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The electrical properties of biological tissues can be described by a complex tensor comprising a simple expression of the
effective admittivity. The effective admittivities of biological tissues depend on scale, applied frequency, proportions of extra-
and intracellular fluids, and membrane structures. The effective admittivity spectra of biological tissue can be used as a means
of characterizing tissue structural information relating to the biological cell suspensions, and therefore measuring the frequency-
dependent effective conductivity is important for understanding tissue’s physiological conditions and structure. Although the
concept of effective admittivity has been used widely, it seems that its precise definition has been overlooked. We consider how
we can determine the effective admittivity for a cube-shaped object with several different biologically relevant compositions.These
precise definitions of effective admittivity may suggest the ways of measuring it from boundary current and voltage data. As in
the homogenization theory, the effective admittivity can be computed from pointwise admittivity by solving Maxwell equations.
We compute the effective admittivity of simple models as a function of frequency to obtain Maxwell-Wagner interface effects and
Debye relaxation starting from mathematical formulations. Finally, layer potentials are used to obtain the Maxwell-Wagner-Fricke
expression for a dilute suspension of ellipses and membrane-covered spheres.

1. Introduction

The human body can be regarded as a complex electrical
conductor comprising many tissues that have distinct elec-
trical properties. Measurements of the electrical properties
of biological tissues have shown that effective conductivity
(𝜎ef) and permittivity (𝜖ef) values of biological tissues in the
frequency range from a few Hz to MHz are influenced by
physiological and pathological conditions [1–5].The effective
admittivity 𝛾

ef
= 𝜎

ef
+ 𝑖𝜔𝜖

ef of a biological tissue under
the influence of a time-harmonic electric field at an angular
frequency 𝜔 is determined by its ion concentrations in
extra- and intracellular fluids, cellular structure and den-
sity, molecular compositions, membrane characteristics, and
other factors. Cell membranes contribute to capacitance; the

intracellular fluid gives rise in an intracellular resistance; the
extracellular fluid contributes to effective resistance. As a
result, biological tissues show a variable response over the
frequency range from a few Hz to MHz. For most biological
tissues, 𝛾ef ≈ 𝜎

ef at low frequencies below 10 kHz, whereas the
𝜔𝜖

ef term is not negligible beyond 10 kHz due to the abundant
membranous structures in organisms.

The effective admittivity 𝛾ef can be regarded as a function
of tissue composition and the applied angular frequency 𝜔.
Assume that a biological subject under consideration is a
mixture of homogeneous tissue at macroscopic length scale
and has a constant effective admittivity 𝛾

ef in a particular
cubic sample voxel.The 𝛾ef can be viewed as the effective ten-
sor according to the well-known concept of homogenization
when the admittivity 𝛾 = 𝜎+ 𝑖𝜔𝜖 is periodic [6].The effective
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admittivity 𝛾ef as a function of 𝜔 and the voxel 𝑉oxel can be
determined by Ohm’s law:

∫

𝑉oxel

J (r) 𝑑r ≈ 𝛾
ef
(𝜔, 𝑉oxel) ∫

𝑉oxel

E (r) 𝑑r (1)

for a time-harmonic electric field E and the corresponding
current density J = 𝛾E at angular frequency 𝜔. Here,
𝛾
ef
(𝜔, 𝑉oxel) is a symmetric 3 × 3 matrix and r = (𝑥, 𝑦, 𝑧) is

the position within the voxel. If the quantity (∫
𝑉oxel

J(r)𝑑r) ×
(∫
𝑉oxel

E(r)𝑑r) ≈ 0 for any pair of electric field E and current
density J, then 𝛾

ef is scalar and the subject is isotropic.
Otherwise, a subject is said to be anisotropic. Depending
on the measurement scale used, anisotropy may or may
not be detected. There have been numerous studies and
models formulated for admittivity spectra {𝛾

ef
(𝜔, 𝑉oxel) :

0 ≤ 𝜔/2𝜋 ≤ 100MHz} of biological tissue as a means
of characterizing tissue structural information relating to
biological cell suspensions [7, 8]. In 1873,Maxwell [9] derived
an expression of 𝜎ef (𝜔 = 0) for the special case of a strongly
dilute suspension of spherical particles and 𝜔 = 0. Wagner
extended the expression to a general 𝛾ef. Poisson [10] in 1826
and Faraday in 1827 dealt with the case of a suspension of
infinitely conducting spheres in a background. In 1924, Fricke
[7] provided an expression for 𝛾ef by considering the capacity
due to a polarization at the interphases or the presence in
the interphases of thin poorly conducting membranes. There
have been also studies on an effective conductivity of cell
suspensions, both analytically and numerically [11–17].

The concept of effective admittivity has been used widely,
but it seems that its precise definition has been overlooked.
How can we determine the effective admittivity of a given
cubic region? In this paper we give precise definitions of
effective admittivity to provide a way to measure it from
boundary current and voltage data. As in the homoge-
nization theory, the effective admittivity can be computed
from pointwise admittivity by solving Maxwell equations.
We compute the effective admittivity of simple models as
a function of frequency to observe the Maxwell-Wagner
interface effect and Debye relaxation using a mathematical
point of view. Single layer and double layer potentials are
used to produce the Maxwell-Wagner-Fricke expression for
a dilute suspension of ellipses and a membrane-covered
conductor, respectively. We also note that Maxwell equations
make both microscopic and macroscopic senses.

2. Effective Admittivity Spectra of
Biological Tissues

The concept of admittivity contains four key definitions:
pointwise admittivity, effective admittivity, apparent admit-
tivity, and equivalent admittivity.

(i) Pointwise admittivity refers to electrical properties at
microscopic scale.

(ii) Effective admittivity is defined at macroscopic scale.
Homogenizationmethods have been used to compute
effective property of a periodic heterogeneous subject

from its pointwise structure [18]. It is used to describe
the linear relationship between the ensemble mean
current density and the ensemble mean electrical
field. Effective admittivity depends only on the elec-
trical properties of the sample.

(iii) Apparent admittivity is defined as the admittivity of
electrically homogeneous and isotropic medium that
could yield the potential measured on the hetero-
geneous subject using the same applied current and
arrangement of the electrodes.

(iv) Two expressions that have the same effective admit-
tivity are called equivalent admittivity. Pavlin and
Miklavčič [19] use a simpler equivalent conductivity
of a single cell for the purpose of computation of effec-
tive conductivity of a suspension of permeabilized
cells.

Let Ω be a three-dimensional domain with a pointwise
admittivity of 𝛾(r, 𝜔) = 𝜎(r) + 𝑖𝜔𝜖(r), where the conductivity
𝜎(r) and the permittivity 𝜖(r)values are assumed to depend
only on position r = (𝑥, 𝑦, 𝑧), and both are isotropic. Then,
the domainΩ can be viewed as a union of many voxels 𝑉oxel,
and the effective properties mainly depend on the choice
of voxels. With a given voxels, we can define the effective
admittivity 𝛾ef(𝜔) that is a constant on each voxel 𝑉oxel ⊂ Ω.
The effective admittivity is a tensor-valued function of the
voxel 𝑉oxel and the angular frequency 𝜔 such that

𝛾
ef
(𝑉oxel, 𝜔)

= (

𝛾
ef
𝑥𝑥
(𝑉oxel, 𝜔) 𝛾

ef
𝑥𝑦
(𝑉oxel, 𝜔) 𝛾

ef
𝑥𝑧
(𝑉oxel, 𝜔)

𝛾
ef
𝑥𝑦
(𝑉oxel, 𝜔) 𝛾

ef
𝑦𝑦
(𝑉oxel, 𝜔) 𝛾

ef
𝑦𝑧
(𝑉oxel, 𝜔)

𝛾
ef
𝑥𝑧
(𝑉oxel, 𝜔) 𝛾

ef
𝑦𝑧
(𝑉oxel, 𝜔) 𝛾

ef
𝑧𝑧
(𝑉oxel, 𝜔)

) .

(2)

The 𝛾
ef
(𝑉oxel, 𝜔) must be the best approximation of the

average of the pointwise admittivity 𝛾 over the voxel 𝑉oxel in
the sense that

∫

𝑉oxel

𝛾 (r, 𝜔) ∇𝑢 (r, 𝜔) 𝑑r ≈ 𝛾
ef
(𝜔, 𝑉oxel) ∫

𝑉oxel

∇𝑢 (r, 𝜔) 𝑑r

∀𝑢 ∈ 𝐻
1
(Ω) satisfying ∇ ⋅ (𝛾 (r, 𝜔) ∇𝑢) = 0 in Ω.

(3)

The physically meaningful solution 𝑢 must have a finite
energy [20]:

Φ (𝑣) = ∫

Ω

𝜎 (r) |∇𝑣 (r)|2𝑑r < ∞. (4)

Hence, the solution of the equation∇⋅(𝛾(r, 𝜔)∇𝑢) = 0 should
be contained in the set {𝑣 ∈ 𝐿

2
(Ω) : Φ(𝑣) < ∞} [20]. Here,

𝐻
1
(Ω) is the standard Sobolev space equipped with norm

‖𝑢‖ = √∫
Ω
|∇𝑢|
2
+ |𝑢
2
|𝑑r.

However, there is no such tensor 𝛾ef(𝑉oxel, 𝜔) satisfying
(3) exactly. Hence, we may take an appropriate 𝛾ef(𝑉oxel, 𝜔)
satisfying (3) approximately, and the choice of 𝛾ef(𝑉oxel, 𝜔)
may differ for a biological sample. To clearly define the
effective admittivity, we need to select suitable potentials 𝑢 ∈
𝐻
1
(Ω) satisfying ∇ ⋅ (𝛾(r, 𝜔)∇𝑢(r)) = 0 in Ω.
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Figure 1: Admittivity measurement of a unit cube of anisotropic material: (a) current injection through E𝑥
+
and E𝑥

−
planes, (b) current

injection through E
𝑦

+ and E
𝑦

− planes, and (c) current injection through E𝑧
+
and E𝑧

−
planes.
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Figure 2: A tissue sample contained in the unit cube.

2.1. Definition of Effective Admittivity for a Cubic Sample.
Let us consider a rectangular-shaped tissue sample (Figure 1)
occupied in the unit cube Ω = {r : 0 < 𝑥, 𝑦, 𝑧 < 1 cm} with
its three pairs of facing surfaces (Figure 2):

E
𝑥

+
= {r ∈ 𝜕Ω : 𝑥 = 1} , E

𝑥

−
= {r ∈ 𝜕Ω : 𝑥 = 0} ,

E
𝑦

+
= {r ∈ 𝜕Ω : 𝑦 = 1} , E

𝑦

−
= {r ∈ 𝜕Ω : 𝑦 = 0} ,

E
𝑧

+
= {r ∈ 𝜕Ω : 𝑧 = 1} , E

𝑧

−
= {r ∈ 𝜕Ω : 𝑧 = 0} .

(5)

Assume that the admittivity distribution of the sample at
frequency 𝜔/2𝜋 is given by 𝛾(r, 𝜔) = 𝜎(r) + 𝑖𝜔𝜖(r), where
the conductivity 𝜎(r) and the permittivity 𝜖(r) values are
scalar-valued functions depending only on position r. Hence,
𝛾(r, 𝜔) is isotropic on a microscopic scale. If we apply a
current of 𝐼(𝑡) = 𝐼

0
cos(𝜔𝑡) through the pair of electrodes

attached on E𝑎
+
and E𝑎

−
, then the resulting time-harmonic

potential 𝑢𝑎(r, 𝜔) satisfies the following equation from a
suitable arrangement of Maxwell equations (at frequencies
below about 100 kHz):

∇ ⋅ (𝛾 (r, 𝜔) ∇𝑢𝑎 (r, 𝜔)) = 0 for r ∈ Ω,

n ⋅ (𝛾∇𝑢𝑎) |E𝑎
+

= 𝐼
0
= −n ⋅ (𝛾∇𝑢𝑎) |E𝑎

−

(𝑎 ∈ {𝑥, 𝑦, 𝑧}) ,

n ⋅ ∇𝑢𝑎|
𝜕Ω\(E𝑎

+
∪E𝑎
−
)
= 0,

(6)

where n is the unit outward normal vector on 𝜕Ω. For each
𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}, we denote the voltage difference E𝑏

+
by

𝑉
𝑎𝑏
(𝜔) = ∫

E𝑏
+

𝑢
𝑎
𝑑𝑆 − ∫

E𝑏
−

𝑢
𝑎
𝑑𝑆. (7)

Lemma 1 (reciprocity). For 𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}, one has

𝑉
𝑎𝑏
(𝜔) = 𝑉

𝑏𝑎
(𝜔) . (8)

Proof. From the boundary conditions of 𝑢𝑏 and divergence
theorem, we have

𝑉
𝑏𝑎
(𝜔) =

1

𝐼
0

∫

E𝑏
+

n ⋅ (𝛾∇𝑢𝑎) 𝑢𝑏𝑑𝑆 = 1

𝐼
0

∫

Ω

𝛾∇𝑢
𝑎
⋅ ∇𝑢
𝑏
𝑑r.

(9)

Hence, the symmetry (8) follows from the reciprocity relation

𝑉
𝑎𝑏
(𝜔) =

1

𝐼
0

∫

Ω

𝛾∇𝑢
𝑎
⋅ ∇𝑢
𝑏
𝑑r = 𝑉

𝑏𝑎
(𝜔)

∀𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧} .

(10)

If ∇𝛾(r, 𝜔) = 0 (homogeneous), then 𝑉𝑥𝑥(𝜔) = 𝑉
𝑦𝑦
(𝜔) =

𝑉
𝑧𝑧
(𝜔) and 𝑉𝑥𝑦(𝜔) = 𝑉

𝑥𝑧
(𝜔) = 𝑉

𝑦𝑧
(𝜔) = 0 and 𝛾ef(𝜔)must

be 𝛾ef(𝜔) = 𝛾(𝜔) = 𝐼
0
/𝑉
𝑥𝑥. If the effective admittivity 𝛾ef(𝜔)

is a diagonal matrix satisfying

(

𝛾
ef
𝑥𝑥

0 0

0 𝛾
ef
𝑦𝑦

0

0 0 𝛾
ef
𝑧𝑧

)∫

Ω

∇𝑢
𝑎
(r, 𝜔) 𝑑r = ∫

Ω

𝛾 (r, 𝜔) ∇𝑢𝑎 (r, 𝜔) 𝑑r

∀𝑎 ∈ {𝑥, 𝑦, 𝑧} ,

(11)

then it must be 𝛾ef
𝑥𝑥

=

𝐼
0

𝑉
𝑥𝑥
, 𝛾

ef
𝑦𝑦

=

𝐼
0

𝑉
𝑦𝑦
, and 𝛾ef

𝑧𝑧
= 𝐼
0
/𝑉
𝑧𝑧 due

to the following theorem.
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Theorem 2. If 𝑢𝑎 is the solution of (6), then one has

𝐼
0

𝑉
𝑥𝑥
(𝜔)

=

∫
Ω
𝛾 (r, 𝜔) ∇𝑢𝑥 (r, 𝜔) ⋅ ∇𝑥𝑑r
∫
Ω
∇𝑢
𝑥
(r, 𝜔) ⋅ ∇𝑥𝑑r

,

𝐼
0

𝑉
𝑦𝑦
(𝜔)

=

∫
Ω
𝛾∇𝑢
𝑦
⋅ ∇𝑦𝑑r

∫
Ω
∇𝑢
𝑦
⋅ ∇𝑦𝑑r

,

𝐼
0

𝑉
𝑧𝑧
(𝜔)

=

∫
Ω
𝛾∇𝑢
𝑧
⋅ ∇𝑧𝑑r

∫
Ω
∇𝑢
𝑧
⋅ ∇𝑧𝑑r

.

(12)

Proof. We will only prove 𝛾ef
𝑥𝑥
(𝜔). From the definition of 𝑢𝑥,

𝑥|E𝑥
+

= 1, and the divergence theorem, we have

𝐼
0
= ∫

E𝑥
+

𝛾∇𝑢
𝑥
⋅ n𝑑𝑆 = ∫

E𝑥
+

(𝛾∇𝑢
𝑥
⋅ n) 𝑥𝑑𝑆

= ∫

Ω

𝛾 (r, 𝜔) ∇𝑢𝑥 (r, 𝜔) ⋅ ∇𝑥𝑑r.
(13)

Since ∇2𝑥 = 0 and n ⋅ ∇𝑥|E𝑥
+

= 1,

𝑉
𝑥𝑥
(𝜔) = ∫

E𝑥
+

𝑢
𝑥
𝑑𝑆 − ∫

E𝑥
−

𝑢
𝑥
𝑑𝑆

= ∫

𝜕Ω

𝑢
𝑥
(n ⋅ ∇𝑥) 𝑑𝑆 = ∫

Ω

∇𝑢
𝑥
(r, 𝜔) ⋅ ∇𝑥𝑑r.

(14)

This completes the proof of (12).

Now, we are ready to define the effective admittivity
tensor 𝛾ef(𝜔).

Definition 3. For a given unit cubic Ω and each 𝑎, 𝑏 ∈

{𝑥, 𝑦, 𝑧}, let 𝑉𝑎𝑏 be the potential difference given in (7). Then
the effective admittivity tensor 𝛾ef(𝜔) is defined by

[𝛾
ef
(𝜔)]

−1

= (

𝛾
ef
𝑥𝑥
(𝜔) 𝛾

ef
𝑥𝑦
(𝜔) 𝛾

ef
𝑥𝑧
(𝜔)

𝛾
ef
𝑥𝑦
(𝜔) 𝛾

ef
𝑦𝑦
(𝜔) 𝛾

ef
𝑦𝑧
(𝜔)

𝛾
ef
𝑥𝑧
(𝜔) 𝛾

ef
𝑦𝑧
(𝜔) 𝛾

ef
𝑧𝑧
(𝜔)

)

−1

:=

1

𝐼
0

(

𝑉
𝑥𝑥
(𝜔) 𝑉

𝑥𝑦
(𝜔) 𝑉

𝑥𝑧
(𝜔)

𝑉
𝑥𝑦
(𝜔) 𝑉

𝑦𝑦
(𝜔) 𝑉

𝑦𝑧
(𝜔)

𝑉
𝑥𝑧
(𝜔) 𝑉

𝑦𝑧
(𝜔) 𝑉

𝑧𝑧
(𝜔)

) .

(15)

The proposed definition may not have coordinate invari-
ance due to its limitation of the tensor expression. For a
proper invariance, we need to compute all the tensors (15) by
rotating the coordinate system. We may define the effective
admittivity tensor as the best fit of the minimization problem
described in (3).

Next, we study how the distribution of 𝛾(r, 𝜔) = 𝜎(r) +
𝑖𝜔𝜖(r) is related to the frequency-dependent behavior of
{𝐼
𝑎𝑏
(𝜔) : 0 ≤ 𝜔/2𝜋 ≤ 10

6
, 𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}}.

2.2. One Dimensional Sample. We begin by considering a
special sample (Figure 3) with 𝛾 depending only on the 𝑥-
variable:

𝛾 (𝑥) = {

𝛾
int

= 𝜎
int
+ 𝑖𝜔𝜖

int if 𝑎 < 𝑥 < 𝑎 + 𝑐

𝛾
ext

= 𝜎
ext

+ 𝑖𝜔𝜖
ext otherwise,

(16)

𝑥

𝑐

𝐼

Plate

𝛾ext 𝛾ext𝛾int

area (𝐴)

Figure 3: Double layer sandwich type capacitor: a one-dimensional
structure.

where 𝜎int, 𝜖int, 𝜎ext, and 𝜖
ext are constants and 0 < 𝑎 < 𝑎 +

𝑐 < 1. For this sample, the potential 𝑢(r, 𝜔) in (6) depends
only on 𝑥-variable, and

𝑑

𝑑𝑥

(𝛾 (𝑥, 𝜔)

𝑑

𝑑𝑥

𝑢 (𝑥, 𝜔)) = 0 in (0, 1) ,

𝑑

𝑑𝑥

𝑢 (1, 𝜔) = 𝐼
0
=

𝑑

𝑑𝑥

𝑢 (0, 𝜔) .

(17)

Since 𝛾(𝑥, 𝜔)(𝑑/𝑑𝑥)𝑢(𝑥, 𝜔) is a constant,

𝛾 (𝑥, 𝜔)

𝑑

𝑑𝑥

𝑢 (𝑥, 𝜔) = 𝛾 (1, 𝜔)

𝑑

𝑑𝑥

𝑢 (1, 𝜔) = 𝐼
0

for 𝑥 ∈ (0, 1) .

(18)

Writing 𝑉(𝜔) := 𝑢(1, 𝜔) − 𝑢(0, 𝜔), we have

𝑉 (𝜔) = ∫

1

0

𝑑

𝑑𝑥

𝑢 (𝑥) 𝑑𝑥 = ∫

1

0

1

𝛾 (𝑥, 𝜔)

𝛾(𝑥, 𝜔)

𝑑

𝑑𝑥

𝑢(𝑥)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
0

𝑑𝑥

= 𝐼
0
∫

1

0

1

𝛾 (𝑥, 𝜔)

𝑑𝑥.

(19)

Hence, it follows from the definition of (15) of 𝛾ef that

𝛾
ef
𝑥𝑥
(𝜔) =

𝐼
0

𝑉 (𝜔)

= (∫

1

0

1

𝛾 (𝑥, 𝜔)

𝑑𝑥)

−1

. (20)

This means that 𝛾
ef
(𝜔) is the harmonic average of the

admittivity that can be expressed as

𝛾
ef
𝑥𝑥
(𝜔) = (

1 − 𝑐

𝛾
ext
(𝜔)

+

𝑐

𝛾
int
(𝜔)

)

−1

=

𝛾
ext

(𝜔) 𝛾
int
(𝜔)

(1 − 𝑐) 𝛾
int
(𝜔) + 𝑐𝛾

ext
(𝜔)

.

(21)
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From this, we have

𝛾
ef
𝑥𝑥
(𝜔) = 𝜎

ef
𝑥𝑥
(𝜔) + 𝑖𝜔𝜖

ef
𝑥𝑥
(𝜔) , (22)

𝜎
ef
𝑥𝑥
(𝜔) = 𝜎

ef
𝑥𝑥
(0) + (𝜎

ef
𝑥𝑥
(∞) − 𝜎

ef
𝑥𝑥
(0))

𝜔
2
𝜏
2

1 + 𝜔
2
𝜏
2
,

𝜖
ef
𝑥𝑥
(𝜔) = 𝜖

ef
𝑥𝑥
(∞) + (𝜖

ef
𝑥𝑥
(0) − 𝜖

ef
𝑥𝑥
(∞))

1

1 + 𝜔
2
𝜏
2
,

(23)

where

𝜏 =

(1 − 𝑐) 𝜖
int
+ 𝑐𝜖

ext

(1 − 𝑐) 𝜎
int
+ 𝑐𝜎

ext ,

𝜎
ef
𝑥𝑥
(0) =

𝜎
ext
𝜎
int

(1 − 𝑐) 𝜎
int
+ 𝑐𝜎

ext ,

𝜖
ef
𝑥𝑥
(∞) =

𝜖
ext
𝜖
int

(1 − 𝑐) 𝜖
int
+ 𝑐𝜖

ext ,

𝜎
ef
𝑥𝑥
(∞) =

𝜎
int
𝜖
ext

+ 𝜎
ext
𝜖
int

(1 − 𝑐) 𝜖
int
+ 𝑐𝜖

ext −
𝜖
ext
𝜖
int

(1 − 𝑐) 𝜎
int
+ 𝑐𝜎

ext ,

𝜖
ef
𝑥𝑥
(0) =

𝜎
int
𝜖
ext

+ 𝜎
ext
𝜖
int

(1 − 𝑐) 𝜎
int
+ 𝑐𝜎

ext −
𝜎
ext
𝜎
int

(1 − 𝑐) 𝜖
int
+ 𝑐𝜖

ext .

(24)

WritingΔ𝜎ef
𝑥𝑥

= 𝜎
ef
𝑥𝑥
(∞)−𝜎

ef
𝑥𝑥
(0) andΔ𝜖ef

𝑥𝑥
= 𝜖

ef
𝑥𝑥
(∞)−𝜖

ef
𝑥𝑥
(0),

we have

Δ𝜖
ef
𝑥𝑥

= 𝜏Δ𝜎
ef
𝑥𝑥
. (25)

Here, 𝜏 is referred to as a relaxation time, since its value
controls polarization time [8, 21]. It is remarkable to observe
that the relaxation time 𝜏 = ((1 − 𝑐)𝜖

int
+ 𝑐𝜖

ext
)/((1 − 𝑐)𝜎

int
+

𝑐𝜎
ext
)may be obtained by solving the elliptic PDE (17).
Using (23), the average current density J = −∫

1

0
𝛾∇𝑢

generated inside the dielectric due to the average electric field
E = −∫

1

0
∇𝑢 is given by

J = (𝜎
ef
𝑥𝑥
(𝜔) + 𝑖𝜔𝜖0𝜖

ef
𝑥𝑥
(𝜔))E, (26)

which can be expressed as

J = 𝜎
𝑠
E + 𝑖𝜔𝜖

0
(𝜖


𝑥𝑥
(𝜔) − 𝑖𝜖



𝑥𝑥
(𝜔))E, (27)

where 𝜎
𝑠
= 𝜎

ef
𝑥𝑥
(0) and

𝜖


𝑥𝑥
(𝜔) = 𝜖

ef
𝑥𝑥
(∞) + (𝜖

ef
𝑥𝑥
(0) − 𝜖

ef
𝑥𝑥
(∞))

1

1 + 𝜔
2
𝜏
2
,

𝜖


𝑥𝑥
(𝜔) =

1

𝜔𝜖
0

((𝜎
ef
𝑥𝑥
(∞) − 𝜎

ef
𝑥𝑥
(0))

𝜔
2
𝜏
2

1 + 𝜔
2
𝜏
2
) .

(28)

Here, 𝜖
𝑥𝑥
(𝜔) and 𝜖



𝑥𝑥
(𝜔) are referred to as the dielectric

constant and loss factor of the dielectricmaterial, respectively.
The average current density can also be written as

J = (𝜎
𝑠
+ 𝜔𝜖
0
𝜖


𝑥𝑥
(𝜔))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎
ef
(𝜔)

E + 𝑖𝜔𝜖
0
𝜖


𝑥𝑥
(𝜔)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
ef
(𝜔)

E. (29)

In biological materials 𝜎
𝑠
is produced by the ionic con-

duction and 𝜔𝜖
0
𝜖


𝑥𝑥
(𝜔) is produced by dielectric relaxation.

The dielectric response of biological tissues is always fre-
quency dependent, and the electric charge movement inside
the material in response to an externally applied electric
field is controlled by the dielectric properties of the material.
The free charge movement inside a material affected by an
external field is controlled by its conductivity (𝜎). Biological
tissues display extremely high dielectric constants at low
frequencies, and as the excitation frequency is increased, the
dielectric constants of the tissues fall off in more or less
distinct steps [8]. Interfaces play a significant role in the
frequency dependence of complex materials, particularly at
audio and subaudio frequencies [8]. The frequency response
of biological tissue admittivity is highly influenced by the
dielectric polarization, dielectric relaxation, and dielectric
dispersion.

Electric polarization (Figure 4) may be defined as the
electric-field-induced disturbance (shift from average equi-
librium positions) of the charge distribution in a region [8].
Dielectric dispersion in biological tissues can be assumed to
depend upon the permittivity (Figure 5) of tissue material
with applied electric field frequency [8]. In other words, a
significant change in dielectric properties over a frequency
range, by convention, is called a dielectric dispersion [21].

As there is always a lag between the changes in an applied
electric field and changes in polarization, the permittivity
of the biological tissues is a complex-valued function of the
frequency of the applied electric field. The term dielectric
relaxation [22] in a biological tissue connotes the delay or lag
in its response to create the dielectric polarization following
the application of electric field across the tissue sample. In
otherwords, the dielectric relaxation of a tissue can be defined
as the lag (momentary delay) in the dielectric constant which
is usually caused by the delay in molecular polarization with
respect to a change in applied electric field. According to the
previous simple computations of (23) in the 1D model (17),
the central frequency of the dispersion is 𝑓

𝑐
= 1/2𝜋𝜏 =

(1/2𝜋)((1 − 𝑐)𝜎
int
+ 𝑐𝜎

ext
)/((1 − 𝑐)𝜖

int
+ 𝑐𝜖

ext
).

Schwan [23, 24] studied the properties of biological
tissue and cell suspensions over a large frequency range and
observed that the dielectric properties of biological tissues
are characterized by three major dispersions, 𝛼-dispersion
[23, 24], 𝛽-dispersion [23, 24], and 𝛾-dispersion [23, 24]
occurring at low frequency, radio frequency, and microwave
frequency, respectively.We consider each of these dispersions
below.

(i) 𝛼-dispersion (10Hz ≤ 𝜔/2𝜋 ≤ 10 kHz): The 𝛼-
dispersion is associated with tissue interfaces such as
membranes [23]. Below about 10 kHz, the dielectric
studies of biological or any other electrolyte systems
become very complex and difficult to characterize.
Foster and Schwan, 1989 [25], reported that 𝛼-
dispersion is believed to be associated with a coun-
terion layer (electrical double layer) polarization in
tissues.

(ii) 𝛽-dispersion (10 kHz ≤ 𝜔/2𝜋 ≤ 10MHz): In
biological tissues, the 𝛽-dispersion is caused by the
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Figure 4: Dielectric polarization inside capacitors under an electric field 𝐸: (a) single dielectric capacitor and (b) double dielectric capacitor.

polarization of cellular membranes and polarization
of protein and other organic macromolecules [23].
The 𝛽-dispersion arises, principally, from interfacial
polarization (Maxwell-Wagner effect) [26] of cell
membranes [21]. In the frequency range 10 kHz ≤

𝜔/2𝜋 ≤ 10MHz, the dielectric behavior of the
tissues is dominated by the heterogeneous composi-
tion and ionic activities inside the biological tissue.
These effects are principally responsible for the 𝛽-
dispersion. The radio frequency dispersion or 𝛽-
dispersion has been recognized as a Maxwell-Wagner
relaxation [26] caused by cell membranes [27]. A
large magnitude, low frequency 𝛽-dispersion was
observed by Schwan [28] in amuscle tissue.This effect
is related, in part at least, to the tubular shape of
muscle fibers [29]. The theoretical aspects of the low
frequency dispersion of colloid particles in electrolyte
solution have been studied by Schwarz in 1962 [30].

(iii) 𝛾-dispersion (𝜔/2𝜋 ≥ 10GHz). The 𝛾-dispersion in
biological tissues is caused by the reorientation of
water molecules [18]. This dispersion has been well
studied and has found many applications [31–33].
Rajewsky and Schwan [34] noted the 𝛾-dispersion
at microwave frequencies which is understood to be
caused by abundant tissue water. Schwan conducted
the extensive studies on the electrical properties of
biological cell suspensions in 1993 [35] over a broad
frequency range extending from less than 1Hz to
many GHz and summarized the mechanisms which
contribute to the total frequency response. He studied
the mechanisms responsible for electrical properties
of tissues and cell suspensions, and he observed
that the frequency changes of these properties obey
causality, that is, the Kramers-Kronig relationships
[35] which relate changes of dielectric constants
to conductivity changes. A number of mechanisms
which reflect the various compartments of the biolog-
ical materials were identified such as membranes and
their properties, biological macromolecules, and fluid
compartments inside and outside membranes.

Membrane relaxation is anticipated from the Hodgkin-
Huxley membrane model [36] and adds to the 𝛾-effects [8],
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Figure 5:Thevariations of the complex permittivity of the biological
tissues with frequency.

and hence a number of 𝛽-effects of small magnitude occur
at the tail of the 𝛽-dispersion caused by proteins, protein-
bound water (called 𝛿-dispersion), and cell organelles such
as mitochondria [37]. A second Maxwell-Wagner dispersion
[26] which occurs at frequencies well above those of themain
𝛽-dispersion [8] is a characteristic of suspended particles
surrounded by a shell and usually of small magnitude [14].

Figure 6(a) shows Cole-Cole plot explaining (𝜖

+

(𝜖
ef
𝑥𝑥
(∞) + 𝜖

ef
𝑥𝑥
(0))/2)

2
+ (𝜖

)
2
= ((𝜖

ef
𝑥𝑥
(0) − 𝜖

ef
𝑥𝑥
(∞))/2)

2.
Figure 6(b) shows 𝜖 versus 𝜔𝜖 line describing 𝜖 = 𝜖

ef
𝑥𝑥
(0) −

𝜏(𝜔𝜖

). Figure 6(c) shows 𝜖 versus 𝜖/𝜔 line.

Remark 4. In the case when 𝑐 is sufficiently small (dilute
suspension) so that |1 − 𝛾ext/𝛾int|𝑐 ≪ 1, (21) can be expressed
as

𝛾
ef
𝑥𝑥
(𝜔) = 𝛾

ext
(𝜔) (1 + (1 −

𝛾
ext

(𝜔)

𝛾
int
(𝜔)

) 𝑐 + 𝑂 (𝑐
2
)) (30)

because 𝛾
ef
(𝜔) = 𝛾

ext
(𝜔)/(1 − (1 − 𝛾

ext
(𝜔)/𝛾

int
(𝜔))𝑐).

Neglecting 𝑂(𝑐2) in (30), we get

𝛾
ef
(𝜔) ≈ (𝛾

int
(𝜔) − (𝛾

ext
(𝜔) − 𝛾

int
(𝜔)) 𝑐)

𝛾
ext

(𝜔)

𝛾
int
(𝜔)
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Figure 6: Dielectric dispersion curves: (a) Cole-Cole plot, (b) 𝜖 versus 𝜔𝜖 line, and (c) 𝜖 versus 𝜖/𝜔 line.
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Figure 7: Dielectric phenomena inside a capacitor or a dilute suspension of a thinmembrane, (a) capacitor with a thinmembrane of thickness
𝑑, (b) dielectric polarization under an electric field 𝐸.

= (𝜎
int
+ 𝑐 (𝜎

int
− 𝜎

ext
) + 𝑖𝜔 [𝜖

int
+ 𝑐 (𝜖

int
− 𝜖

ext
)])

×

𝜎
ext

+ 𝑖𝜔𝜖
ext

𝜎
int
+ 𝑖𝜔𝜖

int .

(31)

In three dimensional heterogeneous medium, this type of
dilute suspensionmodel with neglecting𝑂(𝑐2) had been used
in computation of the effective admittivity 𝛾ef.

Next, we will investigate the effective admittivity for
dilute suspensions of membrane of materials. We will express
potential of models comprising suspension of arbitrary-
shaped membrane, using double layer potential technique.

2.3. Dilute Single Suspension of Ellipses in a Cube. Maxwell
[9] and Wagner [38] analyzed expressions for the effective
admittivity 𝛾ef of a strongly diluted suspension of spheres [7].

Let Ω = {r : −1 < 𝑥, 𝑦, 𝑧 < 1} be a cube, and let 𝐷 =

{r ∈ Ω : 𝑥
2
/𝑎
2

1
+ 𝑦
2
/𝑎
2

2
+ 𝑦
2
/𝑎
2

3
< 1} be an ellipsoid with

0 < 𝑎
1
≤ 𝑎
2
≤ 𝑎
3
≪ 1. As in the previous section, let the

admittivity distribution 𝛾 (Figure 7) be given by

𝛾 (r) = {

𝛾
int

= 𝜎
int
+ 𝑖𝜔𝜖

int for r ∈ 𝐷
𝛾
ext

= 𝜎
ext

+ 𝑖𝜔𝜖
ext for r ∈ Ω \ 𝐷.

(32)

If 𝑢 ∈ 𝐻1(Ω) is a potential satisfying ∇ ⋅ (𝛾(r, 𝜔)∇𝑢(r, 𝜔)) = 0

inΩ, then it can be expressed as a sum of harmonic function
𝐻(r, 𝜔) in Ω and a single layer potential:

𝑢 (r, 𝜔) = 𝐻 (r, 𝜔) + ∫
𝜕𝐷

1

4𝜋




r − r



𝜙 (r, 𝜔) 𝑑𝑠r

for r ∈ Ω,
(33)

where 𝜙 is determined by

(

𝛾
ext

+ 𝛾
int

2 (𝛾
ext

− 𝛾
int
)

𝐼 −K
∗

𝐷
)𝜙 (r, 𝜔) = n (r) ⋅ ∇𝐻 (r, 𝜔)

for r ∈ 𝜕𝐷,

K
∗

𝐷
𝜙 (r, 𝜔) = ∫

𝜕𝐷

⟨r − r,n (r)⟩

4𝜋




r − r



3
𝜙 (r, 𝜔) 𝑑𝑠r

for r ∈ 𝜕𝐷.

(34)

Assuming that the volume fraction 𝑐 = |𝐷|/|Ω| is small,
Fricke obtained the following approximation:

𝛾
ef
𝑥𝑥

≈ 𝛾
ext
𝐼 + 𝑐 (𝛾

int
− 𝛾

ext
)(

𝛽
1

0 0

0 𝛽
2

0

0 0 𝛽
3

) , (35)
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Figure 8: Dielectric phenomena inside a dilute single suspension of a thin membrane from Fricke’s model (a) Fricke’s model of a dilute single
suspension of a thinmembrane of thickness 𝑑, (b) 1D representation of the a dilute single suspension of a thinmembrane from Fricke’s model
of a dilute single suspension of a thin membrane of thickness 𝑑, (c) dielectric polarization under an electric field 𝐸 within a dilute single
suspension of a thin membrane of thickness 𝑑 in 1D.

where

𝛽
𝑗
=

1 + 𝜉
𝑗

𝜉
𝑗
+ 𝛾

int
/𝛾

ext ,

𝜉
𝑗
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𝑎
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,

𝐿
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+ 𝜆)√(𝑎

2

1
+ 𝜆) (𝑎

2

2
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+ 𝜆)
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(36)

When𝛼
𝑥
= 𝛼
𝑦
= 𝛼
𝑧
(𝐷 is sphere) and the volume fraction

𝑐 = |𝐷|/|Ω| is small, Maxwell-Wagner [26] formula for 𝛾ef(𝜔)
is given by

𝛾
ef
(𝜔) = (𝜎

ext
+ 𝑖𝜔𝜖

ext
)

× (1 + 3𝑐

(𝜎
int
− 𝜎

ext
) + 𝑖𝜔 (𝜖

int
− 𝜖

ext
)

(𝜎
int
+ 2𝜎

ext
) + 𝑖𝜔 (𝜖
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)

)

+ 𝑂 (𝑐
2
) .

(37)

With the aid of 𝜏 = (𝜖
int
+ 2𝜖

ext
)/(𝜎

int
+ 2𝜎

ext
), we can derive

the Debye dispersion function for 𝛾ef(𝜔)as follows:

𝛾
ef
(𝜔) = 𝜎

ef
(∞) +

(𝜎
ef
(0) − 𝜎

ef
(∞))𝜔

2
𝜏
2

1 + 𝜔
2
𝜏
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎
ef
(𝜔)

+ 𝑖𝜔[𝜖
ef
(∞) +

𝜖
ef
(0) − 𝜖

ef
(∞)

1 + 𝜔
2
𝜏
2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
ef
(𝜔)

.

(38)

Next, wewill investigate the effective admittivity for dilute
suspensions of membranes.

2.4. Dilute Single Suspension of Membrane. Finally, consider
the case of a dilute single suspension ofmembranes (Figure 8)

to investigate the role of the thin insulating membrane influ-
encing the frequency-dependent behavior of the effective
admittivity. In themodel comprising a suspendedmembrane,
there exists a thinmembraneM

𝑑
of a thickness𝑑, as shown in

Figure 6, within our target voxel. Assume that the admittivity
distribution 𝛾 changes abruptly across the membrane

𝛾 (r, 𝜔) := 𝜎 (r) + 𝑖𝜔𝜖 (r) = {

𝜎
int
+ 𝑖𝜔𝜖

int in M
𝑑

𝜎
ext

+ 𝑖𝜔𝜖
ext in Ω \M

𝑑
,

𝑑 ≈ 0,

𝜎
int

𝜎
ext ≈ 0.

(39)

In the case of a dilute suspension of a single membrane,
any potential 𝑢 satisfying ∇ ⋅ (𝛾∇𝑢) = 0 can be expressed as

𝑢 (r) ≈ 𝐻 (r) + 𝑑(𝜎
ext

+ 𝑖𝜔𝜖
ext

𝜎
int
+ 𝑖𝜔𝜖

int )DM𝜙 (r) , (40)

whereM is the surface of the membrane and

DM𝜙 (r) = ∫

M

⟨r − r,n (r)⟩

4𝜋




r − r



3
𝜙 (r) 𝑑𝑠. (41)

The density 𝜙 is determined by membrane structure and the
refraction index:

𝜙 =

𝜕𝑢
ext

𝜕n
on M. (42)

Here, we recallDM𝜙|M± = ((±1/2)𝐼+K)𝜙 on the surfaceM.
In 1955, Fricke [39] studied the equivalent admittivity

for the case of a spherical membrane suspension using its
pointwise admittivity distribution (Figure 7):

𝛾 (r, 𝜔) =
{
{

{
{

{

𝛾
int if |r| < 𝑅 − 𝑑

𝛾
𝑚 on M

𝑑
= {r : 𝑅 − 𝑑 < |r| < 𝑅}

𝛾
ext if |r| > 𝑅.

(43)
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Fricke’s expression for the equivalent admittivity for the
internal domain including the membrane and 𝛾 is

𝛾 (r, 𝜔) ≈
{
{
{
{

{
{
{
{

{

𝛾
int
⬦

= 𝜎
int
⬦
+ 𝑖𝜔𝜖

int
⬦

=

𝛾
int
− (2𝑑/𝑅) (𝛾

int
− 𝛾
𝑚
)

(1 + 𝑑/𝑅) ((𝛾
int
− 𝛾
𝑚
) /𝛾
𝑚
)

if |r| < 𝑅

𝛾
ext if |r| > 𝑅.

(44)

Then the effective admittivity 𝛾ef can be computed by substi-
tuting this equivalent admittivity in Maxwell-Wagner-Fricke
formula [40]. Under the assumption that three quantities
𝜎
𝑚
/𝜎

ext
, 𝜎
𝑚
/𝜎

int, and 𝑑/𝑅 are very small, Pauly and Schwan
[14] obtained

𝜎
ef
(𝜔) = 𝜎

ext
(1 −

3𝑐

2

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎
ef
(0)

+

9𝑐𝜖
𝑚

4𝜖
0

𝑅

𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝜎
ef

𝜔𝜏
2

1 + 𝜔
2
𝜏
2
,

𝜖
ef
(𝜔) = 𝜖

ef
(∞) +

9𝑐𝜖
𝑚

4𝜖
0

𝑅

𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝜖
ef

1

1 + 𝜔
2
𝜏
2
,

(45)

where

𝜏 =

𝜖
𝑚
𝑅

𝑑

(

1

2𝜎
ext +

1

𝜎
int
⬦

) . (46)

Biological tissues are comprised of cells and an extracel-
lular matrix of macromolecules and extracellular fluid. Cells
have different shapes and sizes in the order of 𝜇m. The cell
has a membrane whose thickness is in the order of several
nm. Enclosed within the cell membrane is the cytoplasm
containing the nucleus, organelles, and intracellular fluid.
Although they are very thin and resistive, cell membranes
play an important role in determining admittivity values of
tissues. They usually account for large susceptivity values,
even though there is little quantitative analysis on how
membrane properties affect them.

Membrane suspensions in homogeneous media can be
viewed as an equivalent biological tissue admittivity. Analysis
of the simple membrane structures should enable us to
interpret admittivity images from phantom experiments and
numerical simulations.

3. Discussion and Conclusions

Tomographic imaging of the admittivity distributions inside
biological subjects such as the human body has been an active
research goal in electrical impedance tomography (EIT). Can
EIT technique distinguish between cucumber and carrot or
lung and liver?Measuring the frequency-dependent behavior
of effective admittivity increases distinguishability and has
a potential of expanding clinical applications. The effective
conductivity of biological tissue is associatedwith the forward
problem of an elliptic PDE, the Laplace equation, with a
complexmaterial parameters and thin insulatingmembranes,
and there is little understanding about this kind of forward

problem. Since traditional electrical impedance tomography
can only provide change in effective admittivity on a coarse
scale due to its low spatial resolution, we will have a better
understanding of EIT images if we can link microscopic
cell structures to macroscopic (or effective) tissue admittivity
images obtained from multifrequency EIT systems.

We defined the effective admittivity of a cubic voxel from
its pointwise admittivity and theMaxwell equations. Because
of the reciprocity property, the effective admittivity must be
symmetric. Direct computation of effective admittivity using
simplemodels produced theMaxwell-Wagner interface effect
and Debye relaxation. The complex permittivity, dielectric
constant, and loss factors were derived and modeled as
the functions of frequencies, and the dielectric polariza-
tion, dispersions, and the relaxation time were studied in
a mathematical framework. The single and double layer
potentials were used to present a mathematical expression
for the Maxwell-Wagner-Fricke expression for the subject
containing various geometries of cells or membranes while
previous work of Maxwell and Wagner only handles ellipses
in a cube.
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