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Introduction
Gene duplication is an important mechanism for the origin of 
novelty in evolution.1–3 When a gene is duplicated, one of the 
duplicate copies usually decays within a few million years due 
to an accumulation of deleterious mutations.4 However, dupli-
cates may be retained if they become functionally important to 
the organism.5–7 It has been suggested that duplicate genes may 
be able to carry out the original gene function, which means 
that paralogs may compensate for each other.8,9 Gene knock-
out/knockdown experiments have been conducted in multiple 
species to examine the degree of functional redundancy in 
gene families. The results suggest that the loss of function in 
genes with paralogs is associated with higher organismal sur-
vival than the loss of function in genes without any known 
paralogs (singletons), supporting the functional compensation 
hypothesis.10–16 However, Liao and Zhang17 reported that 
duplicates rarely compensate for each other in mice, which 
has been debated.18–22 Overall, experimental data have not yet 

provided definitive evidence about whether paralogous genes 
do compensate for each other in most instances.

The predictions of functional compensation can be tested 
computationally by analyzing the disease-associated genetic 
variation in humans. These variants are currently experienc-
ing negative selection in the human populations, which means 
that they constitute data of functional impact in nature. If 
functional compensation among gene family members is sub-
stantial, it is expected that fewer significant statistical associa-
tions between variants and disease phenotypes will be detected 
for proteins in multigene families than for singletons. Using 
this idea, Dickerson and Robertson23 tested the predictions 
of functional compensation and found no difference between 
the proportion of singletons and para logs implicated in dis-
eases (2% difference), supporting the conclusions of Liao and 
Zhang.17 However, they and others have suggested that recently 
diverged paralogs are less likely to be disease-associated than 
singletons and proteins with distantly related paralogs.23–26 
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These results suggest functional redundancy among young 
gene duplicates.

However, the abovementioned computational studies 
have not accounted for many potentially confounding factors. 
First, disease-associated single nucleotide variants (dSNVs) 
are found preferentially at slowly evolving amino acid posi-
tions27; thus, we expect to observe a higher frequency of 
dSNVs in more conserved proteins. This could distort com-
parisons between singletons and multigene family proteins if 
the distributions of amino acid evolutionary rates are not the 
same for these two classes. Second, the numbers of dSNVs 
found in different proteins are not expected to be the same 
because the numbers of amino acids in proteins vary by an 
order of magnitude. This means that commonly used metrics, 
such as the relative fractions of disease and nondisease proteins 
in different protein classes, are too coarse. Metrics that take 
into account the number of amino acids in proteins (sequence 
length) are necessary for more robust hypothesis testing.

In the following section, we tested the hypothesis of 
functional compensation by considering the abovementioned 
factors to better understand the genome-wide pattern of func-
tional evolution in gene families, which is vital for under-
standing genome evolution and predicting disruptive effects 
of the mutations of proteins that have paralogs.

results
We obtained a set of 15,485 human proteins and their 
homologs from 46 diverse species from the UCSC genome 
browser (see Material and Methods). For each protein, we 
also obtained a list of paralogs from the HOVERGEN 
database.28 Our set of proteins is representative of the whole 
human gene set because about half (52%) of these proteins 
have at least one paralog, a fraction that is similar to the 
overall fraction of proteins with paralogs in the human 
genome (49% in HOVERGEN database28). For each human 
protein, we computed the average rate of amino acid sub-
stitution (number of substitutions per site per billion years) 
using the interspecific amino acid sequence alignments (see 
Material and Methods). Figure 1 shows the distributions of 
evolutionary rates in singleton and multigene family pro-
teins. Overall, singletons are less conserved than multigene 
family proteins, with a ∼20% mean and ∼30% median dif-
ference (P  0.01 by two-sample Kolmogorov–Smirnov test; 
Fig. 1A). Similar patterns are observed when considering 
paralogs belonging to small (2–5) and large (.5) multigene 
families (P  0.01; Fig. 1B).

dsNVs in singletons and multigene families. We ana-
lyzed all available SNVs associated with Mendelian diseases in 
singleton and multigene family proteins. There were a total of 
47,382 dSNVs in 2,589 proteins. In these data, the proportion 
of proteins with at least one dSNV was slightly lower (2.2%) 
for singletons than that of proteins with paralogs, which is 
consistent with the recent reports.23,29 However, the number 
of dSNVs in proteins varied extensively and was found to be 

positively correlated with the protein length (P  0.05 for 
multigene family and singletons; Fig. 2). This is reasonable 
because longer proteins should have a greater chance of accu-
mulating random mutations and are, therefore, more likely to 
be classified as disease genes. Thus, we normalized the num-
ber of dSNVs by protein length to avoid any bias due to length 
differences in subsequent analyses.

We compared the number of dSNVs per 100 amino 
acid positions (dSNV density) between multigene family and 
singleton proteins. Multigene family proteins have 1.6 times 
higher density of dSNVs than detected in singleton proteins 
(0.66 and 0.42, respectively). We can statistically reject the 
null hypothesis of equal dSNV densities in singletons and 
multigene family proteins (P  0.01). However, the direc-
tion of effect is opposite to the predictions of functional 
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Figure 1. Distributions of evolutionary rates of singleton (broken line) 
and multigene family proteins (solid or dotted line). (A) Evolutionary 
rates are in the units of the number of amino acid substitutions per 
amino acid site per billion years. the mean and median of these 
distributions are 1.05 and 0.89, respectively, for singletons, and 
0.80 and 0.61, respectively, for proteins in multigene families. these 
distributions are significantly different (two-sample Kolmogorov–
smirnov test; P  0.01). (b) multigene family proteins were separated 
into those with two to five paralogs (small family; solid line) and greater 
than five paralogs (large family; dotted line). The mean and median of 
these distributions are 0.75 and 0.60, respectively, for the proteins from 
the small multigene families (two to five paralogs) and 0.87 and 0.63, 
respectively, for the proteins from the large multigene families (greater 
than five paralogs). These distributions are significantly different from 
the distribution for singletons (P  0.01).
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compensation from paralogous genes in multigene families, 
as the multigene family proteins contained significantly more 
dSNVs than singletons.

We tested the influence of outliers on this result by 
excluding all proteins with .0.5 dSNVs per amino acid. This 
reduced the number of proteins slightly (131 proteins were 
excluded), but the ratio of multigene family and singleton 
protein dSNV densities remained unchanged (1.6; P  0.01).  
We, nevertheless, excluded all proteins in which the number 
of dSNVs per position was .0.5 in all subsequent analyses to 
remove the influence of proteins with unusually high dSNV 
density when comparing the patterns between different classes 
of proteins.

We also tested if the observed patterns reflect the muta-
tions of specific amino acids (eg, arginine) that comprise a 
major fraction of the dataset of dSNVs (16%). Arginine codons 
contain a CpG dinucleotide in the first two positions and are, 
thus, more prone to transitional mutations, leading to amino 
acid variation.30 We computed the dSNV densities using only 
the arginine positions in proteins and found the dSNV den-
sity in multigene family proteins to be 1.5 times greater than 
observed in singletons (0.09 and 0.06, respectively; P  0.01). 
A similar pattern was observed for glycine (replacement of gly-
cine residues occurs for 12% of dSNVs in this dataset). The 
dSNV density in multigene family proteins was twice than 
observed in singletons (0.08 and 0.04, respectively; P  0.01).

Finally, we looked for the signatures of functional com-
pensation using dSNVs that are expected to be the most 
severe, with the rationale that functional compensation may 
be easier to detect, as ameliorating severe phenotypic effects 
will have greater relative effect on individual fitness. We 
designated a dSNV to be severe if the predicted functional 
impact score for the variant was in the top 5% of all dSNVs 
(see Material and Methods). For these data, the multigene 
family proteins have a dSNV density 2.3 times higher than 
that observed for singletons (0.034 and 0.015, respectively; 
P  0.01), which does not support the functional compensa-
tion hypothesis. Therefore, the patterns of greater abundance 
of dSNVs in multigene families are robust to the predicted 
effect sizes of dSNVs analyzed and the amino acid composi-
tion bias of the variation dataset.

relationship of evolutionary conservation and dsNVs. 
We examined if protein conservation difference between 
singletons and multigene family proteins can explain the 
abovementioned pattern because it is now well established 
that highly conserved proteins are significantly more likely 
to contain dSNVs.27,31 Because the protein evolutionary rate 
distributions are neither normal nor symmetrical (Fig. 1), we 
compared medians (0.61 and 0.89, respectively) and found a 
ratio of 0.69 between the multigene family and singleton pro-
teins. The inverse of this ratio (1.5) is only slightly different 
from the ratio of dSNV densities (1.6). This similarity suggests 
that the higher rate of dSNVs in multigene family proteins 
is mostly explained by the degree of functional constraint on 

proteins in multigene families versus singleton proteins. Based 
on this observation, we propose the evolutionary constraints 
hypothesis, which posits that the differences in dSNV densi-
ties among different classes of proteins (eg, singleton vs. mul-
tigene) are primarily a result of the differences in the degree 
of natural selection acting upon them. If true, this would be 
consistent with the neutral theory of molecular evolution.32 
Evolutionary constraint hypothesis does not preclude the 
existence of functional compensation (among other factors) in 
some proteins or positions, but it does claim that differences in 
the intensity of purifying selection will be the primary cause 
of observed differences in the preponderance of SNVs in dif-
ferent groups of proteins.

We tested the prediction of the evolutionary constraint 
hypothesis in an analysis of 12,952 common neutral SNVs 
(nSNVs) obtained from the 1000 Genomes Project.33 These 
common nSNVs are complementary in nature to dSNVs, as 
common nSNVs persist in the human population and have 
risen to moderate frequencies (.5%) because their impact 
on fitness is effectively neutral (opposite of dSNVs that cause 
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Figure 2. Distributions of the number of dsnvs. (A) a frequency 
diagram showing the number of proteins with at least one dsnv. (b) the 
average number of dsnvs per protein for proteins at different length 
thresholds at 100 amino acids intervals. the average number of dsnvs 
per protein is positively correlated with the average protein length for 
both multigene family (correlation = 0.005; P  0.01) and singleton 
proteins (correlation = 0.002; P = 0.04).
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disease). Therefore, if functional constraints and, thus, the 
conservation level of human protein sequence explain the 
observed differences in dSNV density, we should also observe 
fewer nSNVs in multigene family proteins, as these proteins 
evolve more slowly and are expected to be subject to more 
severe purifying selection.34 Indeed, the nSNV density (num-
ber of nSNVs per 100 amino acids) in multigene family pro-
teins was lower than that of singletons (ratio = 0.82; 0.13 and 
0.16, respectively; P  0.01). This ratio (0.82) is again simi-
lar to the ratio of the evolutionary rates (0.69) for these two 
classes of proteins. These results suggest that the occurrence of 
dSNVs and nSNVs in proteins is largely concordant with the 
degree of functional constraint on proteins, which is captured 
in their evolutionary rates.

disease sNV prevalence in proteins with young and 
old paralogs. Next, we tested the hypothesis that functional 
compensation is more common in proteins with younger para-
logs.23,24 If functional compensation generally occurs only for 
a brief period after the gene duplication event, then the most 
recently diverged paralogs will provide the most powerful sig-
nal to detect functional compensation. We first identified the 
closest paralog for each protein within a given gene family by 
selecting the paralog with the smallest nucleotide divergence 
in their codons (third positions only). To estimate the relative 
antiquity of the duplicate event, we used the protein-specific 
human–mouse third positions in codons to normalize each 
closest paralog divergence across gene families (see Materials 
and Methods). This normalized value yields an approximate 
gene duplication time when it is scaled using the human–mouse 
divergence time (92.3 million years ago35). This approximation 
is reasonable, as third positions in codons evolve relatively neu-
trally and because we use divergence times primarily for identi-
fying and sorting young paralogs for hypothesis testing.

Density of dSNV for duplicates that have diverged from 
their paralogs in the last 200 million years shows a tendency to 
increase with estimated duplicate age (Fig. 3A). The same pat-
tern is observed for the positions of arginine and glycine and 
those with predicted severe functional impacts (Fig. 3B–D). 
Also, the dSNV densities for the youngest duplicates are lower 
than those for singletons (triangle in Fig. 3). We found that the 
evolutionary rate of proteins is negatively correlated with time 
since duplication, and the youngest duplicates have higher 
evolutionary rates than singletons (Fig. 4A). These patterns do 
not support the functional compensation hypothesis23 and are 
consistent with our evolutionary constraint hypothesis. These 
trends are confirmed in the analysis of nSNV densities that 
showed expected complementary patterns (Fig. 4B).

disease sNV prevalence in proteins with very similar 
paralogs. We also tested the functional compensation 
hypothesis in proteins that show high amino acid sequence 
similarities with their paralogs, as studied by Hsiao and Vit-
kup.24 We found that paralogs with the highest amino acid 
sequence similarities (.95%) actually have higher dSNV den-
sities than other paralogs (0.98 vs. 0.57; P  0.01). This is 

inconsistent with the functional compensation hypothesis but 
agrees with our evolutionary constraint hypothesis because the 
evolutionary rates were lower in paralogs with .95% similar-
ity (0.59 and 0.78 substitutions/site/billion years; P  0.01). 
Therefore, differences in the degree of functional constraint 
(measured using evolutionary rates) account for the observed 
patterns of dSNV densities.

Next, we compared nSNV densities in paralogs with 
.95% sequence similarity to those with #95% similarity. 
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For this comparison, we needed to be cognizant of the fact 
that variant calls are difficult when the paralogs have very 
similar DNA sequences.36–39 This is the case for paralogs 
with .95% amino acid sequence similarity because most 
of these proteins also showed small divergences at the third 
positions in codons between paralogs (#0.2 substitutions 
per site). To accommodate the variant call errors, we used 
proteins with #0.2 distance (third positions) for compari-
son between paralogs for two groups of proteins (225 and 
69 proteins). The nSNV density was 0.30 and 0.52 for pro-
teins that have paralogs with .95% and #95% sequence 
similarity, respectively (P  0.01). The former proteins are 
more conserved (rate = 0.89) than the latter (rate = 1.97;  
P  0.01), and so the result is consistent with the evolution-
ary constraint hypothesis.

conclusions
In this article, we examined the functional compensation 
among paralogs as a general phenomenon through an analy-
sis of disease-associated genetic variation in humans.23–26 In 

contrast to expectations under the functional compensation 
hypothesis, we found that multigene families have a greater 
tendency to harbor dSNVs than singleton proteins. We pro-
posed that differences in functional constraints (evolutionary 
constraint hypothesis) explain the observed pattern to a large 
degree. We confirmed that singleton proteins show lower 
functional constraint than proteins with identifiable dupli-
cates in the genome, which explains the increased detection of 
disease-associated variation observed in multigene families.

Some recent theoretical and empirical studies suggest 
that functional compensation can lead to enhanced purify-
ing selection and, therefore, may actually be associated with 
slower evolutionary rates.14,40 Other studies indicate that the 
youngest duplicates are evolving under relaxed selection pres-
sures, which would cause an increase in evolutionary rates 
for a few million years.4 Such short-term and localized rate 
changes (faster or slower) will not have significant impact on 
the estimates of very long-term evolutionary rates that we 
have used to quantify the functional constraint. We have cal-
culated the evolutionary rates using sequence differences in 
proteins that have accumulated changes for hundreds of mil-
lions of years across major groups of vertebrates. There is no 
evidence that pervasive functional compensation exists across 
the phylogenetic breadth and genomic scale reflected in our 
analyses. We expect our major conclusions to hold true in 
general, while acknowledging that functional compensation 
may occur in some multigene families and some amino acid 
positions. In summary, we suggest that there is a need to fully 
consider differences in the evolutionary conservation of pro-
teins when studying the patterns of sequence variation and 
variant–phenotype associations.

Materials and Methods
data assembly. Nonsynonymous dSNVs were obtained 

from the Human Gene Mutation Database (HGMD).41 We 
used dSNVs associated with Mendelian diseases because they 
are generally caused by single mutations, which is an appro-
priate way to test functional compensation, as has been done 
before.23,24 We excluded all SNVs associated with complex 
diseases whenever mutation phenotypes indicate complex dis-
ease association in the HGMD. Common nSNV data were 
generated by using the nonsynonymous SNV data obtained 
from the 1000 Genomes Project.33 SNVs observed with a fre-
quency .5% were assumed to be neutral (nSNVs). Nucleotide 
sequences of genes in the human genome and their genomic 
locations were obtained from the UCSC database (hg19).42 
We used protein family annotations from the HOVERGEN 
database.28 RefSeq identifiers from the UCSC browser were 
matched with UniProt identifiers from the HOVERGEN data-
base using the ID Mapping software.43 Using this annotation, 
we made a list of paralogs for each protein. When RefSeq IDs 
were converted into multiple UniProt IDs, we removed those 
genes if they were classified into different protein families or if 
they were mapped to different genomic locations. As a result, 
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we obtained 15,485 human proteins for our analyses or ∼77% 
of human proteins in the genome (∼20,000 proteins).

estimating protein evolutionary rates. Amino acid 
sequence alignments for 46 diverse vertebrate species were 
obtained from the UCSC resource42 to estimate the absolute 
site-by-site evolutionary rate as previously described.44 For 
each protein, the evolutionary rate was the average of rates 
over all positions, which are expressed in units of substitutions 
per amino acid per billion years.

testing the significance of sNV density difference 
between groups of proteins. To compare SNV densities 
between two groups (ie, between singletons and multigene 
family proteins), we used a z-test where the binomial vari-
ances were computed based on the proportion of the positions 
harboring SNVs in the groups of proteins compared. To com-
pare the ratio of SNV densities and the ratio of evolutionary 
rates (this ratio was reversed for dSNV density), we conducted 
a bootstrap resampling test and found all differences to be 
highly significant because of very large sample sizes.45

Predicting phenotypic severities of dsNVs. For each 
dSNV, the evolutionary rate of the amino acid position was 
computed using the alignments of 46 species44 and the impact 
score for EvoD prediction46 was estimated by using myPEG.46 
The top 5% of dSNVs at ultra-conserved, well-conserved, and 
less-conserved positions were selected (EvoD impact scores of 
$88, $88, and $82, respectively). These constituted the top 
5% of the most highly deleterious predicted alleles.

Identifying the closest paralog. For each protein fam-
ily, codon alignments of human paralogs were built using the 
amino acid sequence alignment features of the MUSCLE soft-
ware47 in MEGA-CC,48 which implements a codon alignment 
pipeline. Default options were used for amino acid sequence 
alignments (gap opening penalty = −2.9, gap extension pen-
alty = 0, multiplier for gap open/close penalty in hydrophobic 
regions = 1.2, and maximum length of the diagonal = 24). 
To identify the closest paralog of each protein, pairwise evo-
lutionary distances using the third positions in codons were 
computed between paralogs using the MEGA-CC software48;  
the maximum composite likelihood (MCL) method was used 
to calculate pairwise evolutionary distances.49

To exclude the influence of copy number variants on our 
analyses, we obtained the closest chimpanzee ortholog for 
each protein from the UCSC database (panTro2) and com-
puted evolutionary distances at the third positions in codons 
(MCL) as well as among amino acids (p-distance) between 
the human–chimpanzee orthologous pairs. When the clos-
est paralog pairs showed smaller evolutionary distances than 
those estimated between human–chimpanzee ortholog pairs, 
we considered those paralog pairs to be copy number variants 
within the human genome and removed them from further 
analyses. Because copy number variants are expected to have 
very similar nucleotide sequences, we examined paralog pairs 
with nucleotide divergences of 0.1 substitutions per site 
between the third positions in codons. Among those paralog 

pairs, we removed paralog pairs if chimpanzee orthologs were 
not found.

estimating normalized distances between closest 
paralogs. For each pair of paralogs, we estimated pairwise 
evolutionary distance (dp) at the third positions in codons 
using the MCL method in MEGA-CC.48,49 These paralog 
distances were normalized using the human–mouse pairwise 
sequence divergence (dhm) at the third positions in codons, 
where the mouse orthologs of the two human paralogs for 
each pair were obtained from the UCSC genome alignments 
(mm9 for mouse). dhm was the average of the two human–
mouse pairwise distances for the paralog pair. Note that CpG 
positions were identified as nucleotide C following nucleotide 
G, or G following C, and substitutions at CpG positions 
were excluded from all evolutionary distance calculations. 
Then, the normalized distance for a paralog pair was dp/dhm. 
This ratio was scaled to absolute time by multiplying it with 
the time of human–mouse divergence of 92.3 million years, 
obtained using the TimeTree resource.50 We restricted our 
analysis to genes with the duplication time of 200 million 
years ago because the third codon position (third positions in 
codons) distance often exceeds 1.0 substitutions per site for 
older duplicates and evolutionary distances become increas-
ingly difficult to estimate as time progresses. As our purpose 
is to examine young duplicates, the exclusion of old duplicates 
does not affect the analyses.
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