exposure measure 

explained most of the variation in PM2.5.
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Association of PM2.5 and mortality

Base models—We found that a 10 μg/m3 increase in 1-year PM2.5 is significantly 

associated with a 1.20 times (95% CI = 1.20, 1.21 per 10 μg/m3) higher rate of mortality in 

our Medicare cohort when data from 2000 to 2012 were analyzed (Table 2). Associations 

varied by geographic region, with MRRs higher in the Central (1.27; 95% CI = 1.26, 1.28) 

and Eastern (1.26; 95% CI = 1.25, 1.26) regions compared with the Western United States 

(1.12; 95% CI = 1.11, 1.12). Associations were similar when models additionally adjust 

for behavioral covariates (Table S1; http://links.lww.com/EE/A4), suggesting that behavioral 

covariates did not confound associations of PM2.5 and mortality.

Despite this, we showed potential confounding of the association of PM2.5 and mortality 

by unmeasured variables. When PM2.5 is decomposed into its spatiotemporal and temporal 

components, we estimated larger MRRs for the temporal as compared to spatiotemporal 

component of PM2.5 (Table S1; http://links.lww.com/EE/A4) for both base and BRFSS­

adjusted models, consistent with the previous study.17 In base models, e.g., a 10 μg/m3 

increase in temporal PM2.5 corresponded to a 1.54 times (95% CI = 1.52, 1.56) higher rate 

of mortality, while spatiotemporal PM2.5 was associated with only a 1.07 times (95% CI = 

1.06, 1.09) higher rate.

Evaluation of temporal confounding

We showed PM2.5-associated MRRs increase with the length of the study, consistent with 

the hypothesis of confounding by long-term time trends in PM2.5. MRRs were lowest for 

the 3-year study periods (1.12; 95% CI = 1.11, 1.14) and increase steadily with longer 

study periods, resulting in a 0.08 higher MRR for the 13-year as compared to 3-year 

study period (Figure 2). Similar trends between MRRs and length of study period were 

observed when analyses were performed by geographic region, although these trends were 

less pronounced in the Central United States, consistent with the more gradual decline in 

PM2.5 concentrations in the Central Unites States over the 13-year period (Figure S1; http://

links.lww.com/EE/A4).

When models were adjusted for long-term time trends, MRRs remain statistically significant 

(Table 2) but were slightly attenuated (Table S2; http://links.lww.com/EE/A4). For the 

residual-based approach, we found the MRR to equal 1.04 (95% CI = 1.04, 1.04) per 

IQR increase in time-adjusted PM2.5, as compared to 1.08 (95% CI = 1.08, 1.08) per IQR 

increase in the base model. MRRs estimated from the penalized spline- and decomposition­

based approaches were also attenuated, with MRRs of 1.01 (95% CI = 1.01, 1.02) and 1.03 

(95% CI = 1.02, 1.03) per IQR increase, respectively (Table S2; http://links.lww.com/EE/

A4). While consistently lower, MRRs for each of the time-adjusted approaches follow the 

same regional patterns as with the base models, as time-adjusted MRRs were highest in 

the Central United States and lowest in the Western United States (Table 2; Figures S2–S4; 

http://links.lww.com/EE/A4).

When analyses were performed across varying study periods, we demonstrated that the 

residual-based approach produces MRRs that are nearly uniform (Figure 2). The residual­

based MRRs for the 13- and 3-year study periods, e.g., were almost identical, with MRRs 
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of 1.12 (95% CI = 1.11, 1.12) and 1.12 (95% CI = 1.11, 1.14) for a 10 μg/m3 increase in 

exposure, respectively. In contrast to both the base and residual-based models, MRRs for 

the spline- and decomposition-based approaches decrease with longer study periods. MRRs 

from the spline-based approach decrease from 1.09 (95% CI = 1.07, 1.10) for 3-year study 

period to 1.03 (95% CI = 1.02, 1.04) for 13-year study period. The decomposition-based 

approach shows a similar decline in MRRs, with MRRs for 3- and 13-year study periods 

equaling 1.11 (95% CI = 0.10, 1.12) and 1.06 (95% CI = 1.06, 1.07), respectively.

Sensitivity analyses

Sensitivity analyses demonstrated that alternate calculations of residual-based PM2.5 

exposures and of penalized splines produce similar MRRs. Residual-based exposures 

calculated by regressing PM2.5 concentrations on time as 1-, 2-, or 3-year intervals result 

in similar MRRs as models controlling for time in 4-year intervals (Figure 3). Residual­

based exposure with 6-year intervals showed slightly higher and less-consistent MRRs for 

longer study periods, suggesting less reliability than with the other intervals. Residual-based 

exposures calculated using 4-year intervals, however, were more stable, as evidenced by 

lowest variation in MRRs across study period length. It is also notable that residual-based 

exposure using 4-year time intervals requires fewer parameters than 1-, 2-, or 3-year 

intervals, suggesting greater statistical efficiency. For spline-based models, increasing the 

number of knots per year from two to three or four had little effect on the MRR, thus we 

selected two knots for better efficiency (results not shown).

Discussion

We showed consistent, statistically significant, and positive associations between 1-year 

PM2.5 exposures and the rate of all-cause mortality among 20.7 million Medicare 

beneficiaries living across the United States from 2000 to 2012. In our base models, the 

mortality rate ratio associated with a 10 μg/m3 increase in 1-year average PM2.5 equaled 

1.20 (95% CI = 1.20, 1.21). Consistent with our hypothesis that long-term time trends in 

PM2.5 positively confound the association between PM2.5 and mortality, we found PM2.5­

associated rates of mortality to be associated with the length of the study period, with 

higher MRR per 10 μg/m3 for 13-year as compared to 3-year study periods. Of the three 

examined approaches, we found the residual-based approach to best control for temporal 

confounding, as evidenced by its statistically significant and uniform MRRs across all study 

period lengths, with an MRR for the 3- and 13-year study period of 1.12 (95% CI = 1.11, 

1.14) and 1.12 (95% CI = 1.11, 1.12) per 10 μg/m3 increase in exposure, respectively. Note, 

however, that based on our analysis alone, it is not possible to determine which approach is 

best suited to control for temporal confounding, indicating the need for further examination, 

possibly through a simulation study.

Our findings add to the body of evidence showing that long-term PM2.5 exposures are 

associated with increased mortality,2–7,9–13 lending additional support to findings from the 

American Cancer Society (ACS) cohort,2 the Nurses’ Health Study,5 and the Medicare 

cohort.4 Although no studies to date have explicitly examined the possible impact of 

temporal confounding on these associations, several studies have indirectly examined this 
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possibility. In a study by Lepeule et al,6 e.g., the original21 and initial follow-up22 of the 

Six Cities Study were extended to include 11 additional years of follow-up, comprising 36 

years in total (1974–2009). MRRs were estimated for the entire 36-year study period and 

for four, equally divided 9-year time periods. While overall PM2.5 concentrations decreased 

over the 36-year study period, this decrease was uniform neither by city nor over time. 

PM2.5 concentrations exhibited strong downward trends over time in only the three most 

polluted cities—Steubenville, Kingston-Harriman, and St. Louis, with these trends steepest 

and most consistent between 1979 and 1992 and to a lesser extent 2000–2009. The authors 

found an overall MRR for all-cause mortality of 1.14 (95% CI = 1.07, 1.22) for a 10 μg/m3 

increase in 1-year PM2.5. When data for the four 9-year time periods were analyzed, MRRs 

varied widely, with values of 1.06 (95% CI = 0.96, 1.17) for 1974–1982, 1.32 (95% CI = 

1.16, 1.50) for 1983–1991, 1.11 (95% CI = 0.98, 1.27) for 1992–2000, and 1.19 (95% CI = 

0.91, 1.55) for 2001–2009. Notably, MRRs were highest during the period when temporal 

trends in PM2.5 were strongest, providing some, albeit indirect, support for our findings of 

confounding by long-term temporal trends. The increased MRR for the last 9-year interval 

compared with the full 36-year MRR may reflect aging of the cohort.

Further support is provided by results from related studies by Janes et al,16 Greven 

et al,17 and Pun et al18 who decomposed PM2.5 into its temporal and spatiotemporal 

components and found higher and statistically significant MRRs for temporal as compared 

to spatiotemporal PM2.5. The authors concluded that differences in the MRRs associated 

with temporal and spatiotemporal PM2.5 reflected residual confounding by temporally 

varying covariates. Consistent with Greven et al,17 additional adjustment for county-level 

BRFSS covariates did not reduce residual confounding, suggesting that the examined 

behavioral variables do not confound the PM2.5 mortality association. This finding, however, 

differs from that reported by Pun et al,18 who found that residual confounding decreased 

after adjustment for BRFSS covariates in models of PM2.5 and mortality. This discrepancy 

likely results from the fact that the Pun et al18 analysis assessed residual confounding 

by decomposing both PM2.5 and BRFSS data into their temporal and spatiotemporal 

components, while we decomposed only PM2.5 since our time-adjusted models already 

control indirectly for temporal trends in BRFSS data. Together, these results suggest that 

temporal trends in confounding variables are important to consider as well.

Our findings of increasing MRRs with longer study periods suggest that long-term temporal 

trends in PM2.5 concentrations may be one source of this unmeasured confounding. We 

found residual-based exposures to successfully control for these time trends in PM2.5. The 

ability of residual-based exposures to control for these time trends in PM2.5 is consistent 

with previous studies.23–25 For example, Mostofsky et al25 used a residual-based approach 

to estimate the effect of PM2.5 constituents while controlling for confounding by total 

amount of PM2.5. To do so, they regressed each constituent of interest on the total PM2.5 

in a linear model and used the residual to estimate the effect of each individual constituent 

while holding PM2.5 constant. This approach is similar to our residual-based exposure 

method, with the only difference being our focus on the effect of PM2.5 while controlling for 

the unmeasured variables associated with long-term time trends. Because the unmeasured 

confounders are not perfectly correlated with time, complete control of time (through 

indicator functions for each month) would have likely over-adjusted for any potential 
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confounding, as observed when the residual model was based on time controlled in 1-, 

2-, and 3-year intervals. On the other hand, using a coarser measure of time (such as 6-year 

intervals) may not sufficiently control for the unmeasured variables, resulting in a lack of 

independence between time trends and both PM2.5 and mortality. Our results suggest that the 

residual model controlling for time in 4-year intervals was able to provide MRR estimates 

that were least affected by study period length.

We found this residual-based method to perform better than the spline and decomposition 

approaches, both of which showed declining MRRs as study periods increased, suggesting 

that these methods over-controlled for long-term time trends. Further, by including terms for 

both PM2.5 and some adjustment for time in the model, the spline- and decomposition-based 

approaches may result in biased effect estimates, given collinearities of PM2.5 and time.26 

In our data, the correlations of PM2.5 with both the spline of PM2.5 and decomposed 

PM2.5 varied with the length of study period, with correlations for PM2.5 and the spline of 

PM2.5 equaling 0.15 for 3-year periods and increasing to 0.44 for 12-year periods. Identical 

correlations were observed for PM2.5 and decomposed PM2.5. These results suggest that the 

bias in MRRs derived from the spline and decomposed PM2.5 models increases as the study 

length increases.

Our results are limited by several factors. First, our log-linear models aggregated data 

by site and limited the number of strata for computational efficiency, thus limiting our 

ability to control for individual-level covariates. However, when we additionally adjusted 

for county-level behavioral covariates, we found similar MRRs, suggesting behavioral 

covariates did not confound associations (Table S1; http://links.lww.com/EE/A4). Second, 

individual exposure measurement error is unavoidable when using the monitor level air 

pollution data. This exposure error is likely to be small, given results from studies that 

show that PM2.5 concentrations to be moderately uniform within a given county and ambient 

PM2.5 concentrations to be strong surrogates for personal PM2.5 exposure.27 Thus, we 

expect any exposure error to bias observed associations toward the null and underestimate 

mortality risk estimates.28 Third, although bias may also be introduced by the “healthy 

worker effect” where subjects less susceptible to PM2.5 exposures remain in our study 

population for longer time periods, this bias would be in the opposite direction of the 

observed changes. Although our study could not examine the impact of temporal variation 

of PM2.5 composition on MRRs, compositional variability is unlikely to explain our findings 

given the strong dependence of MRRs on PM2.5 time trends and the inconsistent time 

trends in PM2.5-associated total carbon concentrations between 2000 and 2010 in the United 

States.29 Finally, while we found the residual model based on 4-year intervals to best control 

for temporal trends, further study, such as through a simulation study, is needed to confirm 

our findings.

Summary

We found significant associations between 1-year PM2.5 exposures and mortality. These 

associations were likely confounded by long term temporal trends in PM2.5. We successfully 

controlled for this confounding by using exposure measures based on the residual of PM2.5 

regressed on time in 4-year intervals. Controlling for long term temporal PM2.5 trends, we 
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found significant 11.7% increase in all-cause mortality among Medicare beneficiaries for 

a 10 μg/m3 increase in PM2.5. This MRR was reduced compared to the model without 

controlling for the temporal confounding. These findings demonstrate the importance and 

need to account for temporal trends in future air pollution health effect studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
One-year average PM2.5 concentrations: December 2000 to December 2012.
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Figure 2. 
MRRs per 10 μg/m3 increase in PM2.5 by length of study period: for base and time-adjusted 

models.
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Figure 3. 
MRRs per 10 μg/m3 increase in PM2.5 by length of study period: residual-based model using 

different time intervals to control for temporal trends.
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