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Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered
in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised
learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of
hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning
method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning
based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two
models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results
on the three classic Swanson hypotheses show that our approach outperforms SemRep system.

1. Introduction

Literature-based discovery (LBD) was pioneered by Swanson
in the 1980s and it focuses on finding new relationships in
existing knowledge from unrelated literatures and provides
logical explanations [1–3]. Swanson’s method is to find a
bridge that links two conceptually related topics that ought to
have been studied together but never have been. For instance,
in his initial work [1], Swanson found there are some types
of blood disorders in patients with Raynaud’s phenomenon
(A), such as high blood viscosity (B), and at the same time he
found that fish oil (C) can reduce blood viscosity (B) in other
literatures. Since no literature had proved the relationship
between fish oil (C) and Raynaud’s phenomenon (A) at
that time, Swanson proposed that fish oil (C) might treat
Raynaud’s phenomenon (A), and this hypothesis was verified
in medical experiments two years later. In this hypothesis,
the topic of blood viscosity (B) served as a bridge between
the topics of Raynaud’s phenomenon (A) and dietary fish oil
(C). Swanson summarized this method as ABC model and
he has published several other medical discoveries using this
methodology [2, 3].

Since Swanson reported that literature-based discoveries
are actually possible, many works have contributed more

advanced and automated methods for LBD. Most of the
early LBD researches adopted information retrieval (IR)
techniques to illustrate the effectiveness of the ABC model
for LBD. The idea behind these methods is that the higher
cooccurrence frequency the two concepts A and B have, the
more related they are. By using the statistical characteristics,
the ABC model is automatically achieved. Weeber et al.
used concept cooccurrence as a relation measure and applied
UMLS semantic types for filtering [4, 5]. For example, the
semantic type of one of the cooccurring concepts might
be set to disease or syndrome and the other to phar-
macologic substance; thus only cooccurrences between a
disease and a drug are found. Srinivasan [6] developed a
system, called Manjal, which uses Medical Subject Headings
(MeSH) terms as concepts and termweights instead of simple
term frequencies. The system uses an information retrieval
measure based on term cooccurrence for ranking. Yetisgen-
Yildiz and Pratt [7] developed a system, called LitLinker,
which incorporates knowledge-based methodologies with
a statistical method. LitLinker marks the terms with z-
scores and the terms which are larger than a predefined
threshold as the correlated terms to the starting or link-
ing term, and the authors evaluate LitLinker’s performance
by adopting the information retrieval metrics of precision
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and recall. However, all the methods mentioned above are
mainly based on statistical characters. The main issue of
the hypothesis generation approach based on cooccurrence
is that the extracted relationships lack logical explanations.
On one side, some extracted pairs of entities are completely
uncorrelated actually but the high cooccurrence frequency
shows a strong association between them. On the other side,
although two entities have strong semantic correlations, they
might not be extracted from literature because of their low
cooccurrence frequency in literature. In addition, although
these approaches based on cooccurrence succeed in finding
intermediate (B) concepts, they provide no insight into the
nature of the relationships among such concepts [8].

Recently Hu et al. [9] presented a system called Bio-
SARS (Biomedical Semantic-Based Association Rule Sys-
tem), which utilizes both semantic information and associ-
ation rules to expand the number of semantic types proposed
by Weeber, and this system achieves better performance.
Miyanishi et al. advanced the concept of semantic simi-
larity between events based on semantic information [10].
Hristovski et al. combined two natural language processing
systems, SemRep and BioMedLee, to provide predications,
and analysis using predications can support an explana-
tion of potential discoveries [11]. Cohen et al. proposed
the Predication-Based Semantic Indexing (PSI) approach to
search predications extracted from the biomedical litera-
ture by the SemRep system [12]. Cameron et al. presented
a methodology that leverages the semantics of assertions
extracted from biomedical literature (called semantic predi-
cations) along with structured background knowledge- and
graph-based algorithms to semiautomatically capture the
informative associations originally discovered manually by
Swanson [8]. However, all the above hypothesis generation
approaches based on semantic information and association
rules utilize the semantic extraction tool, SemRep system.
And the performance of SemRep is not perfect: its precision,
recall, and F-score are 0.73, 0.55, and 0.63, respectively [13].
On one side, low recall (55%) means a substantial number of
semantic associations between entities will be missing, and
on the other side, low precision (73%) means many false
semantic associations will be returned.

The aim of our work is to find an effective method to
extract semantic relationships from biomedical literature.
In this paper, we propose a supervised learning based
approach to generate hypotheses from biomedical literature.
This approach divides the traditional hypothesis generation
model, ABCmodel, into twomachine learning basedmodels:
AB and BC models. The AB model is used to determine
whether a physiological phenomenon (linking term B) is
caused by a disease (initial term A) in a sentence and the
BCmodel is used to determine whether there exists an entity
(e.g., pharmacologic substance, target term C) having phys-
iological effects (linking term B) in a sentence. Compared
with the concept cooccurrence and grammar engineering-
based approaches like SemRep,machine learning basedmod-
els usually can achieve better performance in information
extraction (IE) from texts [14]. In our experiments, the
performances of AB and BC models (both are more than
0.76 measured in F-score) are much better than that of
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Figure 1: Open discovery process: a one direction search process
which starts at A and results in C.

SemRep (0.63 in F-score [13]). Then through combining
the two models, the approach reconstructs the ABC model
and generates biomedical hypotheses from literatures. The
experimental results on the three classic Swanson hypotheses
also show that our approach achieves better performance
than the SemRep system.

2. Related Resources and Tools

2.1. Open and Closed Discovery. Weeber et al. summa-
rized that the hypothesis-generating approaches proposed
by Swanson are considered open discovery and the testing
approaches are considered closed discovery [4].

Open Discovery. The process of open discovery is charac-
terized by the generation of a hypothesis. Figure 1 depicts
the open discovery approach, beginning with disease A. The
researcher will try to find interesting clues (B), typically
physiological processes, which play a role in the disease
under scrutiny. Next, he (or she) tries to identify C-terms,
typically substances, which act on the selected Bs. As a result
of the process, the researcher may form the hypothesis that
substance C

𝑛
can be used for the treatment of disease A via

pathway B
𝑛
.

Closed Discovery. A closed discovery process is the testing
of a hypothesis. If the researcher has already formed a
hypothesis, possibly by the open discovery route described
above, he (or she) can elaborate and test it from the literature.
Figure 2 depicts the approach: starting from both disease
A and substance C, the researcher tries to find common
intermediate B terms.

2.2. MetaMap and Semantic Type. MetaMap is a highly
configurable application developed by the ListerHill National
Center for Biomedical Communications at the National
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Figure 2: Closed discovery process: the process starts simultane-
ously from A and C resulting in overlapping Bs.

Library of Medicine (NLM) to map biomedical text to the
UMLS Metathesaurus or, equivalently, to identify Metathe-
saurus concepts referred to in English text. Because every
concept in the Metathesaurus has been assigned one or more
semantic types, we filter the results of the text-to-concept
mapping process by means of the semantic types. In the
different stages of the process, we employ different semantic
filters. For example, in the stage of selecting intermediate B
terms we choose the terms with functional semantic types
such as biologic function, cell function, phenomenon or
process, and physiologic function. When selecting dietary
factors as A terms, we choose the concepts with functional
semantic types such as vitamin, lipid, and element, ion, or
isotope. Table 1 provides the functional semantic types that
we use to filter the linking terms and target terms in our
experiments.

2.3. SemRep and SemMedDB. SemRep was developed at the
National Library of Medicine and is a program that extracts
semantic predications (subject-relation-object triples) from
biomedical free text. For example, from the sentence in
Table 2, SemRep extracts four predications (as shown in
Table 2). Semantic Medline Database (SemMedDB) is a
repository of semantic predications extracted by SemRep.
SemMedDB currently contains information about approxi-
mately 70 million predications from all of PubMed citations
(more than 23.5 million citations, as of April 1, 2014) and
forms the backbone of Semantic Medline application [15].

2.4. General Concepts Filtering. Many general concepts will
be generated after the processing of Named Entity Recog-
nition (NER) by MetaMap. General concepts refer to the
terms which have relationships with many entities but have
meaningless concept, such as “disease.” Because the existence
of general concepts may reduce the effect of knowledge
discovery, they need to be filtered. In our experiment, first we
extract all the sentences with relations such as “subject ISA
object” from SemMedDB and then a general concept list is

Table 1: The semantic type filter used in our experiments.

Linking term Target term
Biologic function Organic chemical
Cell function Lipid
Finding Pharmacologic substance
Molecular function Vitamin
Organism function Element, ion, or isotope
Organ or tissue function
Pathologic function
Phenomenon or process
Physiologic function

constructed by collecting all the objects from the sentences.
All the relations used in our experiment are PART OF,
LOCATION OF, and ISA.

2.5. Stanford Parser. The Stanford Parser was built by the
Stanford NLP (natural language processing) Group in the
1990s. It is a program that works out the grammatical
structure of sentences, for instance, which groups of words
go together (as “phrases”) and which words are the subject or
object of a verb.Theprimary function of the StanfordParser is
to analyze and extract the syntactic structure of sentences and
part-of-speech tagging (POS tagging). The parser provides
Stanford Dependencies output as well as phrase structure
trees. In our method, the features of the graph kernel-based
method are extracted by the Stanford Parser [17].

3. Method

For knowledge discovery, we split the traditional ABCmodel
into twomodels—ABmodel and BCmodel. Both models are
constructed by using cotraining methods.The purpose of AB
model is to determine whether a physiological phenomenon
(linking term) is caused by a disease (initial term) in a
sentence, and the BC model is used to judge whether there
exists an entity (target term) having physiological effects
(linking term) on human beings in a sentence.

The supervised learning methods used in our experi-
ment are all kernel-based methods, and kernel methods are
effective alternatives to explicit feature extraction [18]. They
retain the original representation of objects and use the object
only via computing a kernel function between a pair of
objects. Such a kernel function makes it possible to compute
the similarity between objects without enumerating all the
features. And the features we employ in our experiment are
as follows.

3.1. Feature Sets. A kernel can be thought of as a similarity
function for pairs of objects. The following features are used
in our feature-based kernel.

(i) Neighboring Words. In a sentence, the words surrounding
two concepts have a significant impact on the existence of
the relationship between the two concepts. In our method,
the words surrounding two concepts are considered the
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Table 2: The semantic type filter used in our experiments.

Sentence We used hemofiltration to treat a patient with digoxin overdose that was complicated
by refractory hyperkalemia

Extracted predications
(subject-relation-object triples)

Hemofiltration-TREATS-Patients
Digoxin overdose-PROCESS OF-Patients
Hyperkalemia-COMPLICATES-Digoxin overdose
Hemofiltration-TREATS(INFER)-Digoxin overdose

neighboring words feature. This feature consists of all the
words that are located between the two concepts, words
surrounding two protein names, which include three words
to the left of the first protein name and three words to the
right of the second protein name. We add a prefix to each
word to distinguish the different positions of the words. For
example, the word “word” is expressed in the above three
cases as “m word,” “l word,” and “r word,” respectively.When
using the neighboring word feature, a dictionary of the whole
corpus will be established, and a sentence is represented as
a Boolean vector, where “1” means the feature exists in the
sentences and “0” means the feature does not exist in the
sentence.

(ii) Entity Name Distance. Under the assumption that the
shorter the distance (the number of words) between two
entity names is, the more likely the two proteins have
interaction relation, the distance is chosen as a feature. The
feature value is set as the number of words between two entity
names.

(iii) Relationship Words. Through analyzing the corpus, we
make the hypothesis: if there exists a relationship between
two entity concepts, there will be a greater probability that
some verbs or their variants appear surrounding the two
concepts, such as “activation,” “induce,” and “modulate.”
These words are used as relationship words in our method.
We build a relationship words list of about 500, and the list
is used to determine whether there is a relationship between
the two entity concepts in the sentences. Boolean “1” means
the relationship word exists in the sentence and “0” means it
does not exist.

(iv) Negative Words. Some negative words such as “not,”
“neither,” and “no” exist in some sentences, and these negative
words express that there is no relationship between two entity
concepts. If a negative word and a relationship word cooccur
in a sentence, it is difficult to judge whether there exists
a relationship in the sentences only based on relationship
words, so negativewords features were introduced to improve
the situation. Boolean “1” means the negative word exists in
the sentence and “0” means it does not exist.

For example, in sentence A, “Quercetin, one of the
most representative C0596577 compounds, is involved in
antiradical, C0003402, and prooxidant biological processes,”
all the features extracted from it are shown in Table 3 (we
preprocessed sentence A with MetaMap, and the two target
entities are represented by their CUIs). Finally, the sentence
will be represented by a feature vector.

Table 3: Features extracted from example sentence A.

Feature names Feature values
Left words l the, l most, l representative
Words between two
entity names

m compounds, m is, m involved, m in,
m antiradical

Right words r and, r prooxidant, r biological
Relationship words involved
Protein name distance 5
Negative word —

3.2. Graph Kernel. In our experiment, all the sentences
are parsed by Stanford Parser to generate the output of
dependency path and POS path. A graph kernel calculates
the similarity between two input graphs by comparing the
relations between commonvertices (nodes).Thegraph kernel
used in our method is the all-paths graph kernel proposed by
Airola et al. [19]. The kernel represents the target pair using
graph matrices based on two subgraphs, where the graph
features include all nonzero elements in the graph matrices.
The two subgraphs are a parse structure subgraph (PSS) and
a linear order subgraph (LOS), as shown in Figure 3. PSS
represents the parse structure of a sentence and includesword
or link vertices. A word vertex contains its lemma and its
POS, while a link vertex contains its link. Additionally, both
types of vertices contain their positions relative to the shortest
path. LOS represents the word sequence in the sentence and
thus has word vertices, each of which contains its lemma, its
relative position to the target pair, and its POS.

For the calculation, two types of matrices are used: a label
matrix 𝐿 and an edge matrix 𝐴. The label matrix is a (sparse)
𝑁×𝐿matrix, where𝑁 is the number of vertices (nodes) and
𝐿 is the number of labels. It represents the correspondence
between labels and vertices, where 𝐿

𝑖𝑗
is equal to 1 if the 𝑖th

vertex corresponds to the 𝑗th label and 0 otherwise.The edge
matrix is a (sparse)𝑁×𝑁matrix and represents the relation
between pairs of vertices, where 𝐴

𝑖𝑗
is a weight 𝑤

𝑖𝑗
if the 𝑖th

vertex is connected to the 𝑗th vertex and 0 otherwise. The
weight is a predefined constant whereby the edges on the
shortest paths are assigned a weight of 0.9 and other edges
receive a weight of 0.3. Using the Neumann Series, a graph
matrix 𝐺 is calculated as

𝐺 = 𝐿
𝑇

∞

∑

𝑛=1
𝐴
𝑛
𝐿 = 𝐿

𝑇

((𝐼 −𝐴)
−1

− 𝐼) 𝐿. (1)

This matrix represents the sums of all the path weights
between any pair of vertices resulting in entries representing
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Figure 3: Graph representation generated from an example sentence. The candidate interaction pair is marked as PROT1 and PROT2; the
third protein is marked as PROT. The shortest path between the proteins is shown in bold. In the dependency based subgraph all nodes in a
shortest path are specialized using a posttag (IP). In the linear order subgraph possible tags are before (B), middle (M), and after (A). For the
other two candidate pairs in the sentence, graphs with the same structure but different weights and labels would be generated.

the strength of the relation between each pair of vertices.
Using two input graph matrices 𝐺 and 𝐺, the graph kernel
𝑘(𝐺, 𝐺



) is the sum of the products of the common relations’
weights, given by

𝑘 (𝐺, 𝐺


) =

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1
𝐺
𝑖𝑗
𝐺


𝑖𝑗
. (2)

3.3. Cotraining Algorithm. Cotraining is a semisupervised
learning algorithm used when there are only small amounts
of labeled data and large amounts of unlabeled data, and it
requires two views of the data [20]. It assumes that each exam-
ple is described using two different feature sets that provide
different, complementary information about the instance.
Cotraining first learns a separate classifier for each view using
any labeled examples.Themost confident predictions of each
classifier on the unlabeled data are then used to iteratively
construct additional labeled training data. In our experiment,
the two different feature sets used to describe a sentence
are word features and grammatical features (graph kernel
extracted by Stanford Parser), respectively.

4. Classification Models

4.1. Evaluation Metrics. In our study, the evaluation metrics
precision (𝑃), recall (𝑅), and𝐹-score (𝐹) are employed, which
are defined as follows:

𝑃 =
TP

TP + FP
∗ 100%,

𝑅 =
TP

TP + FN
∗ 100%,

𝐹 =
2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

∗ 100%.

(3)

TP is the number of correctly predicted pieces of data, FP
is the number of false positives, and FN is the number of false
negatives in the test set. 𝑃 is used to evaluate the accuracy

of a model, 𝑅 is recall rate, and 𝐹 is the harmonic mean of
precision and recall rates.

In addition, we define the effective linking terms as the
terms in a sentence which can connect the initial term and
the target term. For example, in the case of Raynaud’s disease
and fish oil, the concepts of platelet aggregation, blood vessel
contraction are all effective linking terms.Thedefinition of the
proportion of the effective linking terms in all linking terms
is as follows:

𝑆 =
𝑛

𝑁
∗ 100%, (4)

where 𝑛 is the number of effective linking terms and𝑁 is the
number of all the terms which have relationships with initial
terms.

4.2. Training AB Model. The purpose of the AB model is
to determine whether a physiological phenomenon (linking
term) is caused by a disease (initial term) in a sentence.

We obtain all the sentences (the corpus) used in
our experiment through searching from Semantic Medline
Database with 200 different semantic types about “disease
or syndrome” defined by MeSH (Medical Subject Headings).
Then all the sentences are processed with the MetaMap for
Named Entity Recognition (NER) and to limit the semantic
types of initial terms and linking terms in a sentence, we filter
out the sentenceswhich contain the concepts of the unneeded
semantic types. Finally we obtain a total of 20,895 sentences
and we randomly choose only 1,000 sentences (probably 5%
of all the sentences) for manual annotation; then we build
two initial labeled data sets as initial training set Tinitial (500
labeled sentences) and test set (other 500 labeled sentences),
respectively. There are two reasons why we randomly choose
1,000 sentences for manual annotation: first, manual anno-
tation is very time consuming and expensive, and at the
same time unlabeled training data are usually much easier to
obtain. This is also why we introduce the cotraining method
to improve the performance of our experiment. And the other
reason is when cotraining style algorithms are executed, the
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Table 4: Annotation values of two annotators.

Reviewer 2 Reviewer 1
Positive Negative Kappa score

Positive 385 22
Negative 43 550
Ours 0.8664
Light et al. [16] 0.68

number of labeled examples is usually small [21], so we select
about 5% of the corpus as training set and test set, and the
other 95% of the corpus is used for extending the training set
later.

During the manual annotation, the following criteria are
met: if a sentence contains a relationship belonging to the
semantic type list (see Table 1) between two entity concepts,
we think there is a positive correlation between the two enti-
ties and label the sentence as a positive example. In addition,
some special relationships such as “B in A” and “A can change
B” are also classified as positive examples since they mean a
physiological phenomenon (B) occurs when someone has the
disease (A). If there is no obvious relationship in a sentence
and only a cooccurrence relationship, we label it as a negative
example. For the patterns such as “A is a B” and “A and B”,
we label them as negative examples since “A is a B” is “IS A”
relationship and “A and B” is a coordination relationship,
and they are not the relationship we need. When the process
was completed, we estimated the level of agreement. Cohen’s
kappa [22] score between each annotator, as shown in Table 4,
is 0.8664, and content analysis researchers generally think of
a Cohen’s kappa score more than 0.8 as good reliability [22].
Comparably, Light et al. achieved their highest kappa value
(0.68) in their manual annotation experiments on Medline
abstracts [16].

As shown in Figure 4, the process of training AB model
is as follows: at first, two initial SVM classifiers, M0

1 (graph-
based kernel) and M0

2 (feature-based kernel), are trained
using initial training set Tinitial which contains 500 labeled
examples, and the test results of two classifiers are as follows:
with classifier M0

1, the values of precision, recall, and F-score
are 72.88%, 83.33%, and 77.76%, respectively. And at the same
time, the results of classifier M0

2 are 74.35%, 76.33%, and
75.33%, respectively.

In the next step, 2,000 unlabeled sentences (a section of
the unlabeled corpus) are predicated by classifiers M0

1 and
M0

2, respectively. The classifier M0
1 selects the top 200 scores

(10%of 2,000 results classified byM0
1) as the positive examples

and the bottom 200 scores as the negative examples; then we
put these 400 newly labeled examples into the data set Tinitial
(500) as a new training set T1

2 (900 examples). And at the same
time, the classifierM0

2 selects the top 200 scores (10% of 2,000
results classified by M0

2) as the positive examples and the
bottom 200 scores as the negative examples; thenwe put these
400 newly labeled examples into the data set Tinitial (500) as a
new training set T1

1 (900 examples). Then two new classifiers
M1

1 and M1
2 are trained from T1

1 and T1
2, respectively. After

that, 3,000 unlabeled sentences (a section of the unlabeled

3,000

6,000

unlabeled
sentences

unlabeled
sentences

2,000 unlabeled
sentences PredicatePredicate

Predicate Predicate

400 pieces of labeled data400 pieces of labeled data
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Figure 4: The process of training AB model.

corpus) are classified by M1
1 and M1

2, respectively. M
1
1 selects

the top 300 scores (10% of 3,000 results classified by M1
1)

as positive examples and the bottom 300 scores as negative
examples. We use the 600 newly labeled examples to update
the T1

2 and thenwe obtain a new training set T2
2, whileM

1
2 also

selects 600 newly labeled examples to update T1
1 and then we

obtain the new training set T2
1. Such a process is repeated for

a preset number of learning rounds.
In our experiment, the preset number of learning rounds

is five and the sizes of corresponding extended set are 2,000,
3,000, 4,000, 5,000, and 6,000, respectively. And the size of
training set increases from the initial 500 (Tinitial) to 900
(T1

1 and T1
2), 1,500 (T2

1 and T2
2), 2,300 (T3

1 and T3
2), 3,300

(T4
1 and T4

2), and 4,500 (T5
1 and T5

2), respectively. There
are two reasons why we set five times of learning rounds.
First, after five learning rounds, there are no extra unlabeled
sentences. At first 95% of the corpus (20,895) is used for
extending the training set, and after five times of expansion
of the training set, there are no extra unlabeled data. And the
second reason is the cotraining process could not improve
the performance further after a number of rounds [21], and
we should terminate cotraining on an appropriate round to
avoid some wasteful learning rounds.

The best testing result is from the second learning round
(the classifier is M2

1 (graph kernel) and the training set is
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Figure 5: The results of training AB and BC models of every
learning round by cotraining algorithms.

T2
1): an F-score of 77.8% is achieved as shown in Figure 5.

After five rounds of cotraining learning, although there are
fluctuations, the F-score of feature-based kernel achieves a
continuous improvement and finally reaches 76.82%.

We can know from both figures that the best results of
two models (feature-based model and graph kernel-based
model) are all better than the results of the model (M0

1 and
M0

2) only trained by the initial training set (Tinitial).The results
show that it is feasible to adopt a cotraining algorithm to
improve the effectiveness of extracting relationships from
a sentence. Meanwhile, since the model based on graph
kernel outperforms the feature-based model, we choose the
former as our ABmodel in the following experiments. In our
experiments, we choose M2

1 as the AB model.

4.3. Training BC Model. The BC model is used to determine
whether there exists an entity (target term) having physiolog-
ical effects (linking term) on human beings in a sentence.The
process of training the BC model is similar to the process of
training the AB model.

At first, as with the steps in the process of training
the AB model, we obtain 20,490 unlabeled sentences from
SemMedDB as corpus, and we randomly choose 1,000 sen-
tences (probably 5% of the corpus) to construct the initial
training set Tinitial (500) and test set (500). The process of
training BC model is the same to the process of training
the AB model. The preset number of learning rounds is five
and the sizes of corresponding extended set are 2,000, 3,000,
4,000, 5,000, and 6,000, respectively.

The best result is achieved in the fifth cotraining learning
round (the classifier is M5

2
(graph kernel) and the training set

is T5
2), and the value of F-score is 89.71% as shown in Figure 5.

And the highest F-score (83.3%) of feature-based kernel is
achieved in the third cotraining learning round.

Like the results of the AB model, the best results of two
models (feature-basedmodel and graph kernel-basedmodel)
are all better than the results of the model (M0

1 and M0
2)

only trained by the initial training set (Tinitial). It proves
the validity of cotraining method again. Meanwhile, since
the model based on graph kernel outperforms the feature-
based model, we choose the former as our BC model in the
following experiments. In our experiments, we choose M5

1 as
the BC model.

In both experiments, the best results of graph kernel
outperform feature-based model; the reason is that not only
do the features selected by graph kernel include most parts
of the features adopted by feature kernel, but also the graph
kernel approach captures the information in unrestricted
dependency graphs which combines syntactic analysis with
a representation of the linear order of the sentence and
considers all possible paths connecting any two vertices in the
resulting graph.

5. Hypothesis Generation and Discussion

After the AB and BC models have been built, we combine
them to reconstruct the ABC model and validate the three
classic Swanson’s hypotheses, that is, “Raynaud’s disease and
fish oil,” “migraine andmagnesium,” and “Alzheimer’s disease
and indomethacin.” We compare the results generated by
our method with the results generated by using SemRep
Database in closed discovery and open discovery processes,
respectively. In our study, the result of hypothesis discovery
achieved by SemRep is presented as a benchmark.

5.1. Closed Discovery Experiment. In our study, the hypoth-
esis Raynaud’s disease and fish oil is used as an example to
verify the effectiveness of our method. First, the initial terms
are set to “Raynaud’s disease” and “Raynaud’s phenomenon”
and the target terms are set to “fish oil” and “eicosapentaenoic
acid” (an important active ingredient of fish oil). The initial
terms are used as keywords to retrieve all the sentences from
theMedline Database, respectively (the time is limited before
1986 since Swanson found the classic hypothesis in 1986, and
from then on the hypothesis is considered public knowledge).
Then we obtain all the sentences that contain either the initial
terms or target terms, and then all the sentences are processed
by MetaMap.

Secondly, we filter out the sentences which do not contain
any concept belonging to semantic type list or contain the
concepts in the general concept list. Then the AB model is
adopted to classify all the sentences containing the initial
terms and at the same time we use BCmodel to classify all the
sentences containing the target terms, and finally we obtain
the effective linking terms by taking the intersection of two
sets of positive examples (one set is from the AB model and
the other is produced by the BC model).

The only difference between the SemRep method and
our method is that its effective linking terms are obtained
by taking the intersection of two sets of linking terms (the
two sets of linking terms are all retrieved from SemRep
instead of using the AB model and BC model, and one set
is retrieved with the initial terms and the other is retrieved
with the target terms). Figure 6 shows the result obtained by
the twomethods. In addition, the other two classic Swanson’s
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Table 5: The number and scale of the useful linking concept.

Hypothesis Methods Effective linking
terms/linking terms Ratio

Raynaud’s disease and fish oils Our method 10/106 9.43%
SemRep 3/132 2.2%

Migraine and magnesium Our method 67/297 22.56%
SemRep 10/187 5.35%

Alzheimer’s disease and indomethacin Our method 47/251 18.72%
SemRep 9/87 10.34%

Diabetic

Raynaud
disease

Fish oils

Physiological reperfusion

Mediator brand of benfluorex hydrochloride

Blood viscosity

Autoimmune
Encounter due to therapyMental concentration

Adverse event associated with vascular

Antimicrobial susceptibility

Equilibrium

Figure 6: The result of closed discovery of “Raynaud’s disease and fish oils.” The purple nodes in the figure are the linking terms discovered
only by our method; the yellow nodes represent the linking terms found only by SemRep Database; and the blue node represents the terms
found by both methods.

hypotheses migraine and magnesium and Alzheimer’s disease
and indomethacin are also verified with our method and the
results are shown in Table 5, and part of the effective linking
terms discovered by our method are shown in Table 6.

As can be seen from Table 5, compared with the results
obtained by SemRep method, our method significantly
improves the number and proportion of effective linking
terms. The ratios of our method are much higher than
those of SemRep method, and more effective linking terms
mean more possible useful hypothesis is generated. For
example, Figure 6 shows the potential principles in treatment
of “Raynaud’s disease with fish oils” discovered by two
methods.The purple nodes in the figure are the linking terms
discovered only by our method; the yellow nodes represent
the linking terms found only by SemRep Database; and the
blue node represents the terms found by both methods.
Figure 6 shows that our method not only found the linking
term “blood viscosity” also found by SemRep, but also found
more effective linking terms. For example, the intermediate
purple node “adverse event associated with vascular” was
found by our approach from the abstracts [PMID 2340647]
and [PMID 6982164]. From [PMID 2340647] our approach
extracted “dietary fish oil inhibits vascular reactivity,” and at
the same time from [PMID 6982164] we extracted “vasodi-
lation inhibits Raynaud syndrome”, then we may make the

hypothesis that dietary fish oil treats Raynaud’s syndrome by
inhibiting vascular reactivity (i.e., vasoconstriction, vascular
constriction (function)) which causes Raynaud’s disease, and
this hypothesis has been verified inmedical experiments [23].

The reason why our method can discover more effective
linking terms than SemRep is that, compared with grammar
engineering-based approaches like SemRep, machine learn-
ing based models usually can achieve better performance
in information extraction from texts. In our experiments,
the performances of our machine learning based AB and
BC models are much better than that of SemRep which
means our method can return more effective linking terms
and, therefore, it may help find more potential principles in
hypothesis generation.

5.2. Open Discovery Experiment. In this paper, the process of
finding the hypothesismigraine and magnesium is used as an
illustration to explain the procedure of open discovery.

The processes of open discovery with different methods
are shown in Figures 7 and 8, respectively. In the process
of open discovery by using SemRep Database (Figure 7),
first the initial terms (A terms) are specified by providing
concept “Migraine Disorder,” which is used as a keyword to
retrieve data from the SemRep Database. Then we obtain
all the sentences which contain both initial terms (Migraine
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Table 6: Part of the effective linking terms discovered with our method.

Raynaud’s disease and fish oils Migraine and magnesium Alzheimer’s disease and indomethacin

Blood viscosity
Adverse event associated with vascular
Mental concentration
Component of protein
Autoimmune
Mediator brand of benfluorex
hydrochloride
Physiological reperfusion

Arteriospasm
Vasodilation
Desiccated thyroid
Homovanillate
Beta-adrenoceptor-activity
Regional blood flow
Recognition (psychology)
Container status identified
Hydroxide ion
Muscular dystrophy

Metabolic rates
Pituitary hormone-preparation
Desiccated thyroid
Cerebrovascular-circulation
Normal blood pressure
P blood group antibodies
Dopamine hydrochloride
HLA-DR antigens
Pentose phosphate-pathway
Toxic epidermal-necrolysis

SemRepfrom SemRep

filter sentences and
obtain linking terms

Retrieve data from
SemRep Database

Set the initial terms

Retrieve sentences

Database

SemRep
Database

Database

Ranking: rank the 
target terms

Output the result

Filtering:

Figure 7: The procedure of open discovery with SemRep Database.

Disorder) and linking terms (other entities). Second, we filter
all the sentences obtained from step one, and the specific
rules are the same as we mentioned in closed discovery (we
filter out the sentences which do not contain any concept
belonging to semantic type list or contain the concepts in
broad concept list). The third step is similar to the first step,
all the linking terms (extracted from every sentence from
the filter step) are used as keywords to retrieve data from
the SemRep Database; then we get all the sentences which
contain both linking terms (B terms) and target terms (C

Set the initial terms

MedlineRetrieve sentences
from Medline

Database Database

Medline Database
Medline
Database

Classified by AB
model

filter sentences and
obtain linking terms

Retrieve data from

Classified by
BC model

Ranking: rank the 
target terms

Output the result

Filtering:

Figure 8: The procedure of open discovery with our method.

terms). At last we rank all the target terms and output the
results. The scoring rules are applied to rank the target terms
[24].

The process of open discovery with the AB-BC model
is shown in Figure 8. The differences between the two
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Table 7: Result of open discovery.

Initial terms SemRep Our method Combined result set
Raynaud disease and eicosapentaenoic acid 68/380 230/5762 61/246
Migraine disorders and magnesium 186/535 97/5349 25/297
Alzheimer’s disease and indomethacin —/650 —/2639 —/275
Alzheimer’s disease and indoprofen 373/650 250/2639 38/275

processes are shown in the blue dashed boxes (Figure 7)
and yellow dashed boxes (Figure 8). Instead of obtaining
all the sentences from the SemRep Database (as shown in
blue dashed boxed in Figure 8), two steps are applied in our
method to obtain the data: first we obtain raw sentences from
theMedlineDatabase, and in the second step all the sentences
are classified by eitherABmodel or BCmodel; thenwe collect
the set of positive example as experimental data. Another
processing (e.g., filtering and ranking) is the same with that
of the SemRep method.

The processing of open discovery with AB-BC model
is shown in Figure 8. The differences between the two
processes are shown in the blue dashed boxes (Figure 7)
and yellow dashed boxes (Figure 8). Instead of obtaining
all the sentences from the SemRep Database (as shown in
blue dashed boxed in Figure 7), two steps are applied in
our method to obtain the data: first we obtain raw sentences
from the Medline Database, and in the second step all the
sentences are classified by either ABmodel or BCmodel; then
we collect the set of positive examples as experimental data.
And other procedures (filtering and ranking) are the same
with the SemRep method.

The results of open discovery are shown in Table 7.
The value of the number to the right of the slash is the
total number of potential target terms we obtained, and
the number to the left of the slash is the ranking of the
target term we really want to obtain. For example, from the
rediscovery of migraine-magnesium association, we obtain
535 potential target terms with SemRep method and the
ranking of magnesium is 186 while 5,349 target terms are
discovered with our method and the ranking of magnesium
is 97. As can be seen from the above results, our method not
only can obtain more potential target terms but also can get
higher ranking of the real target terms.

The higher the ranking of the real target terms is,
the more valuable the results become. And more potential
target terms mean more clues about the pathophysiology
of disease, for example, from the rediscovery of Alzheimer’s
disease and indomethacin hypothesis, 650 and 2,639 potential
target terms are found by SemRep method and our method,
respectively. Although neither of two methods finds the real
target term indomethacin (indomethacin is a nonsteroidal
anti-inflammatory drug (NSAID) commonly used as a pre-
scription medication to reduce fever, pain, stiffness, and
swelling), bothmethods find another NSAID indoprofen, and
many epidemiological studies have supported the hypothesis
that chronic intake of NSAID is associated with a reduced
risk of Alzheimer’s disease [25–27]. Moreover, many other
NSAIDs have been found by our method such as carprofen,
Proxen, and aspirin, and the result of our method finds

Table 8: More target terms about Alzheimer’s disease.

Target terms Alzheimer’s disease
Asprin 1370/2639
Thromboxane 1455/2639
Carprofen 2291/2639
Prostaglandins 2488/2639

more clues about the pathophysiology of Alzheimer’s disease:
prostaglandins [28–30] and thromboxane [31]. The detailed
results are shown in Table 8.

The results of the experiment with our method outper-
form almost all the results of SemRepmethod. In addition, we
found that combining the results of two methods can further
improve the performance. For example, in the rediscovery
of physiopathological hypothesis of Raynaud’s phenomenon,
we obtain 380 potential target terms with SemRep method
and 5,762 potential target terms with our method. Although
our method finds many more potential target terms than
SemRep method, sometimes the result of SemRep method
has a higher ranking (68) than ours (230).

Therefore, we took the following steps to combine the
results of twomethods: first, we obtain the result sets returned
by SemRep and ourmethods, respectively.Thenwe retain the
intersection of two result sets. For a term in the intersections,
its score is set as the sum of its scores in the original result sets
and ranked with its score. The detailed results are also shown
in Table 7, and it can be seen that the results from “combined
result set” have higher ranking than both original methods.
The reason is that in the intersection set of two result sets
many potential target terms are eliminated, and, at the same
time, the real target terms will not be eliminated since such
terms usually have real association with the initial term and,
therefore, will be retained by both methods.

6. Conclusions

Biomedical literature is growing at an explosive speed, and
researchers can form biomedical hypotheses through mining
this literature.

In this paper, we present a supervised learning based
approach to generate hypotheses from biomedical literature.
The approach splits the classic ABC model into AB and
BC models and constructs the two models with a super-
vised learning method, respectively. The purpose of the AB
model is to determine whether a physiological phenomenon
(linking term) is caused by a disease (initial term) in a
sentence, and the BC model is used to judge whether there
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exists an entity (target term) having physiological effects
(linking term) on human beings in a sentence. Compared
with the concept cooccurrence and grammar engineering-
based approaches like SemRep, machine learning based AB
and BC models can achieve better performance in mining
association between bioentities from texts.

In addition, the cotraining algorithm is introduced to
improve the performance of the two models. Then through
combining the two models, the approach reconstructs the
ABC model and generates biomedical hypotheses from lit-
erature.

The experimental results on the three classic Swanson’s
hypotheses show that our approach can achieve better perfor-
mance than SemRep. This means our approach can discover
more potential correlations between the initial terms and
target terms, and, therefore, it may help find more potential
principles for the treatment of certain diseases.
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