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A grand canonical Monte Carlo (MC) algorithm is 
 presented for studying the lattice gas model (LGM) of 
multiple protein sequence alignment, which coherently 
combines long-range interactions and variable-length 
insertions. MC simulations are used for both parameter 
optimization of the model and production runs to explore 
the sequence subspace around a given protein family. In 
this Note, I describe the details of the MC algorithm as 
well as some preliminary results of MC simulations with 
various temperatures and chemical potentials, and com-
pare them with the mean-field approximation. The exis-
tence of a two-state transition in the sequence space is 
suggested for the SH3 domain family, and inappropriate-
ness of the mean-field approximation for the LGM is 
demonstrated.
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Thanks to the massive genome sequencing, we have a 
great number of known amino acid sequences at our hands. 
Exploiting the wealth of sequence data, recent advances in 
biological sequence analysis made it possible to reliably 
extract the “direct” couplings between residues that are sep-
arated along the sequence [1–5], and thereby to accurately 

predict three-dimensional (3D) structures [6,7] as well as 
mutation effects [8].

Based on these developments, I have previously proposed 
a lattice gas model (LGM) of multiple protein sequence 
alignment (MSA) which incorporates direct couplings and 
variable-length insertions in a coherent manner [9]. In that 
work, I tried to use a mean-field approximation for treating 
the long-range direct couplings so that the partition function 
can be computed efficiently. However, it was found that the 
quasi-1-dimensional model structure was somehow incom-
patible with long-range interactions so that the original mean-
field approximation without the diagonal terms of the direct 
coupling matrix failed to converge to correct solutions. Thus, 
I resorted to the Gaussian approximation by including the 
diagonal terms of the “long-range” interaction matrix. The 
Gaussian approximation makes the system essentially har-
monic, and hence, by construction, it does not exhibit some 
interesting phenomena such as phase transitions. In a pre-
liminary study, I also tested the pseudolikelihood method 
[10,11] for obtaining the direct couplings, but again, failed to 
obtain stable solutions (data not shown). Therefore, for the 
LGM of protein families, it appears necessary to drop any 
approximations (at least those known to the author). In prin-
ciple, this can be done by performing Monte Carlo (MC) 
simulations, which was indeed the original approach to the 
problem [12], and more recently employed by Sutto et al. 
[13]. In these studies, only alignments with fixed lengths 
were treated so that the standard canonical Metropolis sam-

We can learn a lot from the patterns in protein sequences, and the patterns are made explicit by statistical analysis of multiple sequence alignments 
(MSA). In this paper, a framework of Monte Carlo simulations is proposed for a statistical mechanical model of MSA. Using this method, we can 
explore the structure of the protein sequence space, which may shed light on our understanding of what constitute protein families.
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tains the 20 standard residues types and a symbol for the 
“delete” (“–”) and AIi

 (i=1,...,N–1) contains the 20 standard 
residue types. The set T is a set of interacting non-bonded 
pairs of core sites. To define it precisely, we first define  
the (non-redundant) set of all pairs of core sites:  
T*={(Oi,Oj)|Oi,Oj∈O, i<j}. Then, T is defined as a subset: 
T⊂T*. This subset is determined based on structural infor-
mation (see below). A concrete example of a model with 
N=6 is shown in Figure 1A.

Using this model, we can represent an alignment between 
an arbitrary amino acid sequence and the model. Let  
a=a1...aL be an amino acid sequence of L residues. An align-
ment between the sequence a and the model M is represented 
as a sequence of pairs of a model site (core or insert) and a 
residue: X=X1...XLX

 where LX is the length of the alignment 
and each Xi is an aligned pair such as (S,a) with S∈S and 
a∈AS, a=aj for some j∈{1,...,L} or a=“–” (delete, only if S 
is a core site). For X to be a proper alignment, there are two 
requirements. First, for any two consecutive aligned pairs 
Xk Xk+1=(S,a)(S’,a’), the two model sites must be potentially 
bonded (S→S’). Note in particular that the same insert site 
can appear arbitrarily many times in an alignment due to the 
order Ii→Ii. The two model sites that appear in two consecu-
tive aligned pairs are called bonded (note the absence of the 
adverb “potentially”). Second, for any two aligned pairs 
Xk=(S,ai) and Xl=(S’,aj) in X that are aligned with proper 
amino acid residues ai and aj in the sequence a, if k<l then 
i<j. A concrete example of an alignment is shown in Figure 
1B.

In the present study, I have made a few modifications (Fig. 
1) to the previous model [9]. The first is that the alignment is 

pling was sufficient. In the LGM, however, the alignment 
length is variable, which necessitates some special treat-
ment. In short, it requires a special kind of grand canonical 
MC algorithm which I believe is worth sharing in this Note. 
Along the way, I reformulate the LGM from a different per-
spective, which may help better understand the physical 
meaning of the model.

Materials and Methods
Model

The basic structure of the LGM was presented in a previous 
paper [9]. Here, I reformulate the model more formally with 
a few modifications. An LGM M is defined as a tuple of sets 
M={S,A,T}. The set S is a set of 2N–1 model sites, which  
is a disjoint union of the set of N core sites O={O1,...,ON} 
and the set of N–1 insert sites I={I1,...,IN–1}: S=O∪I. The 
 number of core sites, N, is called the length of the model. 
The core sites represent those sequence positions that are 
present in a majority of sequences of the protein family of 
interest, and the insert sites represent the other positions. In 
this study, I define the core and insert sites as the positions of 
the “match” and “insert” states, respectively, of the profile 
hidden Markov model (HMM) of the corresponding Pfam 
[14] family. The set S is partially ordered (denoted by “→”) 
such that Oi→Oi+1, Oi→Ii, Ii→Ii and Ii→Oi+1 for i=1,...,N–1, 
and these ordered pairs are said to be potentially bonded  
(the dashed arrows in Fig. 1A). Those pairs of model sites 
that are not potentially bonded are called non-bonded. The 
set A is a set of sets of allowed amino acid residue types for 
each model sites: A={AS|S∈S} where AOi

 (i=1,...,N) con-

Figure 1 An example of the model structure. (A) A model with N=6. The potentially bonded pairs are connected via dashed arrows, and inter-
acting pairs (T={(O1,O6),(O2,O5)}) are connected via dashed lines. (B) One possible alignment between the model in (A) and an amino acid 
sequence KCFPDGVW is represented as X=X1...X9=(O1,K)(O2,C)(O3,F)(I3,p)(I3,d)(I3,g)(O4,–)(O5,V)(O6,W). Here we adopt the conventions that 
residues aligned with insert sites are written in the lower case and bonded pairs are connected via solid arrows. Note the insert site I3 appears more 
than once in this particular alignment.
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The parameters J and K are determined iteratively so that 
the average residue pair counts for bonded and interacting 
non-bonded pairs over the samples produced by MC simula-
tions under the natural condition match those observed in the 
given MSA of the family. However, this procedure is not 
straightforward since the length of alignment X is variable. 
The complication is due to the indexing scheme of aligned 
pairs where the meaning of each index, say “k” of Xk, is dif-
ferent for different alignments. Therefore, I reformulate the 
energy function by introducing some stochastic variables, 
single-site counts and bonded pair counts, based on model 
sites which are fixed for any alignments. In fact, this was the 
original formulation of the LGM in the previous paper [9].

For each model site and site pairs, we define the stochastic 
variables as functions of alignment X=X1...XLX

. To do so, we 
first define the set Y of all possible pairs of model sites and 
amino acid residues as Y={(S,a)|S∈S,a∈AS}. Note that, 
while the set of all possible alignments {X} is an infinite  
set, the set Y is finite (namely, |Y |=21N+20(N–1)). Now, the 
single- site count for the pair Y∈Y is defined as

nY(X) = 
LX

δY,Xk
∑
k=1

 (5)

where δY,Xk
 indicates Kronecker’s delta (i.e., δY,Xk

=1 if Y=Xk 
and δY,Xk

=0 otherwise). Note that n(Oi,a)(X) can be either 0 or 
1 for any core site Oi whereas n(Ii,a)(X) for any insert site Ii 
may have any values from 0 to infinity. Next, the bonded 
pair count for Y,Y’∈Y is given as

nb
Y,Y’(X) = 

LX–1

δY,Xk
δY’,Xk+1

∑
k=1

. (6)

The bonded pair counts are defined only for potentially 
bonded pairs of model sites (those pairs of sites connected 
via dotted arrows in Fig. 1A). However, two neighboring 
model sites may not always be aligned with two consecutive 
residues in the amino acid sequence. For example, in the 
alignment X shown in Figure 1B, we have the bonded pair 
count nb

(O3,F),(O4,–)(X)=0 because the pair of aligned sites (O3,F) 
and (O4,–) are not consecutive in the alignment X although 
the model sites O3 and O4 are potentially bonded in the 
model. Nevertheless, we have n(O3,F)(X)n(O4,–)(X)=1 because 
n(O3,F)(X)=1 and n(O4,–)(X)=1. Therefore, a bonded pair count 
cannot be reduced to a product of two single-site counts. In 
this manner, bonded pair counts account for the chain struc-
ture of polypeptide sequences, which should not be confused 
with the (quasi-)one-dimensional lattice structure of the 
model.

From the definitions of the single-site and bonded pair 
counts, we have the following relations [9]. First, the single- 
site counts for each core site are normalized:

n(Oi,a)(X)∑
a∈AOi

 = 1 . (7)

Second, each single-site count is completely determined by 
bonded pair counts:

now global with respect to the model but local with respect 
to the sequence (the previous model was global with respect 
to both the model and sequence). This means that the entire 
region of a model is always aligned with an amino acid 
sequence while only a part of the amino acid sequence may 
be aligned with the model (by ignoring possible flanking 
 residues on both the N- and C-termini of the amino acid 
sequence).

Another major modification is the limited number of 
interacting non-bonded pairs (previously, all the core sites 
were interacting with each other: T=T*). Between core sites 
more than 5 residues apart along the sequence, there may be 
interactions defined based on a representative native struc-
ture of the family. Two sites are defined to be interacting if 
the residues aligned to those sites are in contact in the cor-
responding (representative) native structure. Two residues 
are defined to be in contact if any non-hydrogen atoms in 
those residues are within 5 Å. Interactions are defined only 
between core sites for simplicity.

Based on this representation of the alignment, the energy 
function of the alignment X is given as 

E(X) = –
LX–1

J(Xk,Xk+1)∑
k=1  – K(Xk,Xl)∑

(s(Xk),s(Xl))∈T  – 

LX

μ(Xk)∑
k=1

 (1)

where J and K are, respectively, short-range and long-range 
interaction energy parameters to be determined from the 
given (observed) MSA and μ is the chemical potential, and T 
indicates the set of all interacting pairs of core sites and s is 
a function to extract the model site from an aligned pair (i.e., 
s(X)=S for X=(S,a),S∈S). Thus, only J and K parameters 
constitute the intrinsic energy, and μ’s are provided as exter-
nal variables to control (perturb) the system.

We assume that the probability P(X) of obtaining an 
alignment X is given by the Boltzmann distribution: 

P(X) = 
exp[–E(X)/T]

Ξ[T]  (2)

where T is the “temperature” and Ξ[T] is the partition function

Ξ[T] = exp[–E(X)/T]∑
X

 . (3)

Here, the summation is over all possible alignments (X) with 
the model and all possible sequences. Since the alignment 
length can vary, this ensemble is considered to be a grand 
canonical ensemble. The grand potential is given by 

Ω[T] = –T log Ξ[T]. (4)

Given the parameters J, K and μ, we can sample sequences 
according to the probability distribution Eq. (2) by running 
Monte Carlo (MC) simulations.

The standard condition is defined to be the system with 
μ(Xk)=0 for all Xk, and the natural condition to be the stan-
dard condition with T=1.
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between two consecutive residues, and l possible positions 
(residues) for an existing residue to be deleted or substituted 
(deletion or a substituting residue is chosen with probabil-
ity q21=1/21). Accordingly, an extension of the insert is 
attempted with probability (attempt frequency) p+

l q20 where 
p+

l =(l+1)/(2l+1), and a deletion or substitution is attempted 
with probability p–

l q21 where p–
l = l/(2l+1)=1–p+

l . This choice 
of attempt frequencies automatically excludes the possibility 
of attempting a deletion or substitution when l=0.

For an extension of an insert, one of the l+1 positions and 
one of the 20 residue types are chosen randomly, then it is 
inserted to the selected position. Let the energies before and 
after the extension be El and El+1, respectively. Then the 
extension is accepted with the probability

min {1,
p–

l+1q21 exp[–(El+1 – El)/T ] }p+
l q20

 (14)

where p–
l+1=(l+1)/(2l+3) (the probability of attempting sub-

stitution or deletion for an insert of length l+1), q21=1/21 
(uniform distribution for selecting a substituting residue or 
deletion) and q20=1/20 (uniform distribution for selecting an 
inserted residue). The pre-exponential factor ensures the 
detailed balance condition [15].

For a substitution or deletion of an insert, randomly pick 
one of the l positions in the insert. A deletion is attempted 
with probability q21=1/21. Let the energy after the attempted 
deletion be El–1. Then the deletion is accepted with probability

min {1,
p+

l–1q20 exp[–(El–1 – El)/T] }p–
l q21

 (15)

where p+
l–1=l/(2l–1) (the probability of attempting the exten-

sion of an insert of l–1 residues) and p–
l =1–p+

l . For a sub-
stitution, randomly pick a substituting residue with the uni-
form distribution (q20=1/20), then apply the usual Metropolis 
 criteria (c.f., Eq. 13).

For substitutions at core and insert sites, Gibbs sampling 
was also employed during parameter optimization. In these 
cases, substituting residues are selected according to the 
probability proportional to exp[–E(a)/T] where E(a) is the 
energy of the sequence with the attempted substitution with 
residue type a (either in a core or insert site).

For a model of length N, one sweep consists of N and N–1 
moves for randomly chosen core and insert sites, respec-
tively.

Parameter optimization
Let 〈Q〉obs denote the average value of the variable Q(X) 

over a given MSA. If the MSA consists of M aligned 
sequences (X1,...,XM), we compute the observed averages 
〈nY〉obs, 〈nb

YY’〉obs and 〈nYnY’〉obs as follow:

〈nY〉obs = 1 [ γ
+

M
∑
t=1

 wtnY(Xt)]γ+1 qY
 , (16)

〈nb
YY’〉obs = 1 [ γ

+
M
∑
t=1

 wtnb
YY’(Xt)]γ+1 2qYqY’

 , (17)

nb
(S,a),(Oi+1,b)(X)∑

b∈AOi+1

 + nb
(S,a),(Ii,b)(X)∑

b∈AIi

 = n(S,a)(X) , (8)

nb
(Oi,a),(S’,b)(X)∑

a∈AOi

 + nb
(Ii,a),(S’,b)(X)∑

a∈AIi

 = n(S’,b)(X) . (9)

Finally, it follows from the relation Eq. (7) that pair counts 
for non-bonded pairs also determine the single-site counts:

n(Oi,a)(X)n(Oj,b)(X)∑
b∈AOj

 = n(Oi,a)(X) , (10)

n(Oi,a)(X)n(Oj,b)(X)∑
a∈AOi

 = n(Oj,b)(X) . (11)

These relations explain why chemical potentials μ’s are not 
necessary as a part of the intrinsic energy parameters (Eq. 1). 
They also indicate that not all the variables are independent, 
which in turn indicates there is gauge freedom in the energy 
parameters J and K. In this study, I (partially) fixed the gauge 
so that J((Oi,–),(Oi+1,–))=0 and K((Oi,–),(Oi+1,–))=0, that is, 
the interactions between the “delete” residues (“–”) were 
defined to be zero.

Using the single-site counts and bonded pair counts, we 
can rewrite the energy function as

E(X) = –
b.p.

J(Y,Y’)nb
Y,Y’(X)∑

Y,Y’

–
n.b.p.

K(Y,Y’)nY(X)nY’(X)∑
Y,Y’

– μ(Y)nY(X)∑
Y∈y

 (12)

where the summations 
b.p.

∑
Y,Y’

 and 
n.b.p.

∑
Y,Y’

 are taken over all the 

possible pairs of aligned pairs over potentially bonded pairs 
and interacting non-bonded pairs in the model sites, respec-
tively.

Monte Carlo algorithm
I first describe the Metropolis-Hastings algorithm [15] for 

sampling alignments {X}. Since alignment length LX is vari-
able depending on insertions, some care is necessary to 
ensure the detailed balance.

For a core site, we randomly select a residue b out of 21 
possible residue types, substitute it with the existing residue 
a (Fig. 2A). Let the energies of the sequences before and 
after the substitution be Ea and Eb, respectively, the substitu-
tion is accepted with the probability

min{1, exp[–(Eb – Ea)/T ]}. (13)

For an insert site, there are three possible moves: substi-
tuting a residue (Fig. 2B), extending the insert by adding a 
new residue or shortening the insertion by deleting a residue 
(Fig. 2C). Suppose an insert consists of l residues (l=0,1,...). 
Then there are l+1 possible positions for a new residue (one 
of 20 types is chosen with probability q20=1/20) to be inserted 
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and the weights are normalized (i.e., 
M

wt∑
t=1

=1). These average 

counts are referred to as number densities in the following. 
The value of the pseudocount γ was set to a relatively small 
value (γ=0.1) in order to keep the expected sequence length 
with the pseudocounts closer to the value without the pseudo-
counts.

〈nYnY’〉obs = 1 [ γ
+

M
∑
t=1

 wtnY(Xt)nY’(Xt)]γ+1 qYqY’
 (18)

where qY (or qY’) is 21 or 20 if the model site of the the 
aligned pair Y (or Y’) is a core site or an insert site, respec-
tively, and wt is the position-based weight of the sequence t 
[16]. Only the core sites were used for computing the weights 

Figure 2 MC moves. For an LGM model of length N, each core or insert site is randomly selected with probability N/(2N–1) or (N–1)/(2N–1), 
respectively. (A) At a core site, a substituting residue is chosen with probability q21=1/21, which is accepted with the probability given in Eq. 13. (B) 
For a substitution at an insert site aligned with l residues, a tentative substituting residue at one of the l residue positions is randomly chosen with 
the probability p–

l q21 where p–
l =l/(2l+1), which is accepted with probability given in Eq. 13. (C) An insert may be extended by adding a residue or 

be shortened by deleting a residue. The extension of an insert with l residues is attempted with probability p+
lq20 where p+

l =(l+1)/(2l+1) and q20=1/20, 
which is accepted with the probability given in Eq. (14). The shortening of an insert with l residues is attempted with probability p–

lq21, which is 
accepted with the probability given in Eq. (15).



104 Biophysics and Physicobiology Vol. 14

where α and β are small parameters, and R(ν) is a momen-
tum term introduced to accelerate convergence [17].

4. Iterate 2 and 3.

The parameter α was set to 0.3, 0.1 or 0.01 depending on 
optimization stages (see Results), and β was set to 0.95.

Data preparation
The multiple sequence alignment (MSA) and profile 

 hidden Markov model (HMM) of the SH3 domain (Pfam 
PF00018) were downloaded from the Pfam database [14] 
(version 30.0). The MSA was based on the “representative 
proteomes” of 75% sequence identity cutoff. Based on the 
profile HMM, the length of the model was set to 48.

A representative crystal structure was chosen for each 
family from the Protein Data Bank [18] based on the criteria 
that there are no gaps (insert or delete) within the domain 
and the resolution is better than 2.0 Å. This is done by first 
querying the PDBj Mine2 relational database [19], then by 
examining the alignments of the found PDB chains against 
the Pfam profile HMM using the HMMER hmmalign pro-
gram [20]. Following this procedure, I selected chicken Src 
SH3 domain (PDB: 4HVU [21]) as a representative structure 
of the SH3 domain family, based on which there were 104 
interacting non-bonded pairs of core sites.

Results
Parameter optimization

I optimized the parameters J and K of the LGM model 
based on the MSA of representative sequences of the SH3 
family (Pfam PF00018) under the natural condition (T=1 
and μ(Y)=0 for all Y∈Y ). The whole optimization process 
consisted of 3 stages. In the first stage, 120,000 sequences 
obtained from 12 trajectories of 10,000 sweeps each were 
used for computing the simulated densities, and then the 
parameters J and K were updated with α=0.3 (Eq. 24). This 
optimization was repeated for 500 steps. In the second stage, 
1,200,000 sequences from 12 trajectories of 100,000 sweeps 
each were for used for updating the parameters with α=0.1. 
This stage consisted of 200 steps. The third stage was iden-
tical to the second stage except that α=0.01.

By construction, a sufficiently optimized LGM repro-
duces the number densities of each model site as well as of 
bonded and (interacting) non-bonded pairs in the given 
MSA. This is indeed demonstrated in Figure 3. For the 
single- site number densities, the correlation coefficient 
between observed and simulated values were greater than 
0.99 (>0.9999 for the core sites, and 0.993 for the insert 
sites). The correlation is slightly weaker for the insert sites, 
suggesting the difficulty of sampling the arbitrarily large 
number of inserted residues (there can be infinite number of 
inserted residues in theory, but the number is always limited 
in simulations). Note that the single-site densities were not 
directly optimized, but they were optimized indirectly 

We define 〈Q〉sim as the average of the variable Q(X) over 
a set of samples obtained from MC simulations (at a constant 
temperature). It is given as a simple average:

〈Q〉sim = 1 M
∑
t=1

 Q(Xt)M  . (19)

for a set of M simulated samples.
Given the estimates for observed and simulated number 

densities, we can optimize the energy parameters J and K 
(Eqs. 1 and 12). Under the natural condition (μ(Y)=0 for all 
Y and T=1), the average energy of the observed MSA is 
given as

〈E〉obs = –
b.p.

J(Y,Y’)〈nb
Y,Y’〉obs

∑
(Y,Y’)

 –
n.b.p.

K(Y,Y’)〈nYnY’〉obs
∑

(Y,Y’)
.

 (20)

The parameter optimization is done by maximizing  
〈E〉obs–Ω[T] under the natural condition (T=1 in particular), 
or:

F[T] = –ma
J,K

x (〈E〉obs – Ω[T]) (21)

where Ω[T] is the grand potential defined in Eq. (4). This 
may be regarded as a Legendre transform from the grand 
canonical ensemble with grand potential Ω[T] determined 
by J(Y,Y’) and K(Y,Y’) to the canonical ensemble with free 
energy F[T] determined by the respective conjugate vari-
ables 〈nb

YY’〉obs and 〈nYnY’〉obs. The optimization of the param-
eters as given in this equation is equivalent to the principle 
of maximum entropy as used by others [1] and in the previ-
ous paper [9]. Let P denote either J(Y,Y’) or K(Y,Y’), and 
Q(X) denote, respectively, nb

YY’(X) or nY(X)nY’(X). We have 
the following relations:

〈Q〉obs = –
∂〈E〉obs

∂P  , (22)

〈Q〉 = –
∂Ω[T]

∂P  ≈ 〈Q〉sim (23)

where 〈Q〉 is the exact average of Q(X) obtained from the 
partition function, and approximated by the simulation aver-
age 〈Q〉sim. Based on these relations, we have the following 
procedure for parameter optimization.

1. Initialize J and K with some values.
2. Estimate 〈nb

YY’〉sim and 〈nYnY’〉sim by running equilibrium 
MC simulations under the natural condition.

3. Update P (either J(Y,Y’) or K(Y,Y’)) by using the 
observed and simulated average values of Q (respec-
tively, 〈nb

YY’〉 or 〈nYnY’〉)

R(ν+1) : = α[〈Q〉obs – 〈Q〉sim] + βR(ν), (24)

P(ν+1) : = P(ν) + R(ν+1) (25)
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an alignment as the number of standard residues in the align-
ment (i.e., the total number of non-delete “residues”). The 
trajectories of sequence length show a large variety depend-
ing on the temperature (Fig. 4C, D). At T=1 and 1.1, the 
average sequence lengths were 48.8 (s.d. 4.6) and 91.5 (s.d. 
6.9), respectively (Fig. 4C). The fluctuation of the sequence 
length is clearly correlated with that of the energy (Fig. 4A, 
C). A similar trend is also observed for T=1.02 (Fig. 4D).

To characterize the sequences generated at different 
 temperatures, I performed homology searches using the 
hmmsearch program [20] using the profile HMM of the  
SH3 domain (SH3_1.hmm provided by the Pfam database) 
against a database of sequences generated at a specified 
 tem perature. At T=1.00, 8,961 out of 10,000 (89.6%) of  
the sequences were significantly similar to the SH3 domain 
(E-value less than 0.01) whereas at T=1.1, no sequence was 
significantly similar. This confirms that not only the residue 
distribution on average, but also the MC-generated sequences 
at the natural conditions are similar to the natural sequences. 
At T=1.02, the fraction of significantly similar sequences 
was 41.3%. Thus, the transition observed in Figure 4B indeed 
indicates an order-disorder transition in the sequence space. 
In the following, “ordered” or “disordered” sequences refer 
to those similar or dissimilar, respectively, to the natural 
sequences. Since the ordered sequences are likely to fold 
into the native fold of the SH3 domain whereas the disor-
dered sequences are not, the transition may be regarded as a 
“folding” transition in the sequence space.

through the bonded and non-bonded pair densities (c.f., Eqs. 
8–11). For bonded pairs, the correlation coefficients were 
>0.999, 0.993, 0.994 and 0.984 for 〈nb

(Oi,a),(Oi+1,b)〉, 〈nb
(Oi,a),(Ii,b)〉, 

〈nb
(Ii,a),(Oi+1,b)〉 and 〈nb

(Ii,a),(Ii,b)〉, respectively. For the interacting 
non-bonded pair densities, the correlation was >0.999. We 
use these parameters in the following.

For comparison, I also examined the correlation between 
non-interacting non-bonded pairs which were left out from 
the optimization (Fig. 3D). The simulated values do cor-
relate with the observed values, but, as expected, the cor-
relation is not very high: 0.991 for 〈nOi

(a)nOj
(b)〉, ~0.82  

for both 〈nOi
(a)nIj

(b)〉 and 〈nIi
(a)nIj

(b)〉. The pairs involving 
insert sites are less correlated, indicating less sufficient sam-
pling for insert sites.

Grand canonical MC simulations at various temperatures
Using the parameters defined above, MC simulations were 

performed at 3 different temperatures under the standard con-
dition (i.e., μ(Y)=0 for all aligned sites). At T=1 (the natural 
condition), the energy fluctuated mostly around 20–30 energy 
units (e.u.) with average 27.6 and standard deviation (s.d.) 
6.4. The energy occasionally jumped to around 200 e.u., but 
very soon returned to the lower region (Fig. 4A, magenta 
line). At a high temperature (T=1.1), the energy steadily fluc-
tuated around the average value of 239.2 e.u. with s.d. of 5.3 
(Fig. 4A, green line). At an intermediate temperature of 
T=1.02, a two-state transition was observed (Fig. 4B) between 
low-energy and high-energy states.

One of the strengths of the LGM is that it can handle 
variable- length insertions. We define the sequence length of 

Figure 3 Correlations between observed and simulated number densities. (A) Single-site number densities. (B) Bonded pair number densities. 
(C) Non-bonded pair number densities. (D) Non-bonded pair number densities for non-interacting pairs (these number densities were not optimized).
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temperature (T=1.02) and the trajectory was monitored (Fig. 
6). As noted above (Fig. 4A), the system is disordered (non- 
natural-like) at T=1.1. An example, the alignment X270 (Fig. 
6B), of the sequences shortly after the temperature jump 
illustrates some typical characteristics of high-energy, disor-
dered sequences such as an excess of inserts and the lack of 
conserved residues (e.g., W32 and P47; c.f. X5885 below in 
Fig. 6B). As the “folding” proceeds, the sequence length 
tended to shrink (X1265 in Fig. 6B), and some conserved res-
idues (e.g., W32) appeared when the energy became lower 
(X3964). However, the alignment still fluctuated to higher 
energies (X4153) before the entire region was ordered enough 
to significantly match the SH3 domain (X5885). Since T=1.02 
is close to the transition temperature as suggested in the pre-
vious subsection (Fig. 4B), the alignment continued to fluc-
tuate largely.

Mean-field approximation
One of the motivations for developing the MC method for 

the LGM model was that the mean-field approximation did 
not work well in the previous study [9] in which the param-
eters corresponding to K in Eq. (1) were obtained by invert-
ing the covariance matrix of the single-site counts of the core 
sites [1]. This matrix inversion method has been derived 
from a mean-field approximation [22,23]. Thus, the parame-

Perturbation on insert sites
In addition to changing the temperature, we can also per-

turb the system by introducing non-zero values for some or 
all of chemical potentials μ(Y). Here, I show the results of 
simulations with μ(Ii,a)=μI, that is, the chemical potential 
was set to a constant value μI for all residue types a for all 
insert sites Ii with T=1 (Fig. 5). The case μI=0 (with T=1) is 
the natural condition and the trajectory is identical to the one 
shown in Figure 4A, C (magenta lines). When μI is set to a 
large value μI=0.2, the energy (Fig. 5A) and the sequence 
length (Fig. 5C) mostly had large values as expected. At an 
intermediate value μI=0.1, the trajectories again exhibited 
two-state transitions (Fig. 5B, D).

Out of the 10,000 sequences generated with μI=0.2 and 
μI=0.1, 2.5% and 46%, respectively, were significantly sim-
ilar to the profile HMM of the SH3 domain. Since the chem-
ical potentials at the core sites were kept to zero, this result 
indicates that prolonged insertions alone can trigger order- 
disorder transition.

Virtual temperature-jump experiment
Motivated by the existence of the “folding” transition, I 

next performed a virtual “temperature-jump” experiment in 
which the system was initially equilibrated at a high tem-
perature (T=1.1) and then it was suddenly cooled to a lower 

Figure 4 Trajectories of MC simulations under the standard condition (μ(Y)=0 for all Y). (A) Trajectories of energy from simulations at T=1 
(magenta) and T=1.1 (green). (B) A trajectory of energy from a simulation at T=1.02. (C) Trajectories of sequence length from the same simulations 
as in (A). (D) A trajectory of sequence length from the same simulation as in (B).
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〈n(Oj,b)〉mf = n(Oj,b)(X)Pmf (X)∑
X

 (27)

where the probability of alignment Pmf (X) (c.f., Eq. 2) is 
computed using a transfer matrix method with the mean-
field (Eq. 26) (see the previous paper [9] for the details).  
Eqs. (26) and (27) are mutually dependent, and therefore, are 
solved mutually consistently. For core sites, the difference of 
the mean-field or MC-generated single-site number densities 
from the observed ones was measured by the Kullback- 
Leibler (KL) divergence:

DOi
 = 〈n(Oi,a)〉 ln [〈n(Oi,a)〉/〈n(Oi,a)〉obs]∑

a
 (28)

where 〈n(Oi,a)〉 indicates either 〈n(Oi,a)〉sim (obtained from MC 
simulations) or 〈n(Oi,a)〉mf (obtained from the mean-field 
approximation). 

The divergence of the core site number densities obtained 
from MC simulations were less than 10–3 for most of the 
sites (the only exception was 1.07×10–3 for the core site 29) 
whereas those obtained from the mean-field approximation 
were greater than 0.01 for 41 out of 48 core sites (and >0.1 
for 15 sites) and as large as 0.82 for the site 46 (Fig. 7A). To 
check this was not an artifact of the exact partition function, 
I also optimized the J parameters without long-range inter-

ters based on the mean-field approximation was not consis-
tent with the mean-field approximation of the LGM model. 
Note that the approximations are involved in two different 
situations, the first one in determining the parameters and the 
second one in computing the partition function. A detailed 
account for various approximations in the first case has been 
provided by Cocco et al. [24] Since the parameters are deter-
mined rigorously by MC simulations (within the sampling 
and numerical errors) in the present study, we can examine if 
it is indeed the case that the mean-field approximation of the 
LGM model is inappropriate in the second case. I applied the 
mean-field approximation to calculate the partition function 
of the LGM model using the parameters obtained from MC 
simulations. Please refer to the previous paper for the method 
to calculate the partition function using a transfer matrix 
method (with respective modifications to reflect the current 
model structure). Here, the mean-field of interactions is 
defined by

K(Oi,a) = K((Oi,a),(Oj,b))〈n(Oj,b)〉mf
∑

(Oj,b)
 (26)

where the summation is over the partners of the interacting 
non-bonded pairs. Note in particular that unlike the previous 
study [9], diagonal terms of the K matrix are not included. 
The single-site number densities 〈n(Oj,b)〉mf are given by

Figure 5 Trajectories of MC simulations with different μI values at T=1. (A) Trajectories of energy from simulations at μI=0 (magenta) and 
μI=0.2 (green). (B) A trajectory of energy from a simulation at μI=0.1. (C) Trajectories of sequence length from the same simulations as in (A).  
(D) A trajectory of sequence length from the same simulation as in (B).
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comparable (Fig. 7D). Since there are no non-bonded inter-
actions involving insert sites, errors introduced to the core 
sites by the mean-field approximation also affect the insert 
sites through bonded interactions.

In summary, these results suggest that the mean-field 
approximation is indeed not appropriate for this model.

Discussion
In the present work, I used for long-range interactions 

only those involved in native 3D contacts. As such, the pres-
ent model requires a priori knowledge of the native structure 
of the protein family of interest. While this may appear as a 
limitation in some respect (e.g., it cannot be used for struc-
ture prediction), it also has its advantages in other respects. 
First, parameter optimization is easier due to the smaller 
number of parameters. Since massive MC simulations are 
required to optimize a large number of parameters, this is 
clearly an advantage [12]. Second, discarding non-bonded 

actions so the truly exact partition function could be obtained 
(Fig. 7B). For this “J-only” system [9], the simulation and 
exact results were very similar and the divergence values 
were all small, mostly less than 2×10–3 (note that the “exact” 
result is not expected to yield divergence of 0 due to the 
errors in the parameters estimated from MC simulations).

For insert sites, we measure the difference between simu-
lated and observed densities by the root square deviation 
instead of KL divergence (because the number densities are 
not normalized for insert sites):

ΔIi
 = √ (〈n(Ii,a)〉–〈n(Ii,a)〉obs)2∑

a

 . (29)

The deviation of the insert site number densities obtained 
from MC simulations were of order of 10–3, with the maxi-
mum value of 9×10–3 for I40 whereas those obtained from  
the mean-field approximation were greater than 0.01 for 20 
insert sites (Fig. 7C). For the “J-only” system, the deviations 
obtained from MC simulations and “exact” calculation were 

Figure 6 A virtual temperature-jump experiment. The system was equilibrated at T=1.1 for 50,000 sweeps, then the temperature was suddenly 
shifted to T=1.02. (A) The energy trajectory after the temperature jump. (B) 5 sequences at the steps marked in (A) are shown with energy value of 
the sequence and the E-value for the alignment with the Pfam SH3 domain (estimated by the hmmsearch program [20]). The residues in uppercase 
letters or “-” (delete) are those aligned with core sites (indexed by the core site position from 1 to 48, the length of the SH3 domain) and those in 
lowercase indicate inserted residues (“indexed” with dots).
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where in the sequence it is located and how it should be 
 conserved other than by interactions with other residues at 
other positions (or ligands). Thus, it seems more appropriate 
to employ MC simulations for the present purpose.

Using MC simulations, I have demonstrated the existence 
of a two-state transition in the sequence (sub)space around 
the SH3 domain. This sort of transition, analogous to the 
folding transition in the conformational space, has been sug-
gested by Nishikawa [25,26]. If this type of transition is 
 universal for many protein families, it has some interesting 
theoretical as well as practical implications. First, the bound-
ary of each protein family can be determined clearly in terms 
of the transition point. Note that most of the conventional 
sequence models such as profile HMMs are essentially one- 
dimensional models where sharp transitions are simply 
impossible [27]. Therefore, the boundary between family 
members and non-members is necessarily fuzzy according 
to the conventional models. This limitation of the conven-
tional methods may have already biased our knowledge of 
protein families. Second, if the boundary of a protein family 
in the sequence space can be clearly defined, it may be  
possible to assign artificially designed protein sequences to 
existing protein families by following mutational paths 

pairs not involved in native contacts eliminates statistical 
noise irrelevant to the structural context. This enables a 
 simpler interpretation of the long-range interactions. More-
over, it becomes also possible to investigate the role of the 
native structure in determining the conservation patterns of 
the family sequences by comparing with systems optimized 
with “misfolded” structures. This may be an interesting sub-
ject for a future study.

I have shown that the mean-field approximation gives 
inconsistent results for the LGM model. It is, of course, 
expected that any approximations yield different results than 
the exact solution to some extent, and the difference may or 
may not be acceptable depending on the application. For 
studying the patterns of sequence conservation, however, the 
degree of inconsistency resulting from the mean-field approx-
imation (Fig.7A) is not acceptable. That is why in the previ-
ous study [9] I resorted to the Gaussian approximation which 
includes self interaction (diagonal) terms in addition to long-
range interactions. The self interaction terms are intrinsic to 
each site and residue, which should not exist in principle 
except for possibly integrated-out effects of intermolecular 
interactions such as ligand binding. In other words, each 
 residue at a certain position does not have a means to “know” 

Figure 7 Comparison between single-site number densities obtained from Monte Carlo simulations (MC) and the mean-field approximation 
(MF) as measured by the KL divergence from the observed distribution (Eq. 28) for the core sites (A and B) and root square deviation (Eq. 29) for 
the insert sites (C and D). Both MC and MF (and exact) results were obtained under the natural condition using the same parameters optimized by 
using MC simulations. (A) KL divergence of core sites for the “full” system with both J and K parameters optimized by MC simulations. (B) KL 
divergence of core sites for the “J-only” system where only the J parameters were optimized and the long-range interactions between non-bonded 
pairs were ignored. In this case, the exact solution can be obtained [9]. (C) Root square deviation of insert sites for the “full” system. (D) Root square 
deviation of insert sites for the “J-only” system.
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along which the ordered state is maintained. This means that 
proteins belong to the same family whether they are artifi-
cially designed or naturally selected. Third, it should be 
 possible to characterize the transition state ensemble and to 
identify residues essential in determining protein families. 
Such characterization will be helpful in understanding evo-
lutionary trajectories of proteins and what constitutes the 
protein family.

Conclusion
In summary, Monte Carlo simulations of the LGM model 

will be a convenient means to explore the structure of the 
protein sequence space. More thorough investigations on the 
“folding” transition in the sequence space using this model 
is under way.
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