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XNOR‑Nets with SETs: 
Proposal for a binarised 
convolution processing elements 
with Single‑Electron Transistors
Varun Bheemireddy

Deep neural network (DNN) and Convolution neural network (CNN) algorithms have significantly 
increased the accuracies in cutting-edge large-scale image recognition and natural-language 
processing tasks. Generally, such neural nets are implemented on power-hungry GPUs, beyond the 
reach of low-power edge-devices. The binary neural nets have been proposed recently, where both 
the input activations and weights are constrained to + 1 and − 1 to address this challenge. Here in 
the present proof-of-concept study, we propose a simple class of mixed-signal circuits composed 
of single-electron devices and exploit the nonlinear Coulomb staircase phenomena to alleviate the 
challenges of binarised deep learning hardware accelerators. In particular, through SPICE modeling, 
we demonstrate the realisation of space-time-energy efficient XNOR-Accumulation (XAC) operation, 
reconfigurabilty of XAC circuit to perform 1D convolution and a busbar design to augment a 
contemporary accelerator. These nanoscale circuits could be readily fabricated and may potentially be 
deployed in low-power deep-learning systems.

Deep neural network (DNN) and Convolution neural network (CNN) algorithms have dramatically increased 
the target accuracies in cutting-edge large-scale image recognition tasks1–4. But, such networks are beyond the 
range of mW-level low-power systems and are trained exclusively on power-hungry and massively parallel GPUs. 
To address this energy problem and bring edge-computing closer to practicality, algorithms have been proposed 
to constrain both the input activations and weights to + 1 and − 15,6. These binary neural nets greatly reduces the 
memory size by 32x and replace the costly multiply-accumulate (MAC) operations by a simpler XNOR-Accu-
mulate (XAC) computation, still maintaining a respectable accuracy relative to full-precision neural nets. At the 
architectural level, further reduction of the energy consumption due to data movement between computing unit 
and memory unit could be achieved by in-memory analog computation7. In these architectures, multiplication 
is performed by encoding non-volatile memory conductance as the weight parameter, the voltage pulse as the 
input and the output current as the product. The addition is performed by the summation of currents governed 
by the Kirchhoff ’s law of current. But these weight-stationary analog computing devices faces a roadblock in 
terms of writing and reading speeds, significant energy costs to write the weight parameter, endurance, vari-
ability issues and non-linear conductance updates8. The mixed-signal approach has been proposed9 that utilises 
energy-efficient switched-capacitor neuron circuit design to sum the XNOR products in an analog fashion. This 
proof-of-concept ASIC achieved 3.8 µJ/classification at 86% accuracy on the CIFAR-10 image classification data 
set with a 28-nm CMOS running at 0.6 V/0.8 V voltage supplies.

Single-electron transistor (SET) device is a matured technology that predates the current dominant landscape 
of non-volatile memory devices employed in in-memory computation and shows great promise in the conven-
tional digital computing10 and quantum computing11,12. SET shows remarkable nanoscale physical phenomena of 
Coulomb oscillations, Kondo physics and Coulomb staircase13. Single-electron phenomena were also observed 
in a range of low-dimensional systems, of which novel 2D materials became the new entrants recently14,15. The 
hybrid circuits of SET-FET are demonstrated as a post-CMOS solution and also to complement the inadequa-
cies of SETs16,17.

In this study, we propose a simple mixed-signal circuit design utilising the Coulomb stair case phenomenon of 
SET to alleviate few of the above mentioned problems in the hardware acceleration of binarised deep neural nets. 
In particular, we demonstrate through SPICE modeling, the XNOR-Accumulation (XAC) operation obtained 
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from a simple design of SET-based circuit that show huge gains in space-time-energy resources. Then we proceed 
on to reconfigure the XAC circuit to carry out the 1D convolution by taking a simple test case of 4× 4 kernel 
convolution with input activations. Though the reconfigurability saves the chip area, it has its own fair share of 
disadvantages as discussed in the relevant section. Thus, we provide a solution with the simple busbar circuit of 
two-terminal SETs and also show the integrability of busbar into a contemporary binary neural net accelerator 
for further acceleration.

Results
Figure 1 shows the typical Coulomb staircase behaviour of current-voltage characteristics for an one level single-
electron system13. The results are obtained for a simple one-level device at two gate voltages, Vg = 0 V and Vg = 
0.15 V. The current-voltage curves are obtained by analytically solving the Master equation for a single energy 
state. The initial point of the problem is to implement AND operation using the non-linear Coulomb staircase 
of a single SET. We use this one-level toy model to briefly discuss about the implementation of AND. Here, the 
two inputs are encoded as voltages of source and gate respectively and the output is encoded as the current. 
AND gate could be realised by encoding input logical 0 and 1 as voltages 0 V and 0.15 V respectively and output 
logical 0 and 1 as 0 A and 1.2e−7 A respectively. For example, inputs 0 and 0 gives output logic 0 and similarly, 
inputs 1 and 1 give output logic 1.

With the basic philosophy of the problem laid down using a simple one-level model, we proceed on to a 
detailed study of the problem with a more rigorous Master equation based SPICE model18. Figure 2a depicts the 
typical Coulomb-staircase behaviour of a single-electron transistor obtained from SPICE-level simulation at gate 
voltages of 0 V and 0.045 V. The operation of AND as described above is illustrated in Fig. 2 taking an example 
input instance of 1 and 1.The output current measured at 3.6 nA is the logical output 1 for the given inputs. The 
inputs 0 and 1 of the Boolean gate could be set at the Coulomb levels of choice depending on the drive current 
and energy trade-off required in the application-specific circuit design. The current levels also offer high robust-
ness to input voltage noises due to the Coulomb blockade of electrons. Moreover, the sensing margin of outputs 
namely I(1)/I(0) has an ideal value of infinity, in principle.

In Binary Neural Nets, the input activations and weights are binarised to either + 1 or − 1 and therefore, n-bit 
floating point Multiply-Accumulate operations are transformed to XNOR-Accumulate5. XAC remains the core 
operation of the binary deep neural networks consuming the bulk of space, time and energy resources. XNOR 
operation is derived from the AND operation by adding a second SET and inverting the input voltage signals 
as implemented by Eq. 1 and shown in Fig. 3. XNOR and XOR operations are also obtained in the previous 
studies19,20 using a similar input and output encoding scheme but with a more complicated multi-gate device 
design and fabrication process.

(1)p XNOR q = (p AND q) OR (p AND q)

Figure 1.   Non-linear Coulomb staircase current-voltage curve of a single-level model. The analytical curves 
are obtained for arbitrary gate coupling factor α and the gate voltages include the coupling factor. Black curve 
represent zero gate voltage, Red curve represent scaled gate voltage of 0.15 V.
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Figure 2.   (a) Current–voltage characteristics of single-electron transistor at two gate voltages of 0 V and 
0.045 V as obtained from SPICE modeling. (b, c) Two input voltage pulses measured at 0.045 V fed into the 
AND gate. (d) The resultant output current pulse obtained at 3.6 nA.
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XNOR and accumulate (XAC).  The accumulation is done by POPCOUNT instruction in digital systems 
and consumes vast resources of space and time for big-length inputs. The XAC circuit that builds on the previous 
XNOR circuit is shown in Fig. 4a that POPCOUNT the 2-bit length input. The circuit uses the Kirchhoff ’s law of 
current to POPCOUNT the input. Long Cheng et al.21 experimentally demonstrated a 4-bit POPCOUNT accel-
erator using a memristive array that similarly operates on the addition of currents. For illustration of the POP-
COUNT operation, consider two binarised inputs A = [1 1] and B = [1 1]. The first bits of A and B are fed into 
V1 and V2, while second bits are fed into V3 and V4. SETs numbered 1,2,3 and 4 perform XNOR operation on 
the vectors and the POPCOUNT is read by measuring the output current Ipop. In the present example, the input 
voltages are fixed at 0.045 V and the output current is measured at 7.2 nA which is encoded as integer 2 (Fig. 4).

Reconfigurable XAC circuit.  The advantage of the proposed XAC circuit is that it could be reconfigured to 
carry out the 1D and 2D convolutions7 for a parallel binarised CNNs. Here, we demonstrate the reconfigurability 
of XAC circuit by taking a example of performing 1D row convolution of 4× 4 kernel with input activations. 

Figure 3.   (a) XNOR operation from two AND and one OR operation. 1 and 2 represent SET. Italicised voltages 
represent corresponding inverted logic values. (b, c) Two input voltage pulses measured at 0.045 V fed into the 
XNOR gate. (d) The resultant output current pulse is measured at 3.6 nA.
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Once the POPCOUNT operation as implemented by the XAC unit is completed, the POPCOUNT outputs 
of different XAC units are routed back to a selected XAC unit to obtain 1D convolution output as shown in 
Fig. 5a. The gate terminals could be grounded or fixed at selected voltage and therefore, the devices function 
essentially as two-terminal single-electron junctions for the 1D convolution operation. POPCOUNT is encoded 
at voltages that maps to equivalent Coulomb stair-case level. Each quantised current level maps to an unique 
integer obtained from the POPCOUNT instruction. The resultant output current obtained by the summation of 
individual devices represent the 1D convolution value. Both positive and negative sums could be computed by 
encoding the sign in the direction of current. For example, assume the POPCOUNTs obtained from XAC of one 
row of 4× 4 kernel with input activations to be V1 = 1, V2 = 1, V3 = 0 and V4 = 0. These integers are fed into the 

Figure 4.   (a) XAC circuit to perform XNOR and POPCOUNT operations. 1, 2, 3, 4 represent SETs. Italicised 
voltages represent corresponding inverted logic values. Ipop represent the POPCOUNT value. (b–e) Input 
voltage pulses at 0.045 V encoding logic 1 are loaded into XAC. (f) POPCOUNT value is measured at output 
current 7.2 nA encoding integer 2.
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reconfigured XAC unit, with the voltages fixed at 0.045 V and 0 V to represent integer 1 and 0 respectively. The 
output current, I1D measured at 7.2 nA encode the 1D convolution value 2 as shown in Fig. 5. It should be noted 
that current should be converted to appropriate voltage level with an additional converter circuit before feeding 
inputs into the reconfigured XAC circuit22.

Busbar circuit.  The re-configurable XAC circuit provides a significant savings in transistor consumption 
and the chip area. But it is achieved at the expense of complex three-terminal transistor fabrication, delayed 
computation and importantly, integrating the SET-XAC circuit with other contemporary deep neural hardware 

Figure 5.   (a) Reconfigured XAC to perform 1D row convolution. 1, 2, 3, 4 represent SETs. The gate voltage is 
fixed at 0.045 V. I1D represent the 1D convolution value. (b–e) Input voltage pulses at 0.045 V and 0 V encoding 
POPCOUNT integer values of 1 and 0 respectively are loaded into reconfigured XAC. (f) 1D convolution value 
is measured at output current 7.2 nA encoding integer 2.
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could be challenging. Therefore, a simpler busbar circuit consisting of two-terminal single-electron junctions is 
proposed to address this problem. The crossbar of silicon quantum dots has already been demonstrated23 for a 
more complicated architecture in quantum computing. In particular, we demonstrate the 1D convolution opera-
tion of the busbar circuit by integrating into and augmenting a contemporary hardware accelerator, XNORBIN24. 
XNORBIN, a completely digital and tapeout ASIC achieved the second-best result of 100 TOP/s/W designed on 
a Global Foundries 65nm node.

Here, we use a simple two-element busbar to demonstrate our proof-of-concept as shown in Fig. 6a and the 
present design could be scaled to arbitrary length. POPCOUNT and full-adder units of Basic processing unit 
(BPU) of XNORBIN are replaced with two busbars and the outputs of BPU XNOR ( voltage scaled appropriately ) 
are fed into the inputs of busbar. Since the busbar element length is 2, the input and size of the kernel is restricted 
to 2-bit vector and 2× 2 respectively for our proof-of-concept illustration. Consider the outputs of XNOR to be 

Figure 6.   (a) The busbar circuit composed of two-terminal single-electron junctions numbered 1, 2, 3, 4. BPU0 
module provides the output of XNOR operation. IVC represent current-to-voltage converter circuit. IPOP0 and 
IPOP1 denote the POPCOUNT values from busbars. I1D denotes the final 1D convolution value. (b, c) Input 
voltage pulses at 0 V and 0.045 V encoding XNOR output 0 and 1 respectively of BPU0 are loaded into the 
busbar. (d, e) Ouput POPCOUNT from the first busbar and 1D convolution value from the second busbar are 
measured at output currents 3.6 nA and 7.2 nA encoding the integers 1 and 2 respectively.
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0 and 1 in both the BPUs (BPU0 and BPU1). As shown in Fig. 6, the output current IPOP0 ( POPCOUNT from 
BPU0 = 1 ) generated from two-terminal single-electron junctions 1 and 2 of first busbar is fed into current-to-
voltage converter (concomitantly POP1 from BPU1 = 1 is also fed ) to generate the appropriate input voltages 
for the second busbar. The POPCOUNT inputs are loaded onto the two-terminal single-electron junctions 3 and 
4 of second busbar to get 1D convolution output of value 2. In principle, the complex digital adder circuits of 
XNORBIN could be replaced by a simple analog busbars to further accelerate the deep neural convolution nets.

For a methodical performance analysis of our convolution processing elements, a rigorous system-level 
performance is required accounting for interconnects, current-sensing amplifiers, current-controlled voltage 
sources and is beyond the scope of present work. Nevertheless, an attempt is made to reasonably compare the 
SET based computation and the digital baseline taking fundamental XNOR and Full-adder(FA) operations on a 
2-bit 2 inputs as the relevant parameter and tabulated in Table 1. Here, the comparison is benchmarked against 
a fully digital circuit25 taking only the design that performed best in Power-Delay-Product(PDP) metrics. All 
the digital circuits have been designed on a 65 nm TSMC CMOS process technology node. The proposed full-
swing XNOR gate consists of 7 transistors with the best PDP metric of 52.9 aJ. The FA, with the best PDP metric 
of 241.1 aJ, is a 22-transistor configuration that implements a well-known four-transistor 2-1-MUX structure. 
SET-based inverters26 are considered to drive inverted inputs into the SET-XAC unit and the worst-case perfor-
mance metrics of the XAC is reported. The parameters of the remaining SETs are also assumed to have similar 
values as SET-inverters. The SET based unit shows 66% lesser transistor utilisation, nearly-equivalent speed of 
XAC operation and an almost 4-order magnitude reduction in power dissipation at 1 GHz clock frequency.

Discussion
In summary, we demonstrate a SPICE-modeled simple mixed-signal single-electron transistor based circuits 
which capitalises on Coulomb staircase current–voltage characteristics, to possibly accelerate the binary deep 
neural nets. The present circuit design and the results could be readily fabricated and realised, on the condition 
that the maturity of SET fabrication be able to tackle reliability issues and the current proposal may find potential 
application either independently or complementing other ASICs in future low-power deep-learning devices.

Methods
To obtain analytical solution of one-level model, the following physical parameters are used: Right and Left tun-
neling rates = 1 meV, Single state energy = 50 meV, Charging energy = 100 meV, Temperature = 30 K.

SPICE model parameters are as follows: Circuit simulations were carried out using freeware LTSPICE (https://
www.linear.com/solutions/1066). Capacitance of all junctions is fixed at 0.7 aF. Resistance of source junction = 
10 M� , Resistance of drain junction = 0.1 M � , Temperature = 2 K.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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