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Vessel segmentation in the lung is an ongoing challenge. While many methods

have been able to successfully identify vessels in normal, healthy, lungs, these

methods struggle in the presence of abnormalities. Following radiotherapy,

these methods tend to identify regions of radiographic change due to post-

radiation therapytoxicities as vasculature falsely. By combining texture analysis

and existing vasculature and masking techniques, we have developed a novel

vasculature segmentation workflow that improves specificity in irradiated lung

while preserving the sensitivity of detection in the rest of the lung. Furthermore,

radiation dose has been shown to cause vascular injury as well as reduce

pulmonary function post-RT. This work shows the improvements our novel

vascular segmentation method provides relative to existing methods.

Additionally, we use this workflow to show a dose dependent radiation-

induced change in vasculature which is correlated with previously measured

perfusion changes (R2 = 0.72) in both directly irradiated and indirectly damaged

regions of perfusion. These results present an opportunity to extend non-

contrast CT-derived models of functional change following radiation therapy.
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1 Introduction

Vascular segmentation is an ongoing challenge. Several groups have attempted to

develop robust vasculature segmentation algorithms. Of these, most models rely on

knowledge about the features of vessels such as intensity, curvature, tubularity, centerline,

and smoothness but all methods thus far face their own challenges (Jerman et al., 2015)

(Sato et al., 1998) (Krissian et al., 2000) (Aylward and Bullitt, 2002) (Zhang et al., 2010)
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(Lavi et al., 2004) (Metz et al., 2007) (Buelow et al., 2005) (Agam

et al., 2005) (Medical Imaging 2008: Image Processing, 2008).

In lung images, there is a natural contrast seen on CT

imaging due to the high density difference between vessels

and the lung parenchyma. Segmenting vessels in the lungs

specifically has been addressed by various groups (Agam

et al., 2005) (Xiao et al., 2011) (Shikata et al., 2004) (Medical

Imaging 2008: Image Processing, 2008). However, all these

methods struggle to address the issue that other structures

besides vessels can have similar Hounsfield Unit (HU)

intensities such as tumor nodules or dense lesions resulting

from fibrosis, mucous, etc. Particularly, in regions of damaged

lung, previous work has indicated that the algorithm struggles to

distinguish damaged lung from vessel (Rudyanto et al., 2014).

Texture analysis presents an opportunity to identify

particular radiographic abnormalities caused by medical

intervention e.g. radiation therapy. These methods are robust

and can identify several different textures in lung parenchyma

such as ground glass, honeycombing, emphysema, consolidated,

bronchovascular, and ground glass reticular (Uppaluri et al.,

1997). In this work we use these texture analysis methods to

improve upon existing vascular segmentation methods to

produce a workflow capable of identifying vasculature

accurately in the presence of damaged or abnormal lung

tissue. Furthermore, we use this workflow to show a dose

dependent radiation-induced change in vasculature which

correlated with measured perfusion changes in both directly

irradiated and indirectly damaged regions.

2 Methods

2.1 Swine model subject description

Previous studies have used the Wisconsin Miniature Swine

(WMS) and detail their unique characteristics that make them an

ideal model as well as show strong correlations between WMS

and human response (Wallat et al., 2021) (Reed et al., 2010)

(Wuschner et al., 2021a). In this work, two groups of five WMS

(ten total) each received CT imaging and RT treatment. The

swine ranged from 70–100 kg and were 14.4 ± 1.7 months of age.

These two groups will be referred to as group A and group B, with

differences between the groups described in the current section.

All WMS were sedated to eliminate motion artifacts and

mechanically ventilated to a consistent tidal volume of 1 L

and respiratory rate of 15 breaths per minute matching the

average tidal volume and respiratory rate of human subjects

in a prospective clinical trial studying functional avoidance in the

lung (NCT02843568). The animal care practices and all

experimental procedures were approved by the University of

Wisconsin Institutional Animal Care and Use Committee

(IACUC). The drugs and methods of anesthesia and

euthanasia were approved in compliance with American

Veterinary Medical Association (AVMA) guidelines for

anesthesia and euthanasia of swine. Both committees assured

that all procedures were in compliance with ARRIVE guidelines.

2.1.1 Treatment schemes and imaging schedule
For all ten swine in groups A and B, CT images were acquired

both pre- and 3 months post-RT. At each time point, subjects

received a four-dimensional CT (4DCT) and dynamic contrast-

enhanced perfusion scans. The dynamic perfusion scans were

performed following the procedure detailed in Wuschner et al.

(Wuschner et al., 2021a).

All subjects underwent a five fraction stereotactic body RT

(SBRT) course of 12 Gy per fraction totaling 60 Gy, however the

two groups of swine were treated with two different forms of

image-guided radiation therapy, as described below. The

differences in delivery system were due to clinical availability

at the time of the study. Figure 1 shows a representative dose

distribution that was delivered to subjects in each group. For all

subjects, the contralateral lung did not receive dose above 5 Gy.

In group A, the treatment planning target volume (PTV) was

designated as the bifurcation of a vessel in the posterior base, near

the left lateral chest wall, of the left lung. Treatment delivery was

executed using an MRI-guided LINAC system (ViewRay,

Cleveland Ohio) in order to maximize dose conformity and

reduce the uncertainty of dose delivery due to respiratory

motion. The ViewRay system continually monitors and gates

treatment by acquiring 0.35 T MRI images and stopping

treatment when the target is outside of the threshold view set.

For subjects in group B, the PTVwas centered on a vessel and

airway in the right upper lobe of the subject. This target location

was selected to enable treatment response analysis to the directly

irradiated vessels and distal pulmonary vasculature receiving

moderate to low radiation doses. Treatments were delivered

on the Radixact®linear accelerator with motion Synchrony

treatment system (Accuray Incorporated, Sunnyvale, CA) in

order to maximize dose conformity and reduce the

uncertainty of dose delivery due to respiratory motion.

Radixact®is a helical tomotherapy radiation therapy delivery

system that contains an intrafraction motion management

system called Synchrony®, which has been adapted from CK

Synchrony (Schnarr et al., 2018). On the system, an x-ray tube

and flat-panel kV imager are offset 90° from the megavoltage

(MV) imager and beam. The kV imaging subsystem is used to

periodically localize the target during treatment. For monitoring

respiratory motion, light-emitting diodes (LEDs) were placed on

the swines’ chest and identified with a camera mounted to the

treatment table to provide the phase of respiration. The target can

then be localized without implanted fiducials near the target

using a motion correlation model. Further details of the model

are described in Schnarr et al. (Schnarr et al., 2018).

For all swine, treatment fractions were delivered following a

standard clinical SBRT schedule receiving each fraction with a

day in between each delivery during weekdays and 2 days over
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the weekend. Subjects were mechanically ventilated to eight

breaths per minute during treatments with inverted breathing

to hold inhale longer than exhale.

2.2 Image analysis tools used

2.2.1 Feature-learning vascular segmentation
In the 2012 VESSEL12 Grand Challenge run in conjunction

with the IEEE International Symposium on Biomedical Imaging,

several different approaches to vascular segmentation on non-

contrast CT were proposed (Rudyanto et al., 2014). The top

scoring approach by Kiros et al. utilized multi-scale patch-based

feature-learning and implements the sparse coding principles

described by Coates et al. (Coates and Ng, 2011) (Kiros et al.,

2014). Since this method does not require joint learning, features

are learned efficiently and quickly (Kiros et al., 2014). Since the

conclusion of the challenge, Konopczynski et al. have improved

upon the work of Kiros et al. by extending themethod to learn 3D

features in an unsupervised manner in a multi-scale scheme

using dictionary learning via least angle regression

(Konopczynski et al., 2016). Their method improved upon the

accuracy achieved by Kiros et al. from 96.66 ± 1.10% to 97.24 ±

0.90% on the principle VESSEL12 data set (Konopczynski et al.,

2016). The VESSEL12 challenge separately evaluated the ability

of segmentation methods to distinguish several types of dense

abnormalities from vessels. The datasets for these categories

consisted of non-contrast CT images that contained vessels in

the presence of dense lesions, which include atelectasis, fibrosis,

and adhesive straining, as well as mucus-filled bronchi, which are

airways that instead of being clear, are filled with liquid such as

mucus (Rudyanto et al., 2014). Many of these are characteristic of

the radiographic change that is seen in post-RT radiotherapy

patients. In these categories, the methods of Konopczynski et al.

achieved a sensitivity of 0.95, but struggled in specificity

(achieved 0.13) meaning it classified several things as vessels

that were not. This code is open-source and is code that was used

in the “Vessel Segmentation” step shown in Figure 3 (Rudyanto

et al., 2014). The output of this code is a probability map that

indicates the probability of a given voxel containing a vessel.

2.2.2 Texture analysis
To improve the specificity of the resulting vessel

segmentation from the Konopczynski method described

above, texture analysis was used to identify and remove false

positives. The texture analysis method used is the Adaptive

Multi-Feature Method (AMFM) developed by Uppaluri et al.

at the University of Iowa (Uppaluri et al., 1997). This method

classifies voxels of an input lung CT as one of seven textures:

normal, ground glass, ground glass reticular, honeycombing,

bronchvascular, emphysema, or consolidated.

The general procedure for performing the analysis is as

follows. First, lung regions are identified on the CT scan using

a multi-resolution convolutional neural network lung

FIGURE 1
Delivered radiation dose distributions for WMS groups (A) and (B) show treatment differences. Group B had a more medial and cranial dose
distribution with a smaller region of targeted high dose values.
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segmentaiton approach proposed by Gerard et al. (Gerard et al.,

2020) (Gerard et al., 2021). Next, preprocessing was performed

on the masked CT image using edgementation (Uppaluri et al.,

1997). This method merges pixels in regions where the difference

between the grey levels of adjacent pixels is small. From there,

feature extraction is performed. The features extracted can be

grouped into three categories; first order, second order, and the

geometric fractal dimension. The first-order features were mean,

variance, skewness, kurtosis, and grey-level entropy as described

in Ferdeghini et al. (Ferdeghini et al., 1991). Eleven second order

features were calculated. Five of these were derived from the run

length matrix (short-run emphasis, long-run emphasis, grey-

level non-uniformity, run-length non-uniformity, and run

percentage) and the remaining six were derived from the co-

occurrence matrix (angular second moment, entropy, inertia,

contrast, correlation, and inverse difference moment) (Fleagle

et al., 1994). The details of the geometric fractal dimension are

detailed in Uppaluri et al. (Uppaluri et al., 1995). Each calculated

feature is normalized for the size of the pixel and lung prior to

optimal feature extraction. Optimal feature extraction is

performed using the divergence method and correlation

analysis with labeled training data that is classified as 1 of the

seven textures by an experienced radiologist (Andrews and

Swartzlander, 1973). Finally, classification is performed using

a Bayesian classifier (Sonka et al., 1993).

Figure 2 shows the result of applying the AMFM texture

analysis to a post-RT CT and masking it by voxels that were

classified as vessels using the method described above. The vessel

segmentation classifies several voxels in the area of the CT

showing radiographic change as vessel that are likely false

positives. Texture analysis shows that the voxels in this region

are bronchovascular, consolidated, or ground-glass reticular

which are expected radiation-induced textures. Therefore, by

removing any voxels that are both classified as a vessel and

classified by one of these textures, we can remove the false

positives in the vessel segmentation.

However it can also be seen that voxels that are clearly vessels

in the right lung are classified as ground glass reticular. This is

because the AMFM technique is designed to classify lung

parenchyma, not vasculature. When the vasculature is large

enough, the features of the vasculature are similar to that of

ground glass reticular and thus they are classified as such. This

does not occur with the smaller vasculature that are small enough

such that their normalized do not classify as one of the removed

textures. To address this, a third image processing step is needed

to add back in the larger vasculature.

2.2.3 Lung and large vessel segmentation
To add in the larger vasculature, two lungmasking techniques are

used. The first is a multi-resolution convolutional neural network

proposed by Gerard et al.to perform lung segmentation (Gerard et al.,

2020) (Gerard et al., 2021). The lung segmentation produced by this

generates a smooth boundary at the mediastinum which includes the

large vessels filled in (see Figure 3). The second method is an optimal

thresholding method which is utilized to generate a mask of well-

aerated regions. The aerated mask is subsequently smoothed and

small holes are filled using morphological operations thus leaving the

large vasculature unmasked. The difference image between the lung

segmentation and the aerated segmentation is used to identify large

vasculature (Gerard, 2018).

2.3 Vascular segmentation workflow

The full vascular segmentation workflow is detailed in

Figure 3. The 4DCT image is input into the vascular

segmentation, AMFM texture, CNN lung segmentation, and

aerated segmentation codes. The AMFM texture map is

FIGURE 2
Example of a post-RT CT scan showing radiographic damage (left frame), the resulting vessel segmentation (middle frame), and the texture
classification for each voxel (right frame) that was classified as a vessel. The vessel segmentation classifies several voxels in the area of the CT showing
radiographic change as vessel that are likely false positives. Texture analysis was performed over the entire lung and is shown masked by the voxels
that were identified as vessel in the third panel. The textures of the voxels in the region of false-positives are bronchovascular, consolidated, or
ground-glass reticular which are expected radiation-induced textures.
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masked by the vessel segmentation such that only vessel classified

voxels remain (determined using a threshold of p> 0.4).

Additionally, any voxels classified as vessel that are also

identified as ground glass reticular or bronchovascular are

removed. This produces the a map of the small and medium

vasculature. Separately, the aerated segmentation is subtracted

from the CNN lung segmentation to produce the large

vasculature map. Finally, the large and small/medium vessel

maps are added together to produce the final vessel

segmentation.

2.4 Analysis of post-RT change

2.4.1 Group A
All post-RT scans were deformably registered to the pre-

RT scan using a B-spline registration algorithm (Cao et al.,

2012) (Yin et al., 2009). The transformation matrix produced

in the registration was then applied to the post-RT vessel

segmentation to allow for voxel-wise comparisons. Analysis

was performed in four dose bins; voxels receiving “no dose”

( < 5 Gy), “low dose” (5–20 Gy), “medium dose” (20–40 Gy),

and “high dose” (above 40 Gy). In each dose bin, the volume of

vasculature was calculated by summing the number of voxels

classified as a vessel and multiplying by the voxel size. The

percent change in vessel volume from pre to post-RT was then

calculated using equation 1. Additionally student paired two-

tailed t-tests were used to compare the pre and post-

RT volumes of vasculature in each dose bin across the five

swine.

ΔVesselVolume %( ) � Volumepost − Volumepre
Volumepre

p100% (1)

2.4.2 Group B
For the subjects in Group B, analysis was performed similarly

to the subjects in Group A with the addition of analysis being

split into direct and indirect change. The process for this analysis

is summarized in Figure 4. Similarly to Group A, the pre and

post-RT CTs are registered and the transformation matrix is used

to bring the post-RT vessel map into the frame of reference of the

pre-RT scan and dose distribution. However, in addition to

masking by dose bin, the analysis is masked as being in either

a “fed”, “not fed”, or “contralateral” region. Here “contralateral”

refers to the left lung (left entirely unirradiated below 5 Gy), “fed”

refers to regions that contain vasculature that branch from the

vessel irradiated to the prescription dose, and “not fed” refers to

regions that do not contain vasculature that branch from the

vessel irradiated to the prescription dose. This results in

7 separate analysis regions (no, low, and medium dose in

both the fed and not fed regions and the contralateral region).

In each of these regions the percent change in volume of

vasculature was calculated as described for group A using Eq. 1.

Additionally for these subjects, the perfusion change in each

of the seven contours analyzed in the group B subjects was

calculated from the contrast-CTs using the methodology

described in Wuschner et al. (Wuschner et al., 2022).

3 Results

3.1 Improved vascular segmentation

An example of the vessel segmentation algorithm is shown in

Figure 5. The post-RT original vessel segmentation classifies regions

of radiographic change as vessel. When removing the ground glass

reticular and bronchovascular voxels, in both the pre and post-RT

FIGURE 3
Flowchart showing the workflow to produce vascular segmentations using the tools described.
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examples it is observed that the larger vessels are no longer

segmented. In the post-RT case it can also be seen that the

radiographic change region is no longer classified as vessel.

When large vasculature is added back in both pre and post-RT

resultant vessel maps appear to be consistent with the vessels

observed on the original CTs. Figures 6, 7 show the

improvements made by the novel vessel segmentation in an axial

slice of all of the subjects used in this work. In all subjects, it is clear

that radiographic change is falsely classified as vessel in the original

vessel segmentation method. This is further highlighted in Figure 8

where a side by side 3D rendering shows the effect of this false

classification. The conventional method, in the regions denoted as

having radiographic change, are so over-segmented that you cannot

distinguish the true vasculature in this region and it just appears as a

large condensed structure. However, when using the novel

segmentation workflow presented in this work, we see that it

appears specificity is improved in those regions of radiographic

change while preserving the sensitivity of the segmentation in the

rest of the lung. The improved workflow 3D rendering shows a

connected vascular tree in these regions. In the group B swine, the

result is more subtle but this is due to the fact that the radiographic

change in these swine was not as drastic as the group A swine in a

single axial slice. This is due to the differences in dose distribution

delivered as well as differences in the size of vasculature irradiated.

3.2 Post-RT changes in vasculature

Figure 9 and Table 1 show a summary of the percent

changes in volume of vessel in each of the dose bins. For the

group B subjects, analysis is not split into fed and not fed

regions in this figure. Each point on the graph is plotted at the

center of the dose bin it represents and is the average percent

change of the five subjects analyzed (Group A or Group B) or

10 subjects analyzed (All Swine). All data sets show strong

linear correlation with dose where the reduction in vascular

volume increases with increasing dose. However, there is a

difference in behavior between Group A and Group B where

Group A shows minimal change in the unirradiated dose bin

(-3.3 ± 3.8%) while Group B shows a large change

(-17.8 ± 5.3%).

Figure 10 and Table 2 show a summary of the

percent changes in volume of vessel in each of the

dose bins with the additional group B analysis. All

data sets still show strong linear correlation with dose

where the reduction in vascular volume increases with

increasing dose. The percent changes in the not fed

regions are very similar to the group A percent changes

while the fed regions show significantly higher magnitudes

of change.

FIGURE 4
Flowchart showing the workflow to perform the indirect vascular change analysis using the tools described.
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FIGURE 5
Example of the vessel segmentation algorithm results for a pre-RT (top row) and post-RT (bottom row) example. From left to right: the original
CT, the vessel segmentation denoting voxels classified as vessels in green, the result of removing voxels that were classified as both vessels and either
ground glass reticular or bronchovascular (red), and finally the result of adding back in the large vessels (blue).

FIGURE 6
Segmentation results in the five Group (A) swine. Each column represents a subject where the top row shows the post-RT CT image in an axial
slice showing the post-RT radiographic change. The middle row shows the original vessel segmentation overlayed on the CT in red which in all
subjects classified damaged regions of the lung as vessel. The bottom row shows the result of the novel vessel segmentation workflow overlayed on
the CT in green. In all subjects, the apparent quality of the vessel segmentation improves in the regions of radiographic change as indicated by
the reduction in large connected regions being identified. The resulting segmentation appears to align with vessels that can be observed in the CT in
both irradiated and non-irradiated regions.
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3.3 Correlation of vasculature and
perfusion change

Figure 11 and Table 3 show the relation between the percent

change in vessel volume and the percent change in perfusion with

each analysis contour labeled. The percent change in perfusion

values were analyzed on the same subjects and same contours

and were previously reported inWuschner et al. (Wuschner et al.,

2022). The perfusion study showed an indirect effect where the

fed vessels, regardless of dose, experienced large, statistically

significant compared to pre-RT, perfusion reductions.

However, the not fed vessels did not experience statistically

significant changes except in the mid dose vessels indicating

that the perfusion reduction was dose dependent (in the case of

not fed regions) but also dependent on location relative to highly

irradiated regions (fed regions). The contralateral lung in the

FIGURE 7
Segmentation results in the five Group (B) swine. Each column represents a subject where the top row shows the post-RT CT image in an axial
slice showing the post-RT radiographic change. The middle row shows the original vessel segmentation overlayed on the CT in red which in all
subjects classified damaged regions of the lung as vessel. The bottom row shows the result of the novel vessel segmentation workflow overlayed on
the CT in green. In all subjects, the apparent quality of the vessel segmentation improves in the regions of radiographic change as indicated by
the reduction in large connected regions being identified. The resulting segmentation appears to align with vessels that can be observed in the CT in
both irradiated and non-irradiated regions.

FIGURE 8
Example cropped 3D Rendering of an example subject. Circled regions show where the CT showed radiographic change post-RT. We see the
result of the over-segmentation in the conventional method and the improvement on this using the proposed method.
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perfusion study experienced no statistically significant perfusion

change. A line of best fit is drawn on Figure 11 and shows good

correlation (R2 = 0.726) between the perfusion study results from

our previous study, and the vascular change results in this study.

4 Discussion

4.1 Improvements of vessel segmentation
method

It can be noted that the results presented in this section are all

qualitative. While the qualitative results are convincing and

encouraging, we recognize that future work should involve

further validation of this method using a quantitative analysis.

To our knowledge however, there is no publicly available labeled

ground-truth data-set for vascular segmentation in the presence

of radiation-induced radiographic change or other similar high

density lung damage that could be confused as vessel using

standard segmentation methods. The only available ground-

truth we are aware of only labels vasculature in normal

healthy lungs which will not test the novelty of our

segmentation workflow.

With this acknowledged, Figure 5 shows a clear qualitative

improvement in accuracy in the segmentation. In the post-RT scan

there is clear radiographic change in the slice shown in the right

lung. The original vessel segmentation shown in green identifies this

radiographic change as vasculature. This misclassification was

consistent across subjects and highlights the limitations to using

the vessel segmentation method developed by Konopczynski et al.

(Konopczynski et al., 2016) alone.

FIGURE 9
Summary of percent changes in vessel volume as a function
of dose. All groups show increasing reductions in vessel volume
with increasing dose however the magnitude of the changes
differs in behavior between groups (A) and (B). Group (A)
showsminimal change in the unirradiated dose binwhile Group (B)
shows a large change.

TABLE 1 Summary of percent changes in vessel volume. Values in table
are entered as average (standard deviation) of the 10 swine (all
swine) or of the five swine (Group A or Group B). Statistically
significant values (p <0.05) are denoted with a *.

Dose (Gy) All swine Group a swine Group B swine

2.5 -9.7% (8.7%)* -3.35% (3.8%) -17.8% (5.3%)*

12.5 -13.1% (10%) -8.4% (6.5%)* -19.1% (11.1%)

30 -18% (10.9%)* -11.8% (7.9%) -25.7% (9.4%)*

50 -25.9% (22.7%)* -15.1% (16.1%) -39.4% (24.2%)*

FIGURE 10
Summary of the percent changes in volume of vessel in each of the dose bins for the group (A) swine (all not fed), group (B) swine, and split
group (B) swine results masked by being in a fed or not fed region. All data sets show strong linear correlation with dose where the reduction in
vascular volume increases with increasing dose. The percent changes in the not fed regions are very similar to the group (A) percent changes while
the fed regions show significantly higher magnitudes of change.
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In Figure 2 another example of this mis-classification is

shown in the middle pane where the regions denoted in orange

pick up radiographic damage in the left lung. This figure

further shows the texture correspondence in these regions

using the AMFM texture analysis where it is clear that the

dorsal regions of the left lung, where the radiographic change

and false vessel classification is observed, is comprised of

ground glass reticular and bronchovascular textures. The

effect of removing vessels of this classification is shown in

the third pane from the left in Figure 5. It appears through

qualitative inspection that the specificity is improved in the

region showing radiographic change but in both the pre

and post-RT cases the sensitivity is reduced in the

detection of large vessels. Finally, the final pane shows the

result of the third step where large vessels are added back in.

Here we see the apparent quality of the vessel segmentation

improves in both irradiated and non-irradiated regions

and is now consistent with the observable vessels on the CT

image.

Particularly to note, is that in the pre-RT scan, the original

and final segmentations appear identical. This confirms for us

that the step of removing textures is only necessary to reduce the

false positives in the case of abnormal radiographic features. In

this work where the swine lungs were healthy at pre-RT this

serves to remove radiation-induced damage, but in the case of

human subjects who may have lungs with pre-existing disease,

this could be extended for use in pre-RT scans as well.

4.2 Changes in vasculature

All results show a linear relation between increasing dose and

decreasing vessel volume suggesting that radiation dose causes

vascular volume reduction. Potential mechanisms of this include

constriction and atrophy. Vascular atrophy has already been

observed in the Group A swine and the direct effects of this

atrophy on perfusion were reported previously (Wuschner et al.,

2021a). Pathological analysis on these swine has confirmed a loss

TABLE 2 Summary of percent changes in vessel volume. Values in table are entered as average (standard deviation) of the five swine in each
group. Statistically significant values (p <0.05) are denoted with a *.

Dose (Gy) Group a swine Group B not fed
regions

Group B fed regions Group B whole lung

2.5 -3.4% (3.8%) -4.4% (3.3%) -24.9% (13.7%) -17.8% (5.3%)*

12.5 -8.4% (6.5%)* -24.6% (8.1%) -6.7% (11.2%) -19.1% (11.1%)

30 -11.8% (7.9%) -33.7% (13.7%)* -9.1% (15.6%) -25.7% (9.4%)*

FIGURE 11
Change in vessel volume vs change in perfusion. Each point represents a different analysis contour and is the average of the five swine subjects
with error bars representing the standard deviations in each metric.
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of structure in the vascular wall in addition to reporting

additional mechanisms of constriction as well as confirming

the intraparenchymal hemorrhage hypotheses reported in

(Wuschner et al., 2021a), (Wuschner et al., 2022), and (Marks

et al., 2003) where vascular leakage was observed as a result of

radiation dose delivered (Wuschner et al., 2021b).

However, there are a few differences between analysis groups

that suggest unique physiological characteristics. Figure 10 shows

the difference between the fed and not fed regions that received

the same dose. The “fed” region receiving the same dose as the

corresponding “not fed” region showed significantly larger

magnitudes of reduction in vessel volume. We believe this to

be indication of an “indirect effect” where regions receiving no or

minimal dose experience large functional declines. This effect has

been observed previously in several studies (Wallat et al., 2021)

(Vicente et al., 2020) (Thomas et al., 2019) (Farr et al., 2018).

Furthermore, the results of the “not fed” regions agree closely

with the results of the group A swine who were irradiated in an

inferior region of the lung. This means the region irradiated in

the group A swine was centered on a small vessel that did not

bifurcate multiple times to feed additional vasculature. These

swine did not even have regions that were “fed” and received no

dose and some did not have vessels irradiated that were “fed” and

irradiated to low dose. These swine therefore, only experienced

direct damage where the damage to the region is dependent

primarily to the dose it received. This is also true of the “not fed”

regions in the group B swine. However, the “fed” regions of the

group A swine are also dependent on the dose to feeding

vasculature; meaning if there is morphological change in the

anatomy of a vessel that feeds the region, there will be

downstream reduction in perfusion.

4.3 Correlation between vessel and
perfusion change

Figure 11 shows a strong correlation exists between the

observed reductions in vasculature and the observed

reductions in perfusion (R2 = 0.72). These results suggest that

the change in vessel volume (a metric derived from a standard

simulation 4DCT), is related to the change in perfusion to a

region. Physiologically, this makes sense. Perfusion refers to the

flow of blood through the capillary network surrounding the

alveolar sacs. If the vascular tree is atrophied and blood cannot

reach these capillaries, perfusion will reduce. Furthermore, the

indirect effect will be magnified in the fed regions if blood leaks

out of the vasculature several bifurcations prior to additional

vasculature which supports why the percent changes in vessel

volume are smaller than the percent changes in perfusion.

This combined with the dose dependency results shown in

this work as well as our previous work (Wuschner et al., 2022)

suggests that with enough subjects, a dose response model could

be developed using the vascular tree as an input to predict the

decline in perfusion to a region based on the dose it receives and

the proximity of it to other locations receiving high dose on the

vascular tree. This would allow for predictions in functional

perfusion information to be made without the need for contrast.

This is a benefit for many reasons. The first benefit is for ease

of integration into clinical workflow. Lung radiotherapy patients

already receive a 4DCT in order to track lung motion and

perform treatment planning. Previous perfusion studies have

used methods such as SPECT or PET which require an additional

scan and an injection of a radio-pharmaceutical (Ireland et al.,

2007) (Farr et al., 2015a) (Thomas et al., 2019) (Marks et al.,

2003) (Hopkins et al., 2012). The vascular maps can be derived

from the same scans that are already used for treatment. While

there are CT-derived perfusion scans, these all require the

administration of iodine contrast. While being an additional

step in clinical workflow, iodine can also be damaging to patient’s

kidneys which is particularly important in the case of cancer

patients who may already have compromised baseline renal

function. Finally, these perfusion scans have limited field of

view which limits the region of analysis and the number of

vessels that can be analyzed. This leads to a large degree of

variability in the perfusion derived measurements. This can be

observed in Table 3 where the vessel change measurements have

smaller standard deviations than the perfusion change

measurements due to being able to analyze more vessels in

the regions.

4.4 Comment on variability

There was a large degree of variability in these measurements as

shown by the error bars on the plot in Figure 11 and those listed in

Table 3. It is important to note that the sample size of this study was

TABLE 3 Summary of vessel volume percent change and perfusion
percent change in each contour analyzed. Data in the table is the
same as the data shown in Figure 11. Entries are written as the average
(standard deviation) of the five subjects. Perfusion results are as
reported in Wuschner et al. (Wuschner et al., 2022). Statistically
significant values (p <0.05) are denoted with a *.

Contour Vessel volume change Perfusion change

No Dose Fed -24.6% (13.7%) -55% (27%)*

0–5 Gy

Low Dose Fed -24.9% (18.1%)* -65% (24%)*

5–20 Gy

Mid Dose Fed -33.7% (13.7%)* -55.7% (9.7%)*

20–40 Gy

No Dose Not Fed -4% (3.3%) -36 (23%)

0–5 Gy

Low Dose Not Fed -6% (11.2%) -24% (54%)

5–20 Gy

Mid Dose Not Fed -9.1% (15.6%) -21.2% (10.5%)*

20–40 Gy

Contralateral -3.8% (8.9%) -5% (25%)
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limited to only five subjects for this particular analysis since only the

Group B swine were irradiated with enough distal vasculature and

tissue to allow for this analysis. Notes on variations in response

between subjects andpotential causes for the large standard deviations

in the perfusion work have previously been described by Wuschner

et al. (Wuschner et al., 2022) and are applicable here as well. Future

work should include extending this analysis to a larger pool of subjects

to minimize the sensitivity of the average measurement to a single

subject. Additionally, the new workflow, while it appears to yield a

promising improvement, does still contain minor error which could

contribute to some variability as well. Some of these errors can be

visualized in Figure 5 where in the sub-pleural regions there are small

regions segmented that do not look like vessels in theCT. This is likely

due to errors in the aerated masking technique that struggles with

damage that is so peripheral in the lung.

4.5 Application to functional avoidance
radiation therapy

Lung cancer is one of the most commonly diagnosed

cancers and is currently responsible for the highest

percentage of cancer related deaths (American Cancer

Society, 2022). A significant portion of these patients

receive radiation therapy (RT) as part of their treatment

depending on the stage of their cancer (American Cancer

Society, 2022). However, many of these patients experience

radiation-induced lung injuries as a result of treatment which

decrease patient quality of life and can even be fatal (Marks

et al., 2003).

Conventional methods use volumetric dose constraints to

minimize toxicities, however these methods do not consider the

local function of the lung which has been reported to be locally

dependent and different by individual (Siva et al., 2015) (Farr

et al., 2015b) (Faught et al., 2017) (Bates et al., 2009)

(Vinogradskiy et al., 2013) (Yamamoto et al., 2011) (Shioyama

et al., 2007).

Functional avoidance in RT treatment planning aims to

do consider these personalized local dependencies by

selectively avoiding high functioning regions of the lung.

To do this, detailed dose response models are required. In

recent years, multiple groups have begun developing these

models and some have tested their efficacy in clinical trials

(McDonald et al., 1995) (Mah and Dyk, 1988) (Mehta, 2005)

(Graves et al., 2010) (Patton et al., 2018) (Koike et al., 2015)

(Hopkins et al., 2012) (Zhang et al., 2010) (Vinogradskiy

et al., 2013) (Wallat et al., 2020) (Wallat et al., 2021) (Bates

et al., 2009) (Hoover et al., 2014) (Ireland et al., 2016)

(Vicente et al., 2020). To date, the only prospective clinical

trials using these techniques have been ventilation-based

(Bayouth et al., 2019) and all non-contrast CT-derived

methods have been exclusively ventilation based (Patton

et al., 2018) (Vinogradskiy et al., 2013) (Vicente et al.,

2020) (Castillo et al., 2021). This does not create a

comprehensive model to accurately model the function

regions that need avoidance. Perfusion based trials have

been performed, however they have all been retrospective

and utilized scans outside of normal clinical workflow which

poses challenges as described previously (Ireland et al., 2007)

(Siva et al., 2015) (Farr et al., 2015a) (Thomas et al., 2019).

Having a bio-marker that can derive perfusion information

from the same standard of care CT would allow for a more

comprehensive model of function to be developed and tested

in prospective clinical trials. Future work should involve

performing these measurements on a large cohort of

subjects to build a model then testing that model in a

prospective clinical trial.

5 Conclusion

In this work we present a novel vascular segmentation

workflow that shows significant observable improvements.

Through qualitative inspection, it appears there is an

improvement in accuracy in the presence of damage or

abnormal radiographic features on a CT. Additionally we

use this method to demonstrate a strong dose-response

relationship on the morphology of segmented vasculature

post-RT. Finally, we show that these measurements correlate

with previously reported perfusion changes in the same

subject cohort which presents an opportunity for this

method to be a non-contrast CT-derived bio-marker for

functional perfusion change. While future work should

fully validate the method proposed via quantitative

analysis, this work presents numerous potential benefits

towards the advancement of functional avoidance

treatment planning.
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