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Abstract

Importance and Objective: Prior influenza infection is a risk factor for invasive meningococcal disease. Quantifying the
fraction of meningococcal disease attributable to influenza could improve understanding of viral-bacterial interaction and
indicate additional health benefits to influenza immunization.

Design, Setting and Participants: A time series analysis of the association of influenza and meningococcal disease using
hospitalizations in 9 states from 1989–2009 included in the State Inpatient Databases from the Agency for Healthcare
Research and Quality and the proportion of positive influenza tests by subtype reported to the Centers for Disease Control.
The model accounts for the autocorrelation of meningococcal disease and influenza between weeks, temporal trends, co-
circulating respiratory syncytial virus, and seasonality. The influenza-subtype-attributable fraction was estimated using the
model coefficients. We analyzed the synchrony of seasonal peaks in hospitalizations for influenza, respiratory syncytial virus,
and meningococcal disease.

Results and Conclusions: In 19 of 20 seasons, influenza peaked#2 weeks before meningococcal disease, and peaks were
highly correlated in time (r= 0.95; P ,.001). H3N2 and H1N1 peaks were highly synchronized with meningococcal disease
while pandemic H1N1, B, and respiratory syncytial virus were not. Over 20 years, 12.8% (95% CI, 9.1–15.0) of meningococcal
disease can be attributable to influenza in the preceding weeks with H3N2 accounting for 5.2% (95% CI, 3.0–6.5), H1N1 4.3%
(95% CI, 2.6–5.6), B 3.0% (95% CI, 0.8–4.9) and pH1N1 0.2% (95% CI, 0–0.4). During the height of influenza season, weekly
attributable fractions reach 59%. While vaccination against meningococcal disease is the most important prevention
strategy, influenza vaccination could provide further protection, particularly in young children where the meningococcal
disease vaccine is not recommended or protective against the most common serogroup.
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Introduction

Neisseria meningitidis is a leading cause of meningitis and sepsis

in young children and adolescents in the United States, with an

estimated incidence of 0.53 cases of invasive meningococcal

disease (MD) per 100,00 population, and 1525 cases occurring

annually between 1998 and 2007 [1,2]. It is an important

pathogen globally, with incidence estimates varying geographically

up to the exceptionally high estimated 1000 cases per 100,000 in

the African ‘‘meningitis belt’’ [3].

Reports of MD outbreaks in closed communities following

influenza epidemics hint at a possible causal relationship, but

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e107486

http://www.hcup-us.ahrq.gov/partners.jsp
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0107486&domain=pdf


direct evidence of antecedent infection with influenza among MD

patients is difficult to obtain in most circumstances, though it has

been found as a risk factor in certain epidemic settings [4–8].

Influenza may no longer be detectable in an individual whose MD

was caused by co-infection with influenza, as the virus is rapidly

cleared from the nasopharynx within 4 - 10 days of initial

symptom onset [9,10], which is comparable to the incubation

period of MD [11,12]. Evidence of a causal link for influenza

predisposing to MD comes from animal studies, disease records of

past pandemics, and time series regression models [13–17], whose

conclusions as with all observational analyses can be considered

causal only if confounding factors are adequately accounted for.

Previous studies of MD and influenza time series have relied on

small numbers of reported MD cases over short time periods and

broad categorizations of influenza activity to detect an association

between MD and influenza. A study in France over 5 years

showed that the incidence of MD in a given week correlated with

influenza counts in the preceding 5 weeks and that MD cases were

more clinically severe during or up to 2 months after influenza

outbreaks [16]. Periods of influenza activity correlated with MD

across all age groups in Denmark [17]. A Canadian study provided

further evidence using both regression models and a case-crossover

design [18].

Influenza could facilitate meningococcal colonization and

subsequent invasive disease by several biological mechanisms.

Influenza could affect meningococcus transmission by facilitating

dispersion of the bacteria or by increasing a person’s risk of

becoming a carrier when exposed [14]. In mice, influenza-induced

immune dysregulation increases susceptibility to invasive MD

[19,20]. Likewise, influenza A neuraminidase increases the

adherence of meningococcus to epithelial cells, a necessary step

for meningococcus to colonize the nasopharynx [21,22]. Influenza

B, by contrast, does not seem to increase meningococcal adhesion

[23].

Given the evidence that influenza infection increases MD risk,

we investigated the synchrony of these diseases and quantified the

amount of hospitalized MD that is attributable to influenza. This is

the largest study to analyze the effects of circulating influenza

subtypes, co-circulating respiratory syncytial virus (RSV), and

patient age on this association and the only study that quantifies

the association using the attributable fraction (AF). We used a

large hospitalization database covering 20 influenza seasons in 9

states to explore the role of each of these factors in modifying the

fraction of MD attributable to influenza.

Methods

Study Population and Data Sources
The study population consisted of all residents in the nine states

that continuously contributed data since 1989 to the State

Inpatient Databases (SID), a part of the Healthcare Cost and

Utilization Project (HCUP) sponsored by the Agency for

Healthcare Research and Quality (AHRQ) [24]. Since the

investigators of this study had no interaction with patients and

received no identifiable private information as part of this study,

we were not required to obtain ethics approval or individual

patient consent by the Harvard School of Public Health

institutional review board under the United States Department

of Health and Human Services’ regulations on human subjects.

The SID contains all hospitalizations from community hospitals

in the participating state and provides the primary and all

secondary discharge diagnoses. The nine states (AZ, CA, CO, IA,

IL, MA, NJ, WA, WI) were combined to create an aggregate age-

stratified dataset by week of admission. We studied the period

from January 1, 1989 to November 21, 2009, which represents 20

complete influenza seasons (August 1 through July 31). We

removed the final six weeks of 2009 in the dataset to avoid any

effects of reporting delays. Working in collaboration with AHRQ,

weekly counts of hospitalizations due to MD (ICD-9-CM = 036.0-

036.9), influenza (ICD-9-CM = 487.0-487.9, 488.1) (FLU), or

RSV (ICD-9-CM = 079.6, 466.11, 480.1) were provided from

the SID. We describe our methods for handling missing data in

Section S1 of Text S1.

To determine whether influenza subtypes differed in their

relationship with MD, we obtained the weekly proportion of

positive tests by influenza subtype (B, A/H1N1, A/H3N2 or 2009

pandemic A/H1N1 (pH1N1)) from the Centers for Disease

Control and Prevention (CDC) [25]. Testing begins mid-

September and ends in May. We used the aggregate national

samples to represent the subtype contribution in our nine states, as

publicly-available state-level information was not available.

Although the relative importance of influenza subtypes can vary

somewhat across the United States within a mild season, the most

severe seasons (where the putative interaction between influenza

and MD would be most salient) are geographically homogeneous

(www.cdc.gov/flu). The weekly proportions of positive tests by

subtype were multiplied by the weekly count of influenza

hospitalizations (FLUt) to give a subtype attributable estimate of

the weekly number of influenza hospitalizations caused by each

subtype (SAIHt).

Analytic Approach
Two sets of analyses were performed to assess the relationship of

MD to FLU and RSV. The first assessed the synchrony of timing

of peak hospitalizations for MD with FLU and RSV. The second

used regression modeling to estimate the fraction of MD

attributable to influenza in aggregate, by subtype, patient age,

and co-circulating RSV.

Synchrony of peak hospitalizations. To compare the

timing of the peak in FLU or RSV hospitalizations with MD

each season, each time series was smoothed to create a 5-week

moving average. If there was a tie for the peak hospitalizations in a

season, all tied weeks were included. The synchrony was also

explored between influenza subtypes and MD. Given that the

subtype-attributable hospitalizations were a product of the viral

and hospitalization data, we chose to use only seasons where each

subtype was circulating at a meaningful level. This resulted in a

season being excluded in the correlation analysis if there were

fewer than 75 estimated hospitalizations at the peak for a given

subtype. Pearson correlation coefficients were calculated compar-

ing the timing of the peak in each of the 20 seasons.

Modeling meningococcal disease. To estimate the fraction

of MD attributable to seasonal influenza, we developed a

regression model that accounts for the autocorrelation of MD

between weeks, the underlying changes in both MD and FLU

incidence over time, and seasonality. We have demonstrated that

incidence rates of MD using multiple robust datasets has declined

substantially since our study period began, while incidence of

hospitalizations due to influenza towards the end of our study were

higher (Section S2 of Text S1). To account for these changes, MD

counts were modeled as a function of season (using sinusoids),

trend (using linear and quadratic time terms), autoregressive terms

with MD lagged 1–3 weeks, SAIH lagged 1 week, and terms to

allow influenza to have a changing effect on MD over time (effect

modification).

Unique aspects of our modeling approach, explained further in

Section S3 of Text S1, include: the use of a negative binomial

generalized linear model with an identity link, autoregressive terms
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for MD, allowing the amplitude of seasonal forcing to vary

annually to reflect changing populations or risk levels, and the use

of Legendre polynomials to prevent collinearity of the time

covariates [26]. Comparable models were created for MD in 3 age

categories as the main outcome (,5, 5–24, and.24 years old)

using all age SAIH but for brevity, all further methods will

describe the influenza subtype model.

Estimating the attributable fraction of meningococcal

disease associated with influenza subtypes. We define the

AF to be the fraction of hospitalizations caused by MD that could

be avoided if influenza infection could be prevented. We estimate

the subtype AF based on the coefficients estimated in the model

previously described. The numerator of the AF represents the

expected MD in a hypothetical influenza-free world while

accounting for the autocorrelation of MD generated in the

absence of influenza, minus the observed MD incidence in the

presence of influenza; thus the numerator is the difference in

incidence between a counterfactual influenza-free world and the

observed world. To turn this difference into an attributable

fraction, it is divided by the observed incidence. The inclusion of

autoregressive terms for MD complicates our estimation of the

numerator, as we cannot observe what MD would have been in

previous weeks in the absence of the effect of influenza. To

estimate the AF, we applied the g-formula [27] to generate a

chronologically iterative process whereby expected MD counts are

estimated using the prior three weeks’ estimates for the lagged

autoregressive terms. In the first three weeks when we cannot

estimate the expected MD count, we use the observed MD.

Formally, under the assumption that all common causes of

influenza and MD are appropriately accounted for, the g-formula

provides an expression for the expected MD counts had one

intervened to prevent influenza from occurring in the past. The

AF is described further in Section S3 of Text S1.

We varied the possible time lag between influenza and MD

from 67 weeks, including multiple week lags, and chose the model

with the best fit as determined by Akaike’s Information Criterion.

Our use of an additive rather than multiplicative model allowed an

unbiased estimate of the cumulative AF when multiple subtypes

are included [28] with the result that the overall influenza AF is

the sum of the subtype-specific AF.

RSV was initially modeled using the same time lags as FLU, up

to 7 weeks before. It was modeled independent of influenza and in

models with FLU lagged up to 7 weeks. The best-fitting time lag

was 6 weeks for RSV and 1 week for influenza. With these lags, the

parameter estimates for RSV were negative (b= 20.00176) but

significant (p-value 0.0009) and the model did not fully converge.

As the time lag for RSV decreased, the coefficient became less

negative but increasingly also were not significant. After consid-

ering the results of both the modeling efforts and peak week

analysis, we chose to exclude RSV as a potential contributing

factor to MD and removed it from subsequent models.

We estimated 95% confidence intervals of the AF point estimate

using a wild bootstrap [29,30] where each week is randomly

assigned a weight from an exponential distribution with a mean of

1 but the chronology and serial correlation between weeks is

preserved. The log likelihood in the model is then the product of

the weekly weight times the log likelihood for the negative

binomial model, which essentially reweights the score equation.

For each reweighting, the parameters were estimated by maxi-

mum likelihood and an AF for that random weighting scheme was

estimated. We generated 1000 independent and identically

distributed weights and calculated 1000 AF. The 95% confidence

intervals were calculated with the percentile method, as the

distributions of AF calculated from the 1000 model runs were not

skewed and the mean AF estimate closely approximated the

observed AF [31,32].

In order to assess the impact of unmeasured confounding of the

association between MD and influenza by a year-specific or a

season-specific common cause, we performed two different

permutation tests, described in Section S4 of Text S1.

All statistical analyses were performed using R, Version

2.12.0[33] and the NLMIXED and SURVEYSELECT proce-

dures in SASH Version 9.3 for Windows XP_PRO.

Results

In our 20-year study period, the 9 states in the SID recorded

17,575 MD and 242,520 FLU hospitalizations. We attributed

136,813 influenza hospitalizations to H3N2, 42,989 to influenza B,

25,444 to H1N1 and 24,234 to pH1N1. Influenza hospitalizations

during months without viral testing were not included (n = 13,040).

In the 20 seasons analyzed (198921990 to April 15, 2009), the

median peak weeks of FLU and MD were weeks 30.5 and 31,

respectively (third to fourth week in January). The weeks after

April 15, 2009 were treated as a unique season to separate pH1N1

from seasonal influenza. There was no synchrony between MD

and pH1N1. This may have been an artifact of using an

incomplete year or of the unusual seasonality in FLU that year.

The peak in MD for this period was the tail end of the 2008209

season while FLU peaked in the last week of October,

corresponding with the fall wave of pandemic cases, suggesting

we needed the full 2009210 season to observe the MD peak. In all

seasons but one, 199221993, FLU peaked within 2 weeks before

MD; during the 1992293 season, MD peaked 1 week before FLU

(Figure 1A). The peak weeks were highly correlated (r= 0.95; P
,.001). This remarkable synchrony of the peak in FLU and MD is

observed whether influenza peaks earlier or later in the season. In

contrast to influenza, RSV was not synchronized with MD

(r= 0.07; P = .77) and peaked equally before and after MD.

There was a marked difference in the synchrony of peaks of the

different subtype hospitalizations and MD (Figure 1B). To look at

synchrony only in seasons where each subtype was circulating at a

meaningful level, a season was excluded in the correlation analysis

if there were fewer than 75 hospitalizations at the peak for a given

subtype. This resulted in 16 (H3N2), 7 (H1N1), and 13 (B) seasons

analyzed for correlation. H3N2 (r= 0.90; P ,.001) and H1N1

(r= 0.92; P = .003) were highly synchronized with MD hospital-

izations while influenza B showed little evidence of an association

(r= 0.20; P = .51). During our study period, influenza B was the

dominant strain in only 2 seasons but in those years peaked with

(1990291) or 1 week before MD (1992293). The only season

when H3N2 or H1N1 peaked after MD was 1992293 when B

dominated.

The model of the association of SAIH and MD explained

68.5% of the variability of MD over 20 years (Table 1) and

captured the timing of the peaks in MD quite well (Figure 2). The

model over-predicts MD hospitalizations in the two more severe

A/H3N2-dominant influenza seasons. During the 20 years of our

study, 12.8% (95% CI, 9.1215.0) of MD can be attributable to

FLU in the preceding weeks with H3N2 accounting for 5.2%

(95% CI, 3.026.5), H1N1 4.3% (95% CI, 2.625.6), B 3.0% (95%

CI, 0.824.9) and pH1N1 0.2% (95% CI, 020.4). During the

height of influenza season, AFs reach as high as 59% in a given

week for all influenza and H3N2, 48% for H1N1, 23% for

influenza B and 51% for pH1N1 (Figure 3).

There was little statistical difference between the cumulative AF

for each age group, with 12.9 (95% CI, 8.7215.8), 15.5 (95% CI,

10.6219.0) and 9.2 (95% CI, 4.9212.6) percent of the MD

Meningococcal Disease and Influenza in the US

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107486



attributable to FLU for ,5, 5224, and.25 year olds, respectively.

Additional discussion of the results by age and geography can be

found in Sections S5 and S6 of Text S1.

After considering the results of both the modeling efforts and

peak week analysis, we chose to exclude RSV as a potential

contributing factor to MD. The best fitting time lag for RSV was 6

weeks but the RSV parameter estimate was negative and the

model did not fully converge (b= 20.00176; P ,.001). As the

time lag for RSV decreased, the coefficient became less negative

but also less significant.

Discussion

Our study adds to the body of evidence suggesting that

influenza infection is a contributing cause of invasive MD, and we

have four major findings: 1) the peak in FLU is highly

synchronized with the peak in MD hospitalizations; 2) a

substantial fraction of MD can be attributed to FLU in the

preceding weeks; 3) there is variability in this association by

influenza subtype and age, but geography has little to no effect in

the areas studied, and 4) RSV is not associated with MD. The

remarkable coherence in timing of peaks in influenza and MD

hospitalizations over twenty seasons, regardless of when the highly

variable influenza season begins, is suggestive of a strong causal

relationship. Influenza is neither a necessary nor sufficient cause of

MD; however, over a twenty-year period, 13% of MD can be

attributed to hospitalizations for seasonal influenza in the

preceding weeks. The strength of the causal inference made here,

as in any observational study, depends on the adequacy of controls

for confounding causes that are associated with the exposure

(influenza) and are causally related to the outcome (MD). In

particular, we have attempted to control for seasonal or other

temporal factors (weather or human behavior, for example) that

might be common causes of MD and influenza, through three

means: inclusion of sinusoidal and trend terms in the regression,

permutation tests to account for uncontrolled seasonal variation,

and the use of synchrony analyses that use variation between years

in seasonal peak timing to avoid confounding by any factor that

shows a consistent seasonal trend.

These findings are consistent with earlier work using time series

containing 1–2% as many MD cases as analyzed here [17,18].

The results of our study differed with previous work on the

contribution of RSV and influenza B to MD. Our findings suggest

that influenza B contributes less to MD than influenza A but it is

still a significant contribution. Others found no association

between influenza B and MD but suggested a lack of statistical

power as a cause [18]. Our results suggest that RSV is not involved

in the causal pathway of developing invasive MD. Two other

studies have looked at the association of RSV with MD and have

found conflicting evidence. One study supports our results and

suggests that RSV is not important in developing MD [34]

whereas another study found evidence of an association with RSV

[18].

The difference in cumulative AF between the subtypes was not

proportional to the relative SAIH contributions to the hospital-

ization burden over the twenty years; 6:2:1:1 for A/H3N2, B,

H1N1 and pH1N1. Since a six-fold higher incidence of H3N2

SAIH exposure does not translate into dramatically higher AF in

our study, it suggests that there is not a fixed relationship between

the number of FLU hospitalizations and the number of MD

hospitalizations, but that this relationship may be modified by

influenza subtypes, perhaps the characteristics of circulating

meningococcal strains, and age [22,23,35]. Using hospitalizations

rather than another indicator of influenza activity as our exposure

has limitations in that the probability of hospitalization given

infection is different among the subtypes [36,37]. In years with

multiple subtypes co-circulating, we likely bias H3N2 towards the

null and B and H1N1 away from the null because we assign

hospitalizations proportional to the percent of positive tests in a

given week regardless of their propensity to cause severe disease

necessitating hospitalization. While there is no perfect count of

influenza infection in a population, we believe our use of influenza

hospitalizations and SAIH is an improvement over solely using

viral surveillance data [18], because viral surveillance data alone,

expressed as a percentage of positive tests, cannot linearly account

Figure 1. Meningococcal disease (MD) annual peak timing
shows strong correlation with peak of influenza (FLU),
especially A/H3N2 and A/H1N1 but not RSV. A We analyzed 20
seasons and defined the week for each season in which FLU, RSV, or MD
had the maximum count as the peak week. The synchrony of the peak
week for FLU, RSV, and MD was compared. FLU (marked by a blue
triangle) peaked 2 weeks or less before MD in all seasons but one. The
peak weeks were highly correlated (r= 0.95; P ,.001). In contrast, RSV
(marked by circles) was not synchronized with MD (r= 0.07; P = .77)
and peaked equally before and after MD. B Same analysis repeated for
each season and each influenza subtype. Including only seasons with at
least 75 subtype-attributable influenza hospitalizations, we analyzed 16
(H3N2), 7 (H1N1), and 13 (B) seasons for correlation with MD. H3N2
(r = 0.90; P ,.001) and H1N1 (r = 0.92; P = .003) were highly
synchronized with MD hospitalizations while influenza B showed little
evidence of an association (r= 0.20; P = .51). During our study period,
influenza B was the dominant strain in only 2 seasons but in those years
peaked with (1990291) or 1 week before MD (1992293). The only
season when H3N2 or H1N1 peaked after MD was 1992293 when B
dominated.
doi:10.1371/journal.pone.0107486.g001
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for increasing case volume as the influenza season peaks [38,39]. It

has been shown in the UK and US that the percent of tests

submitted that were positive for influenza is a poor proxy for

influenza morbidity or mortality and poorly reflects the timing and

overall severity of an epidemic given changes in viral surveillance

over time (both between and within seasons) [40–43].

The marginal contribution of pH1N1 to MD in our regression

analyses, and lack of temporal synchrony, merits further study with

data from 2010 and later. Such analyses may help to distinguish

among several hypotheses for the weak or absent association seen

here: artifact of the cutoff for data analysis at the end of 2009;

different seasonal factors promoting influenza (which departed

from the normal seasonality during the pandemic) and MD,

Figure 2. Observed MD compared with model-predicted MD. MD counts were modeled in a negative binomial generalized linear model with
an identity link. Independent variables included a sinusoidal term for seasonal variation, linear and quadratic time trends (modeled using Legendre
polynomials), autoregressive terms with MD lagged 123 weeks, SAIH lagged 1 week, and terms to allow influenza to have a changing effect on MD
over time (effect modification).
doi:10.1371/journal.pone.0107486.g002

Figure 3. Weekly fraction of MD attributable to all subtypes together and individual influenza subtypes. Most seasons were dominated
by either influenza A/H1N1 or A/H3N2, with little of the other subtype. Nearly all seasons also showed a smaller contribution from influenza B.
doi:10.1371/journal.pone.0107486.g003

Meningococcal Disease and Influenza in the US
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swamping the signal of association; or an intrinsic difference in

pH1N1’s tendency to contribute to MD risk.

The study had several limitations. The ecologic design, using

data from 2 independent surveillance systems, makes it impossible

to draw direct causal links between influenza and MD. In an ideal

study design, we would create a large cohort and follow them

prospectively for several years to determine when each person

developed influenza or MD. However, the rarity of MD and the

difficulty in defining an influenza case would require impossibly

large cohorts being sampled frequently for influenza infection.

We also used ICD-9 diagnostic codes from the State Inpatient

Database as proxies for infection and disease incidence. These

codes are neither perfectly sensitive, as some cases will not be

detected, nor perfectly specific, as some cases will be misclassified

as FLU or MD when they are not. If the multiplicative relationship

between true incidence and each proxy remained constant over

the study period, then no error would be introduced by the use of

the proxy. Departures from this ideal relationship will add error to

our estimates.

We used national information on the relative dominance of

each influenza subtype in our regression models, because state-

specific data were not available. Surveillance reports however

indicate that the most severe A/H3N2 seasons, during which the

interaction between influenza and MD is strongest, are spatially

homogeneous (eg 1999–2000 or 2003–4) [44,45]. Further, for our

synchrony analyses we used state-specific data on influenza-

hospitalization rates to estimate the local incidence of disease

activity. As laboratory-based surveillance is strengthened in the US

and elsewhere, our models could be improved by inclusion of

more local proxies of influenza and RSV virus activity.

Our findings have implications for infectious disease control

policy. While vaccination against MD is the most important

prevention strategy, vaccination against influenza could provide

further protection particularly in the youngest and most vulnerable

age group where MD vaccination is not recommended and 13%

of MD is attributable to influenza. Given that current MD

vaccines do not offer complete protection against all serogroups,

including B, one of the three most prevalent causes of invasive

disease in the US [46] and the most common in young children

[1], immunizing against influenza would result in reductions of

MD where MD vaccine cannot. The recent trend toward

increasing childhood influenza vaccination in the US may have

an impact on MD incidence both through direct protection of

influenza-vaccinated persons against influenza which may lead to

MD, and through herd immunity to influenza that may offer

indirect protection to others against influenza infection leading to

MD.

In summary, we found that the age and subtype patterns

evidenced in this epidemiological study reinforce the possibility of

a biological association between influenza and MD and exclude

this association with RSV.
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Cumulative AFInfluenza Parameter

(95% CI)

Model R2 Betas P value

All Subtypes Combined 12.8 (9.1215.0) 68.5%

H1N1 4.3 (2.625.6) 0.002 ,.001

H3N2 5.2 (3.026.5) 0.0005 ,.001
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