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More than one and a half years have elapsed since the commencement of the coronavirus
disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being
caused by a previously unknown virus, in the initial period, there had been an extreme
paucity of knowledge about the disease mechanisms, which hampered preventive and
therapeutic measures against COVID-19. In an endeavor to understand the pathogenic
mechanisms, extensive experimental studies have been conducted across the globe
involving cell culture-based experiments, human tissue organoids, and animal models,
targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-
specific pathogenesis, involvement of physiological systems, and the human immune
response against the infection. The vastly accumulated scientific knowledge on all aspects
of COVID-19 has currently changed the scenario from great despair to hope. Even though
spectacular progress has been made in all of these aspects, multiple knowledge gaps are
remaining that need to be addressed in future studies. Moreover, multiple severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the
globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/
virulence and immune escape capabilities than the wild-type strain. In this review, we
narrate the progress made since the commencement of the pandemic regarding the
org November 2021 | Volume 12 | Article 6939381
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knowledge on COVID-19 mechanisms in the human body, including virus–host
interactions, pulmonary and other systemic manifestations, immunological
dysregulations, complications, host-specific vulnerability, and long-term health
consequences in the survivors. Additionally, we provide a brief review of the current
evidence explaining molecular mechanisms imparting greater transmissibility and
virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.
Keywords: COVID-19, SARS-CoV-2, pathogenesis, immune response, organotropism
INTRODUCTION

The ongoing pandemic of coronavirus disease 2019 (COVID-19)
has taken a heavy toll on human lives globally (~4.8 million until
October 8, 2021, per WHO data). COVID-19 is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1), an
enveloped positive-sense single-stranded RNA virus belonging to
the genus betacoronaviruses (BCoVs). BCoVs have other
members like SARS-CoV-1 and the Middle East respiratory
syndrome coronavirus (MERS-CoV) that have caused the
respiratory syndrome epidemic of SARS-2002/2003 and
MERS-2012, respectively (1). The extreme paucity of
knowledge, especially in the initial period, about the
interaction of the new coronavirus strain, SARS-CoV-2, with
the host greatly hampered the preventive and therapeutic
management of the pandemic. However, the tremendous
research done across the globe has resulted in rigorous
scientific evidence on all the aspects of COVID-19 at an
unprecedented speed and scale. The emerging facts about
pathogenic mechanisms in COVID-19 have helped to put a
break on the uncontrolled spread of the pandemic by the
development of various preventive measures including effective
vaccines and by improved therapeutic management. Even
though currently there is no effective drug for COVID-19, the
current status of the research is raising hope for the future. The
emergence of multiple SARS-CoV-2 variants with greater
transmissibility/virulence and immune escape capabilities is an
unfortunate turn in the current course (2020–2021) of the
pandemic. Evidence is emerging that can explain improved
virus–host interactions and immune escape capabilities of the
variants (2–4); however, whether the variants have altered tissue
type/organ-specific pathogenesis is least understood. In this
review, we precisely discuss the current evidence for the
pathogenic mechanisms of COVID-19 in humans, including
virus–host interactions, pulmonary and other systemic
manifestations, immunological dysregulations, complications,
host-specific vulnerability, and long-term health issues in
survivors. The article is intended to impart a comprehensive
understanding of the key pathogenic mechanisms driving clinical
manifestations and patient outcomes in COVID-19 and
highlight the knowledge gaps that may need further attention
from the researchers. Additionally, we also discuss in brief the
current evidence explaining molecular mechanisms imparting
greater transmissibility and virulence and immune escape
capabilities to the emerging SARS-CoV-2 variants.
org 2
SYMPTOMATOLOGY OF COVID-19

COVID-19 is primarily described as a disease-causing severe
acute respiratory syndrome (SARS); however, the systemic
manifestations involving other organs, including the central
nervous system (CNS), are very usual (5) (Table 1). The onset
of the symptoms occurs on average 5–6 days after exposure, and
normally, those with mild symptoms recover within 2 weeks;
however, in severe cases, the recovery may extend up to 6 weeks
(Figure 1). Of note, in some patients, regardless of the disease
severity, the symptoms may persist or recur for weeks or months
following initial recovery (17). Persistence of the disease or after
complete recovery and the emergence of new ailments, altogether
known as “long COVID,” is being reported in many survivors
(17–19) (Figure 1). The clinical data presentations in COVID-19
patients have revealed some interesting facts; of the total cases,
about 80% either are asymptomatic or have mild symptoms,
while ~14% develop severe symptoms, such as pneumonia, ~5%
develop critical symptoms, such as septic shock, respiratory
failure, or multiorgan failure, and ~2% of the patients die of
the disease (20). Fatality is comparatively much higher in the
aged and persons with comorbidities (21, 22).

Based on the review of current literature, “long COVID” is
characterized by symptoms of fatigue, headache, dyspnea, and
anosmia. It is more likely to occur in aged, people with high body
mass index, and the female sex, and the symptoms may persist
for 4–12 weeks. Also, the COVID patients who experienced more
than five symptoms during the first week of illness may have
significantly higher chances of developing “long COVID” [odds
ratio = 3.53 (2.76–4.50)] (17). A recent study has indicated that
certain “long COVID” symptoms may persist beyond a year,
more particularly, fatigue, dyspnea, and neurological symptoms,
such as anxiety and depression (23).
VIRUS–HOST INTERACTIONS

SARS-CoV-2 Entry Into Host Cells
Entry of SARS-CoV-2 into human cells is mediated by a cell
surface receptor angiotensin-converting enzyme-2 (ACE2) (24)
(Figure 2). ACE2 binds to the receptor-binding domain (RBD)
of SARS-CoV-2 spike (S) protein. Furthermore, to enter into the
host cell, the priming of the viral spike protein (S) is considered
essential for its fusion to host cell membrane, which involves
cleavage of the “S” protein by serine proteases called
November 2021 | Volume 12 | Article 693938
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transmembrane serine protease 2 (TMPRSS2) or by cathepsin B
or L (CTS-B or -L) and furin present in the host cell membrane
(1) (Figure 2) [Reviewed in (1)].

ACE2 has been a known host cell entry receptor for some
other CoVs as well, such as SARS-CoV-1 and HCoV-NL-63.
TMPRSS2 and CTS-L are also known for SARS-CoV-1 and other
SARS-related viruses (1). However, the inclusion of furin seems
to be an evolutionary gain in SARS-CoV-2 in comparison to
other SARS viruses [Reviewed in (1)]. Furin cleavage needs
insertion of a peptide segment, furin cleavage site (FCS),
containing multi-basic amino acids (PRRAR) at the S1/S2
intersection of viral spike protein (S), which are not present in
SARS-CoV-1 or other SARS-related viruses (25). Notably, FCS is
known to be present in many other CoVs including MERS-CoV,
HKU1-CoV, and OC43-CoV (26). The inclusion of FCS in the
SARS-CoV-2 genome is speculated to be contributing to its high
infectivity and transmissibility in comparison to other SARS
viruses (25). FCS has also been observed in influenza viruses and
is considered contributing to virulence (27). Currently, there is
limited evidence whether FCS inclusion is contributing to the
virulence of SARS-CoV-2 [Reviewed in (1)]. In a recent study,
SARS-CoV-2 mutant lacking FCS in the spike protein was found
to have reduced replication in Calu3 cells (a human respiratory
cell line) and attenuated disease progression in a hamster
pathogenesis model of COVID-19 (28).
Frontiers in Immunology | www.frontiersin.org 3
Other than ACE2, concrete evidence for an alternative host
cell entry receptor for SARS-CoV-2—neuropilin-1 (NRP1)—has
been identified by recent studies (25, 26). NRP1 is abundantly
expressed in multiple tissue types across the body, with very high
expression in endothelial and epithelial cells, particularly, in the
respiratory and olfactory epithelium. Cantuti-Castelvetri et al.
(29) showed that NRP1 potentiates SARS-CoV-2 infectivity.
Furthermore, Daly et al. (30) showed that the furin-cleaved S1
fragment of the spike protein can bind directly to cell surface
NRP1, and blocking this interaction, using a small-molecule
inhibitor or monoclonal antibodies, effectively reduces SARS-
CoV-2 infection.

Tissue Tropism and Organotropism
SARS-CoV-2 host cell entry factors are widely expressed across
the tissue types in humans (31–33). Additionally, ACE2 is co-
expressed with TMPRSS2/CTS-L in many tissue types, which is
an essentiality for SARS-CoV-2 infection (32, 33). The extensive
tissue tropism of SARS-CoV-2 is reflected in the diversity of the
symptoms in COVID-19 patients (5). Multiorgan tropism of the
SARS-CoV-2 has also been confirmed in the studies involving
histopathological observations in the postmortem tissue samples
from the infected patients (34) and laboratory infection of
human tissue organoids (35). Figure 3 describes the tissue
types that can get infected with SARS-CoV-2 based on the
expression of host cell entry receptors and entry-associated
host proteases.

Hijacking of the Host Cell Machinery
Recent studies have unraveled SARS-CoV-2-driven molecular
mechanisms hijacking host cell machinery, particularly, for the
production of proteins and energy production mechanisms (36,
37). The in vitro studies have provided robust evidence for
extensive phosphorylation of SARS-CoV-2 viral proteins by the
host proteome involved in activation of the host cell kinases and
growth factor receptor (GFR) signaling, thus facilitating hijacking
of the host protein machinery. The very first such evidence
presented by Bouhaddou et al. (38) showed that SARS-CoV-2
infection of the host cells promotes casein kinase II (CK2) and
p38 mitogen-activated protein kinase (MAPK) activation and
production of diverse cytokines, leading to the shutdown of
cyclin-dependent kinase (CDK) 1/2/5 and cell cycle arrest (38).
Authors also noted a unique feature of SARS-CoV-2 that was
least known for the respiratory viruses: viral infection markedly
induced unique CK2-containing filopodia protrusions, which
contained budding viral particles. The filopodia protrusions
appeared to facilitate the transfer of the infective virus across
the host cells. This pattern of molecular pathway activation by
SARS-CoV-2 could potentially explain the hallmarks of host
tissue injury in severe COVID-19, such as acute inflammation
and epithelial cell damage and vascular endothelial dysfunction.
The other prominent evidence was secondly provided by Klann
et al. (37), showing that SARS-CoV-2 infection of a human
colonic epithelium cell line—Caco-2 cells—activated GFR
signaling and its downstream pathways. Additionally, the
authors showed that inhibition of GFR signaling prevented
replication of SARS-CoV-2 in host cells (37). Furthermore,
TABLE 1 | Systemic diversity of clinical manifestations in coronavirus disease
2019 (COVID-19).

System Symptoms Study

General Fever (6, 7)
Headache
Fatigue

Respiratory Dry cough (6, 7)
Difficulty to breathe
Congestion of nose
Runny nose
Sore throat

CNS and sensory organs Acute psychosis (8–11)
Loss of sense of smell
Loss of sense of taste
Loss of speech
Dizziness
Impaired consciousness
Stroke
Ataxia
Seizure
Impaired vision
Pink eye
Hearing loss, otalgia, vertigo, tinnitus

Cardiac Acute chest pain/pressure (12)
Arrhythmia
Heart failure

Digestive Nausea and vomiting (6, 7, 13)
Anorexia
Diarrhea
Abdominal pain

Renal Cloudy urine with frequent urge (14)
Musculoskeletal Myalgia (6)
Skin, hair, and nail Rash or discoloration of fingers or toes (6, 15, 16)

Hair fall and baldness
Red half-moon nail sign
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another recent study involving a mouse model of COVID-19 has
suggested that SARS-CoV-2-induced systemic toxicity causes
downregulation of expression of genes affecting the energy
production mechanisms in the cells, such as oxidative
phosphorylation and the tricarboxylic acid (TCA) cycle, and
epigenetic (DNA methylation) changes in the vital organs (38).

SARS-CoV-2 non-structural proteins (NSPs), more
particularly, NSP1, which binds to the 40S ribosomal subunit
of the host cells, have been reported to cause the shutdown of
mRNA translation in host cells (36). It has also been found to
block retinoic acid-inducible gene I (RIG-I) and interferon-
stimulated genes (ISGs), which are key mediators of host
innate immune response in case of viral infections (39).
Another SARS-CoV-2 protein, NSP16, in conjunction with
NSP10, protects the virus from host innate immune response
by methylating the 5′-end of the virus-encoded mRNAs (thus
mimicking host cellular mRNAs) (40).

Apart from the above-stated mechanisms, a mimicry of the
SARS-CoV-2 spike protein to a human epithelial cell ion-
channel, thus hampering its physiological functions, has also
been shown recently. Anand et al. (41) have shown that S1/S2
cleavage site of spike protein (S) of SARS-CoV-2 has a striking
protein sequence similarity to the furin-cleavable peptide
segment (FCS) on the human epithelial sodium channel a-
subunit (ENaC-a). The mimicry of the viral spike protein to
ENaC-a in host cells indicates that the virus can compete for the
furin available in the infected host cells and thus may block
proteolytic activation of ENaC-a. ENaC-a has established roles
Frontiers in Immunology | www.frontiersin.org 4
in the development of acute respiratory distress syndrome
(ARDS) mediated through immune cell activation and
cytokines/chemokines (42, 43), indicating that this mechanism
may have a role in the pathogenesis of ARDS in severe COVID-
19 patients.
DYSREGULATION OF RENIN–
ANGIOTENSIN–ALDOSTERONE SYSTEM
(RAAS)—A KEY AXIS MAINTAINING
PHYSIOLOGICAL HOMEOSTASIS

Dysregulation of the renin–angiotensin–aldosterone system
(RAAS) has been a characteristic feature in COVID-19 (44).
RAAS regulates physiological hemodynamic balance involving
all major organs, primarily liver, lung, heart, and kidney (22),
and is also involved in the maintenance of electrolyte balance and
vascular resistance; hence, it is a crucial determinant of systemic
blood pressure and consequently cardiovascular health. SARS-
CoV-2-induced dysregulation of RAAS is mediated through its
host cell entry receptor ACE2, which is an analog of ACE that
performs a key step in the regulation of RAAS—the conversion of
angiotensin I to angiotensin II. An ACE/ACE2 balance is
considered to be a crucial factor in maintaining an optimum
functionality of the RAAS. The SARS-CoV-2 infection supposedly
downregulates ACE2, but not ACE, and thus may be creating an
imbalance of physiological ACE/ACE2 ratio (9, 17). Apart from
FIGURE 1 | The symptomatology of coronavirus disease 2019 (COVID-19). (The onset of the clinical symptoms occurs in average 5–6 days after exposure, and
normally, those with mild symptoms recover within 2 weeks; however, in severe cases, the recovery may extend up to 6 weeks. Persistence of the disease or, after
complete recovery, emergence of new ailments, together known as “long COVID” may occur in some patients. The “long COVID” is chiefly characterized by the
presence of fatigue, headache, dyspnea, and anosmia, which may persist for 4–12 weeks.
November 2021 | Volume 12 | Article 693938
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that, a SARS-CoV-2 binding causes downregulation of ACE2 in
RAAS components, which can induce activation and release of
pro-inflammatory markers causing tissue injury (42). An ACE2-
mediated dysregulation of RAAS is a key step in COVID-19
pathogenesis and contributes significantly to the comorbidity-
associated mortality, vascular thrombosis, organ-specific
morbidity, and multiorgan failures, which we discuss in detail
afterward in this article in the related subsections. A schematic
representation of virus binding-induced ACE2-mediated
dysregulations of RAAS in COVID-19 is summarized in Figure 4.
MULTISYSTEM INVOLVEMENT IN COVID-
19: UNDERSTANDING UNDERLYING
MECHANISMS

The extensive distribution of the SARS-CoV-2 host cell entry
factors in the human body indicates that the virus can potentially
infect most of the organs and tissue types. Initially, it was
perceived that the primary organ involved in COVID-19
pathogenesis is the lung; however, the accumulating body of
evidence over time has established that COVID-19 is a systemic
disease with extremely diverse manifestations (5) (Table 1). In
many cases, the patients particularly present with the non-
respiratory symptoms, involving single or multiple other
Frontiers in Immunology | www.frontiersin.org 5
organs, including the brain (5). A comprehensive review of the
current literature suggests that the multisystem involvement in
COVID-19 can be largely explained by the widespread
distribution of SARS-CoV-2 host cell entry receptors, direct
viral toxicity, dysregulated host immune response, involvement
of RAAS and systemic hyper-inflammatory response against the
infection, and macrovascular and microvascular thrombosis. The
current empirical evidence on all these aspects, involved in
the pathophysiology of COVID-19, about the key physiological
systems is mentioned below.

Respiratory System
SARS-CoV-2 cell entry receptors are expressed by multiple cell
types along the respiratory tract. In the upper respiratory tract,
ciliated nasal secretory epithelial cells co-express ACE2 and
TMPRSS2 in abundance (32). In the lower respiratory tract,
ACE2 and TMPRSS2 are co-expressed, more abundantly, in type
2 pneumocytes than type 1; additionally, both receptors are
expressed in the goblet, club, enteroendocrine, bronchial cells and
endothelial cells of the pulmonary vasculature (32, 33, 44). Though
the mild respiratory symptoms can be attributed to infection in the
upper respiratory tract, the characteristic SARS or ARDS is caused
when lung cells, primarily type 2 pneumocytes and pulmonary
vascular endothelial cells, are infected (45). Severe lung
inflammation may ensue with infection of these cells first by the
involvement of resident macrophages and then by the recruitment
FIGURE 2 | A schema for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into human cells. [Entry of SARS-CoV-2 into human cells is
mediated by a cell surface receptor angiotensin-converting enzyme-2 (ACE2). ACE2 binds to receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein.
Furthermore, to enter into the host cell, the priming of the viral spike protein (S) for its fusion to host cell membrane is done by host cell proteases, which involves
cleavage of ‘S’ protein by the serine proteases, transmembrane serine protease 2 (TMPRSS2) or Cathepsin B or L (CTS-B or -L), and furin present in the host cell
membrane. CTS-B or -L) acts primarily inside the endosomes. Furin cleavage site (PRRAR), present at the intersection of S1 and S2, is considered an evolutionary
gain in SARS-CoV-2.
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of peripheral macrophages and other immune cells, such as
neutrophils and T cells (20, 45). The hampered production of
surfactants (by type 2 pneumocytes) and consolidation of the
accumulating exudates cause a collapse of the alveoli and induce
pneumonic changes (46). Uncontrolled initial inflammation may
cause the release of more pro-inflammatory cytokines and
recruitment of peripheral immune cells, thus in a vicious cycle
inducing more tissue injury (20). Pulmonary vascular endothelialitis
and subsequent thrombosis, primarily of the microvessels, marked
by elevated blood levels of fibrin degradation products (FDPs), D-
dimer, and prothrombin time (PT) also contribute effectively to the
lung pathology (20, 45, 47).

Cardiovascular and Renal Systems
Cardiac myocytes, endothelium of coronary vessels, and fibrocytes
are known to have significant expression of ACE2 and serine
proteases, primarily TMPRSS2 (48). Cardiac symptoms may arise
because of direct myocardial injury caused by the virus (49, 50).
Additionally, SARS-CoV-2-driven RAAS dysregulation may cause
increased incidences of thromboembolism, and the hypertensive
episodes may be ensued by persistent constriction of systemic and
coronary vessels (51, 52). Furthermore, an inflammation in the
coronary arteries may speed up the formation of plaques, causing
Frontiers in Immunology | www.frontiersin.org 6
blockage and thus the ischemic changes leading to heart failure
(12, 53). Electrolyte imbalance induced by the RAAS dysregulation
may be another mechanism leading to heart ailments, especially
hypokalemia can cause hyperpolarization of the cardiac myocytes
leading to arrhythmia (53). The hypokalemia in COVID-19 may
also be caused by direct viral-mediated directed myocardial injury
leading to decreased cardiac output, thus activating aldosterone-
mediated renal excretion of potassium ions (53, 54).

Renal involvement is highly indicative in COVID-19, taking
into account the significant expression of SARS-CoV-2 host cell
entry receptor ACE2 and associated proteases, particularly
TMPRSS2 in epithelial cells of renal tubules and podocytes of
the glomeruli (33, 55). In that line, acute renal involvement and
the evidence of virus-induced injury, including the presence of
viral particles in the renal tubules upon postmortem
histopathological examination, have been reported (34).
However, the prevalence of direct renal/kidney involvement in
COVID-19 is low if compared to the other key systems/organs
(56). Renal injury may also be secondary to ARDS and cytokine
storm-induced sepsis. It may also be caused by ACE2-mediated
dysregulation of RAAS or due to multiple iatrogenic causes, such
as a fallout of intensive care unit management or mechanical
ventilation and nephrotoxic effects of the drugs (57).
A

B

FIGURE 3 | Expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host cell entry receptor and entry-associated proteases in human tissue
types. (A) mRNA. (B) Protein. [Data source: Human Protein Atlas (https://www.proteinatlas.org/)].
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Digestive System
Prominent digestive symptoms have been noted in many
COVID-19 patients (6, 13), and SARS-CoV-2 particles have
been detected in the cells, with evidence of inflammatory
lesions, in the gastrointestinal tissues, in multiple postmortem
studies (34, 58). SARS-CoV-2 host cell entry factors (ACE2 and
TMPRSS2) are enriched in intestinal tissue (13), and successful
viral invasion has been shown in human intestinal organoids (59,
60) and animal model studies, including in primates (61, 62).

Whereas, at present, there is sufficient evidence confirming
that SARS-CoV-2 can infect the gastrointestinal tract (GIT), how
the virus reaches this is yet not well understood. A fecal–oral
route of the viral entry is the most plausible explanation for this
(62). Shedding of infectious SARS-CoV-2 in feces was detected in
some COVID-19 patients, although it has not been a regular
finding (62). It is intriguing how SARS-CoV-2 survives extremes
of the pH within the digestive system milieu (gastric, 1.5–3.5;
pancreatic, 7.5; bile acid, 7–8) while passing along the length of
the GIT. SARS-CoV-2 is known to survive at a wide range of pH
values at room temperature (pH 3–10) (13). RNA viruses like
influenza A and B (when swallowed) can survive the extremes of
Frontiers in Immunology | www.frontiersin.org 7
pH and maintain infectivity with the help of the mucus cover
lining the GIT, allowing their safe passage and even excretion in
feces (63). As mucus cells are abundant throughout the GIT, they
can contribute to the carriage and survival of SARS-CoV-2 (13).

Of note, the healthy intestinal mucosa may not be well
conducive for the entry of the virus owing to the presence of a
unique multilayer barrier system, though the presence of a prior
inflammatory condition that disrupts the mucosal barrier may
make that permissive (13, 64). Additionally, inflammatory
conditions in GIT may support entry of the virus by inducing
the expression of ACE2 in the mucosal epithelium (13). Thus, a
prior intestinal inflammatory condition, like inflammatory bowel
disease (IBD), may increase the susceptibility to SARS-CoV-2
infection through fecal–oral transmission (13). The composition
of the gut microbiome of the subject is another important factor
influencing contractibility and severity of symptoms (65)
(discussed further in subsection Gut Microbiome under section
Host Factors Affecting Transmissibility, Severity, and
Patient Outcomes).

Other than the fecal–oral route, an alternative route of viral entry
to the GIT cells can be through the tissue microvasculature (13).
FIGURE 4 | A schema of virus binding-induced ACE2-mediated dysregulation of RAAS in COVID-19. (SARS-CoV-2 host cell entry receptor ACE2 is an analog of
ACE that performs a key step in regulation of RAAS—the conversion of Ang I to Ang II in lung epithelium. Ang II primarily acts through AT1 receptor. Alternatively,
Ang II is metabolized to angiotensin 1-7 (Ang 1-7), which further acts through Mas 1R. Physiologically ACE/Ang II/AT1R axis keeps in balance with ACE2/Ang 1-7/
Mas 1R axis. Supposedly, binding of SARS-CoV-2 downregulates ACE2 signaling, and consequently ACE/Ang II/AT1R axis gets an upper hand favoring vascular
constrictions, tissue inflammation, and fibrosis.) Abbreviations: ACE, angiotensin converting enzyme; Ang I, angiotensin-1; Ang II, angiotensin-2; AT1R, angiotensin 1
receptor; COVID-19, coronavirus disease 2019; Mas 1R, Mas 1 receptor; RAAS, renin–angiotensin–aldosterone system; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2.
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As per current evidence, the blood is known to carry and transmit
SARS-CoV-2, and vascular endothelium expresses ACE2 and
TMPRSS2 abundantly (45, 66). Viral infection-induced
inflammation and tissue injury including rupture of the
intercellular junctional complexes may make the small vessels
permeable for passage of the virus (67).

Other than GIT, tissue injury has also been noted in the other
components of the digestive system, viz., liver and biliary duct,
and pancreas (34, 68). Elevation of the liver enzymes has been a
frequent finding in severe cases of COVID-19 (68).
Paradoxically, there has been no clear evidence of a direct viral
invasion to the liver tissue (34); however, model studies in
human tissue organoids have shown that SARS-CoV-2 can
infect hepatocytes, as well as cholangiocytes in the biliary
ductal epithelium (35). Of note, proteomic and transcriptomic
studies suggest that the expression of key viral host cell entry
receptor ACE2 is primarily limited to cholangiocytes (69).
Observing the limited expression of ACE2 in hepatic tissue,
there remains a plausibility that any hepatic impairment in
COVID-19 may be primarily not due to direct viral injury but
indirect reasons, such as systemic hyper-inflammation,
dysregulated immune response, and thrombosis of
microvessels. Pancreatic involvement in COVID-19 is
intriguing, as the severe glycemic impairment including the
onset of new diabetes (also discussed later in subsection
Comorbidities) has been noted in the patients (70, 71);
however, a clear evidence, showing that COVID-19 can do this
on its own accord, is still lacking [Reviewed in (72)]. Although
there has been vague evidence in high-throughput proteomic
and transcriptomic studies on the secretion of ACE2 by the
pancreatic components (13), the studies involving single-cell
RNA sequencing clearly showed significant expression of
ACE2 in the beta cells secreting insulin, and SARS-CoV-2 was
shown to be capable of infecting endocrine cells (alpha and beta)
of the human pancreatic organoids (35).

Nervous System
Mild neurological symptoms in most of the cases, like headache,
nausea, vomiting, dizziness, loss of the sense (smell and taste),
and, in certain cases, severe symptoms like ataxia, convulsions,
altered consciousness, ischemic or hemorrhagic stroke, acute
disseminated encephalomyelitis (ADEM), meningitis,
encephalitis, and rarely Guillain–Barré syndrome variants
(Miller Fisher syndrome and polyneuritis cranialis) (8, 73–76),
and new onset of psychotic symptoms (77) have been reported in
COVID-19. Autopsy studies in COVID-19 deceased have shown
widespread brain lesions (mostly reflecting acute hypoxic-
ischemic injury) (78). Although rare, the viral RNA is also
detected in brain tissue (78) and the cerebrospinal fluid (CSF)
(74, 79) of the COVID-19 deceased.

How SARS-CoV-2 enters the central nervous system and
mediates the pathogenesis of neurological symptoms in COVID-
19 patients is now getting explained in light of emerging facts
(80). The most likely route of viral spread to the brain is
transneuronal spread through the olfactory nerves. In
association, the hematogenous route after breaching the blood–
brain barrier (BBB) is also possible (67). The studies noted
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significant expression of ACE2 and TMPRSS2 in cells of
olfactory epithelium and myelin (oligodendrocytes) and
neurovascular endothelium in humans (80). In addition, model
studies in transgenic mice, which expressed human ACE2, have
demonstrated the intracranial spread of SARS-CoV-2 to the
parts of the brain via the olfactory pathway following
intranasal inoculation (80). The mounting pieces of evidence
strongly favor the neuroinvasive potential of SARS-CoV-2.
Furthermore, the new onset of psychotic symptoms in some
patients of COVID-19 (77) indicates a synaptic pathology
oc cu r r i ng in th e b r a in r e g i on s a s s o c i a t ed w i t h
executive functions.

Studies suggest that neurological symptoms (including the
loss of smell and taste) may arise due to the direct neuropathic
effect of the virus. Alternatively, it can also be an indirect effect of
cytokine-induced neuroinflammation or immune cell-mediated
(81, 82) effect on neurons (or glial cells) or endothelial cells of
cerebral microvasculature inducing cellular apoptosis and
increased vascular permeability and edema of the related
brain tissue.

The mediation of SARS-CoV-2 infection in the brain through
the recently proposed alternative receptor—NRP1—is a strong
plausibility. Interestingly, NRP1 has significant expression in the
human brain including olfactory neurons. The proof of the
concept for NRP1-mediated SARS-CoV-2 entry into the brain
is received from a recent study by Cantuti-Castelvetri et al. (29)
demonstrating the presence of SARS-CoV-2 spike protein in
NRP1-expressing neurons and endothelial cells of capillaries and
medium-size vessels of olfactory bulb and tract in brain autopsy
specimens from COVID-19 deceased. The authors also
demonstrate in mice, following intranasal administration,
NRP1-dependent delivery of virus-size nanoparticles (80 nm
diameter) to the olfactory epithelium and neuronal cells of the
olfactory bulb and central nervous system (cortex) that signifies
the olfactory pathway as a route for SARS-CoV-2 entry into the
brain (29).

The neurological symptoms may also arise due to several
other reasons, such as metabolic encephalopathy arising from
dysfunction of the vital organs (like lung, liver, and kidney) (7) or
increased risk of neurovascular thrombosis in patients with
severe COVID-19 (83), associated comorbidities, or age-related
neurovascular pathologies.

Other Systems and Tissue Types
COVID-19 is said to involve not only the key physiological
systems (discussed above) but also almost all other systems (5),
including sensory organs, viz., eyes (11) and ears (10), and
integument, viz., skin, hair, and nails (15, 16). The pathological
involvement of most of these systems/tissue types can also be
predicted based on the expression of viral host cell entry factors
(31) (Figure 2). Multiple mechanisms can be responsible for the
injury of the SARS-CoV-2-infected tissue, viz., a direct injury
caused by the viral cytotoxicity (1), endothelial dysfunction
mediated through the viral host cell entry receptor ACE2 and
consequent vascular thrombosis (45), or inflammatory damage
owing to an excessive immune response against the infection
(20), or it can be due to a virus-independent mechanism, such as
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certain tissue-specific immunopathologies that are currently not
well explained (84).
HOST IMMUNE RESPONSE TO SARS-
COV-2 INFECTION

SARS-CoV-2 infection ensues varying immune responses in the
different individuals, which decide the severity of the symptoms
(85). Some individuals get away with the mildest of the
symptoms or remain completely asymptomatic; in contrast, in
others, the viral infection leads to severe disease manifestations
resulting in ARDS and multiorgan failure (20). Similar to other
viral infections, a cytokine-mediated innate defense is the first
immune response in the infected individuals. A peculiar form of
systemic hyper-inflammatory state, characterized by very high
levels of pro-inflammatory cytokines, known as “cytokine storm”
(CS) is commonly observed in patients with severe COVID-19
(20). Of note, CS is not peculiar to COVID-19, and it has been a
characteristic finding in the severe stages of many other
respiratory viral diseases, such as SARS, MERS, and influenza
(86). However, SARS-CoV-2-induced CS is different compared
to other respiratory viruses, as SARS-CoV-2 does not necessarily
induce a common cytokine signature, such as interleukin (IL)-2,
IL-10, IL-4, or IL-5 (87). In COVID-19, CS is characterized by a
particular set of cytokines highly increased in the serum of the
patients, such as IL-2, IL-7, granulocyte-macrophage colony-
stimulating factor (GM-CSF), granulocyte colony-stimulating
factor (G-CSF), Interferon gamma-induced protein 10 (IP10),
macrophage inflammatory protein 1-a (MIP1-a), monocyte
chemoattractant protein 1 (MCP-1), Tumour necrosis factor a
(TNFa) and Interferon g (IFN-g). The circulating concentrations
of chemokine (C-X-C motif) ligand-10 (CXCL10), chemokine
(C-C motif) ligand 2 (CCL2), IL-2R, IL-6, TNFa, C-reactive
protein (CRP), and ferritin are significantly higher in those
needing admission to intensive care units (ICUs) (87).
Furthermore, it is targeted particularly to the dysregulation of
the type-I IFN response and its downstream cytokines (87).

Researchers worldwide are endeavoring to understand the
exact reasons for the heightened innate immune response seen in
COVID-19 patients. A review of the existing literature suggests
that it may be partly explained by the known facts about unique
host–pathogen interactions occurring in respiratory viruses
[(Reviewed in (20)]. The first defense of the host against a viral
infection is marked by the rise of the key innate immune
response molecule—IFNa (20). Similar to SARS and MERS
(88), a delayed IFNa response has been observed in COVID-
19, which indicates it being a virus-mediated mechanism
facilitating the viral cell entry. A delayed immune response
would facilitate entry of the virus in the lung epithelium and
that in turn would lead to an intense inflammatory response
caused by incremental recruiting of the wide repertoire of innate
immune cells (89). Interestingly, different from the other
respiratory viruses, such as SARS-CoV, MERS-CoV, and
influenza virus type A (IVA), a very distinctive strategy seems
to be used by SARS-CoV-2 (90). SARS-CoV-1, MERS-CoV, and
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IVA cause complete dampening of the IFN or chemokine (the
pro-inflammatory cytokines with chemoattractant properties)-
mediated innate immune response at the time of infection. In
contrast, SARS-CoV-2 showed a dampened IFN (type I, and also
type III) response but paradoxically highly elevated chemokines
(89) (Figure 5). The dampening of early IFN response against
SARS-CoV-2 infection is mediated by a viral protein ORF3b
(90). This unique dichotomy in the host innate immune response
in COVID-19 can promote viral invasion of the respiratory
epithelium (and epithelial cells at other sites) and facilitate
their viral replication. High viral load in the infected host
epithelial cells in turn can induce tissue injury and, as a
consequence, incremental secretion of chemokines and
recruitment of circulating immune cells (Figure 5). A
hyperactive innate immune response would paradoxically
hamper viral clearance and promote further viral replication (1).

Optimum T cell-mediated and humoral-mediated adaptive
immune responses are usual in asymptomatic and mild
symptomatic cases. Conversely, a subthreshold and delayed
protective T cell-mediated and humoral-mediated adaptive
immune responses in symptomatic patients are pronounced in
the patients with severe COVID-19 in the initial period.
However, the survivors showed a robust and durable adaptive
immune response (91) [Reviewed in (92)].

Interestingly, Th1 cells, a type of activated CD4 T cells, and
lung tissue-resident memory-like Th17 (Trm 17) cells
characterized by potentially pathogenic cytokine expressions of
IL-17A and GM-CSF are observed to be higher in patients with
severe disease in comparison to those with moderate disease (93).
Interestingly, GM-CSF was found distinctively raised only in
severe cases of COVID-19 and not in influenza when both
conditions were compared (94).

Lymphocytopenia, particularly for T cells and more
intensively for CD8 T cells, is a common observation
regardless of the disease stage and severity in COVID-19 cases
(22). However, lymphocytopenia correlated with the severity of
the symptoms, and very low numbers of T cells predicts poor
patient outcomes (95, 96). In contrast, in most of the patients
with mild or moderate symptoms and with stable lymphocyte
count, neutralizing antibodies [immunoglobulin G (IgG)] for a
viral spike or other proteins appear nearly between 18 and 21
days and outcomes are fairly good. Molecular reasons for the
killing of T cells in COVID-19 are little understood (97). Of note,
T cells show less expression of SARS-CoV-2 entry receptors,
providing a hint that the virus-mediated T-cell demise in the
infected individuals may be occurring by some other mechanism
rather than through viral receptor signaling (85). SARS-CoV-2-
mediated atrophy and lesion of the human lymphoid tissues,
such as spleen and lymph nodes, has also been evidenced in
recent studies (58, 98, 99). The analysis of laboratory parameters
of COVID-19 patients suggests that high levels of pro-
inflammatory markers, or the cytokine storm, may be a
potential reason for the killing of the T cells (100). TNF-a,
IL-6, IL-8, and IL-10 levels are found to be significantly increased
and negatively correlate to T-cell counts in severe COVID-19
(100). That high serum levels of TNF-a and other cytokines
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induce apoptosis of T cells is well known in inflammatory
diseases, including SARS and MERS (101).

Based on the review of the current evidence (discussed above),
the improved replication in host cells resulting in greater viral
load and virus-mediated dysregulation of innate as well as
adaptive host immune response seems to be the most
important mechanism contributing to higher virulence and
mortality risk to SARS-CoV-2 with respect to influenza and
other BCoVs (SARS-CoV-1 and MERS-CoV). Hence, along with
reducing viral replication with antiviral drugs, managing
dysregulated host immune response, specifically innate, using
immunomodulators, anti-inflammatory cytokines, and pro-
inflammatory cytokine/or pathway-targeted antibodies
Frontiers in Immunology | www.frontiersin.org 10
becomes an important therapeutic strategy in COVID-19
[(Reviewed in (20)]. Noteworthy, apart from being a result of
the SARS-CoV-2-induced dysregulation, the hyperactive innate
immune response may be contributed by the factors intrinsic to
the subject (102, 103). Specifically, in some young and healthy
adults with no obvious comorbidity, the development of severe
COVID-19 and subsequent mortality strongly indicates the
presence of a subject-specific vulnerability (103). This is likely
that such individuals may have a genetic or immunophenotypic
predisposition for developing severe illness (102, 103). We
discuss this issue in greater detail in the section Host Factors
Affecting Transmissibility, Severity, and Patient Outcomes
(subsection Genetic and Immunophenotypic Factors).
FIGURE 5 | A schematic description of immune responses in asymptomatic and mildly symptomatic and severe cases of COVID-19. SARS-CoV-2 invasion
mediated by host cell entry receptor and entry-associated proteases leads to activation of innate immune response and recruitment of circulating immune cells in
lung epithelium. Furthermore, immunological response is varied in asymptomatic/mildly symptomatic and severe cases of COVID-19 patients: (A) asymptomatic and
mildly symptomatic cases, an optimum activation of T-cell and humoral-mediated adaptive immune response leads of cure of the patients; (B) in severe cases, a
hyperactive innate immune response leading to cytokine storm and consequently killing of T cells and delayed/or suppressed B cell-mediated humoral response
resulting in very poor patient outcomes is observed. MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; IL, interleukin; G-CSF,
granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-a, tissue necrosis factor-a; CCL2,
chemokine (C-C motif) ligand 2; CXCL10, chemokine (C-X-C motif) ligand-10; COVID-19, coronavirus disease 2019; SARS-CoV-2, Severe acute respiratory
syndrome coronavirus 2.
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PATHOPHYSIOLOGY OF
VASCULAR THROMBOSIS AND
MULTIORGAN FAILURE

Thrombosis of the macrovessels and microvessels across the
organs, particularly in the pulmonary vasculature, has been a
prominent manifestation in severe COVID-19. Vascular
thrombosis has been linked to the genesis of multiorgan
failures and associated with very poor disease outcomes,
including enhanced mortality. Multiple reasons have been
suggested for the etiology of vascular thrombosis in COVID-
19, such as toxicity of viral proteins, high levels of pro-
inflammatory markers and cytokine storm, the prothrombotic
impact of severe illness, and the iatrogenic causes (47, 104, 105).
However, a SARS-CoV-2 binding-induced ACE2-mediated
mechanism seems to be at the root of all these mechanisms
(45, 105, 106). SARS-CoV-2 host cell entry factors ACE2 and
TMPRSS2 co-express in endothelial cells of human blood vessels
and microvasculature (45) and blood cell components
particularly platelets (106). SARS-CoV-2 binding-induced
downregulation of ACE2 can induce activation and release of
pro-inflammatory markers and thus can cause injury of vascular
endothelium (45, 107, 108). Additionally, a reversal of ACE/
ACE2 ratio in the vascular endothelium dysfunction can also
induce thrombosis (45). A lower ACE/ACE2 ratio in the vascular
endothelium is known to prevent prothrombotic cascade from
activation by catalyzing the degradation of angiotensin I (Ang I)
to inactive angiotensin 1-9 and angiotensin II (Ang II) to
angiotensin 1-7 with antiproliferative, antifibrotic, and
vasodilatory functions through G protein-coupled Mas
receptors (45, 105). Conversely, a higher ACE/ACE2 ratio
allows increased conversion of Ang I to Ang II and binding of
the latter to its type 1 (AT1) receptors, thus can induce
vasoconstriction, inflammation, and fibrosis, and eventually
vascular thrombosis (45, 105). Furthermore, SARS-CoV-2-
mediated downregulation of ACE2 in vascular endothelium
can activate the kallikrein–bradykinin pathway, inducing
platelet aggregation and leaking of the vessels that can further
add to the thrombotic episodes (45). Alternatively, direct binding
of SARS-CoV-2 to ACE2 expressed on the platelets may also
induce platelet aggregation and consequent thrombosis (106).

Plausibly, the activation of the host “complement system”
caused by viral protein toxicity and cytokine-induced systemic
inflammatory response may significantly add to the pathogenesis
of vascular thrombosis (20). Gao et al. (109) recently
demonstrated in mice that the N proteins of the BCoVs
(SARS-CoV, MERS-CoV, and SARS-CoV-2) bound to
Mannan-binding lectin serine protease-2 (MASP-2) (a key
serine protease involved in complement activation) that led to
aberrant activation of the host complement system and
consequently microvascular thrombosis and aggravated
inflammatory lung injury. Interestingly, the viral activation of
the complement system was reversed with the application of
MASP-2 antibodies (109).

In the vessels of the lung, primarily of the microvessels,
neutrophilia and the formation of extracellular neutrophils
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traps (NETs) are being frequently observed in severe cases.
The NETosis activation leads to increased concentrations of
intracellular reactive oxygen species (ROS) in neutrophils,
which induces endothelial dysfunction and activates
coagulation pathways (both extrinsic and intrinsic), thus it can
add to the ongoing event of vascular thrombosis. Hypoxia-
induced hyperviscosity and upregulation of the HIF-1a
(hypoxia-inducible factor 1 alpha) signaling pathway can be
additional factors contributing to the thrombosis (5).

Vascular thrombosis added with the direct viral protein toxicity
of the infected tissue and RAAS dysregulation-mediated
hemodynamic imbalance, systemic hyper-inflammation, and toxic
shock syndrome arising from the cytokine storm may culminate in
multiorgan failure (105, 110, 111). The presence of the
comorbidities and host-specific vulnerability for the severe disease
symptoms may further contribute to the pathogenesis of the
multiorgan failures (21, 112).

A schematic description for ACE2-mediated dysfunction of
vascular endothelium involving RAAS and consequent
thrombotic incidences and development of multiorgan failures
in COVID-19 patients is summarized in Figure 6.
HOST FACTORS AFFECTING
TRANSMISSIBILITY, SEVERITY, AND
PATIENT OUTCOMES

Specific population groups, primarily men, aged, and those
suffering from comorbidities, have been affected more
aggressively by COVID-19 (21). The reasons why the disease
affects more these specific population groups are now being
gradually unraveled. Emerging scientific evidence indicates the
multiple factors intrinsic to the host that are responsible for such
poor outcomes in selected individuals (21). In this section, we are
discussing, in brief, the current empirical evidence on the
pathological basis of involvement of the key host intrinsic
factors, which have been found to significantly influence
transmissibility, severity, and patient outcomes for COVID-19.

Age
Higher disease severity and mortality in individuals aged >50
years, more particularly in the elderly, are common observations
in COVID-19 (113, 114). Several biological mechanisms have
been suggested for this (115). The immunosenescence in elderly
individuals could be the primary reason (116). The availability of
naive T cells, the ratio of CD4/CD8 T cells, and T regulatory
(Treg) cells decrease with aging (117). Plausibly, the
immunosenescence compromises the response against a new
pathogen, such as SARS-CoV-2 (118). Furthermore, the
protective inflammatory response becomes worse with aging
(116). In addition, elderly persons are most likely to have
serious comorbidities (115).

In contrast, in the pediatric age group, a lesser number of
cases and reduced fatality have been reported. Surprisingly, a rare
multisystem inflammatory syndrome in children (MIS-C) has
been reported across the world in this age group (119). MIS-C
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presents 4–6 weeks after SARS-CoV-2 infection as high fever and
organ dysfunction, and patients show strongly elevated markers
of inflammation. The pathogenesis of MIS-C is not yet clearly
known. It has clinical features overlapping with Kawasaki disease
suggestive of its being a vasculitis of an autoimmune
etiology (120).

Sex
Significantly higher disease severity and mortality have been
observed in men as compared to women (121). A breakdown of
the current global sex-disaggregated data shows that for every 10
women, respectively, 10 men are infected, 12 men are
hospitalized, 17 men are admitted to ICU, and 13 men are
dead (https://globalhealth5050.org, dated 08/10/2021) (121).
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The causal basis of why men are affected more in COVID-19 is
yet not well understood. Various reasons have been suggested for
this [Reviewed in (122)]. Higher expressions of SARS-CoV-2 host
cell entry factors, ACE2 and TMPRSS2, in reproductive organs of
men (123–125) and androgenic regulation of TMPRSS2 (126) are
suggested biological reasons for poor outcomes in men. In contrast,
X-linkage and the estrogen-mediated regulation of multiple
immune response genes including IFN type 1 and viral sensor
TLR-7 could be the salient reasons why outcomes are comparatively
better in women (127, 128).

Comorbidities
Comorbidities have been the most significant host factors
contributing to COVID-19 severity. The most frequent
FIGURE 6 | A schema for ACE2-mediated dysfunction of vascular endothelium leading to thrombosis in COVID-19 patients. (Binding of SARS-CoV-2 to ACE2
receptor expressed at the vascular endothelial cell surface leads to internalization and replication of the virus inside the cell and consequently endothelial dysfunction
that activates prothrombotic cascade. Additionally, SARS-CoV-2 binding induces downregulation of ACE2, resulting in imbalances of ACE/ACE2 ratio, and
dysregulation of RAAS, favoring prothrombosis. Both of these stated mechanisms in consequence also induce activation and aggregation of the platelets, altogether
culminating in intravascular thrombosis. Furthermore, NETs that cause increased concentrations of intracellular ROS in neutrophils inducing vascular endothelial
dysfunction and activation of coagulation pathways. Furthermore, hypoxia-induced hyperviscosity and upregulation of the HIF-1a signaling pathway can be
contributing to the vascular thrombosis.) HIF-1a, hypoxia-inducible factor 1alpha; NETs, neutrophil extracellular traps; ROS, reactive oxygen species; ACE2,
angiotensin-converting enzyme-2; TMPRSS2, transmembrane serine protease 2; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; RAAS, renin–angiotensin–aldosterone system.
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contributors to COVID-19 have been respectively cardiovascular
diseases, diabetes, chronic respiratory disease, hypertension, and
obesity [Reviewed in (129)].

Hypertension and obesity may independently predict patient
outcomes in COVID-19 (130, 131), and preexisting diabetes may
increase the risks of having severe/critical COVID-19 illness and
in-hospital mortality by, approximately, 2-fold and 3-fold,
respectively (129, 132). The reasons for increased vulnerability
for COVID-19 in the presence of comorbidities are yet not much
understood. Plausibly, the residual damage and dysregulation of
the pulmonary physiology, and also of the other vital organs, in
the comorbid patients add to the COVID-19-induced pathology
(129). A SARS-CoV-2 host cell entry receptor ACE2-mediated
dysregulation of RAAS can also be implicated in this (45).

Obesity sets a state of chronic systemic inflammation and also
changes the phenotypes of immune cells from anti-inflammatory
to pro-inflammatory (Th2 to Th1 CD4 T cells and M2 to M1
macrophages) and induces increased secretion of pro-
inflammatory adipocytokines, such as leptin, and decreased
secretion of anti-inflammatory adipokines such as adiponectin,
favoring a severe inflammatory response against any new
infection (133). Thus, obesity may aggravate the COVID-19
pathology by inducing an early overwhelming inflammatory
response against the viral infection, such as cytokine
storms (134).

Prominent glycemic changes including the new onset of
diabetes and increased complications in some COVID-19
patients have been noted in recent studies (72, 135). Increased
mortality linked with diabetic complications has been frequent in
patients with COVID-19 (132). SARS-CoV-2 can invade insulin-
producing pancreatic islet cells (35). In addition, ACE2 mediated
downregulation of sodium-glucose co-transporter 1 (SGLT1) in
intestinal epithelium prevents hyperglycemia in rat models of
diabetes mellitus (13). SARS-CoV-2-mediated downregulation
of ACE2 expression can eventuality lead to upregulation of
SGLT1, thereby precipitating hyperglycemia (13). Apart from
the intestine, SGLT1 is also expressed in other human tissues like
the proximal tubule of the kidney, heart, and liver
(proteinatlas.org/ENSG00000100170-SLC5A1/tissue). Thus, an
ACE2-mediated invasion of pancreatic islet cells and/or
dysregulation of SGLT1 in intestinal epithelium may be
plausible mechanisms for the new onset of diabetes in
COVID-19 patients.

Genetic and Immunophenotypic Factors
Polymorphic variants are known for key SARS-CoV-2 host cell
entry receptor ACE2 and associated host proteases, such as
TMPRSS2 (136, 137) and furin (138). Possibly, some of these
polymorphic variants of SARS-CoV-2 receptors may be more
common in people showing low or high vulnerability for getting
infected, or severity of symptoms and mortality, with COVID-
19 (137).

Studies suggest that mutations in host viral sensors and
immune genes may be a reason for increased vulnerability for
developing severe COVID-19. A mutation of toll-like receptor-7
(TLR-7)—a viral sensor (including for the coronaviruses) on host
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cells—is found to be associated with severe COVID-19 (102).
Another study has reported that at least 3.5% of patients with
life-threatening COVID-19 pneumonia had known mutations
for immune response genes, viz., interferon regulatory factor 7
(IRF7) and interferon (IFN)-alpha receptor 1 and 2 (IFNAR1 and
2), TLR3, TIR domain-containing adapter molecule 1
(TICAM1), TANK-binding kinase 1(TBK1), and IFN regulatory
factor 3 (IRF3) (139).

Two genomic regions have been found particularly associated
with severe COVID-19: one region on chromosome 3 (locus
3p31.21) containing six genes and another region on
chromosome 9 (locus 9q34.2) representing ABO blood groups
(21, 140). Interestingly, the genetic variants on chromosome 3
[45,859,651–45,909,024 (hg19)] have entered the human
population by a gene flow from archaic non-Homo sapiens
hominids—Neanderthals (141). The genome-wide associations
at multiple chromosomal loci other than 3 and 9 also have been
reported, such as on chr12q24.13 (rs10735079) in a gene cluster
encoding antiviral restriction enzyme activators (OAS1, OAS2,
OAS3), on chr19p13.2 (rs2109069) near the gene encoding
tyrosine kinase 2 (TYK2), on chr19p13.3 (rs2109069) within
the gene encoding dipeptidyl peptidase 9 (DPP9), and on
chr21q22.1 (rs2236757) in the IFNAR2 gene (103, 140). In
contrast, a recent study found that a 75-kb haplotype on
chromosome 12 (113,350,796 to 113,425,679 base pairs,
rs1156361) associated with a ∼22% reduction in relative risk of
developing severe COVID-19 (142). Individuals with human
leukocyte antigen (HLA) variants, B*46:01 and B*15:03,
respectively, were suggested to bear more and less the
susceptibility to SARS-CoV-2 and severity of COVID-19 (143).

The role of epigenetic mechanisms in host immune response
in COVID-19 has also been demonstrated by a recent in vitro
study using genome-editing CRISPR (clustered regularly
interspaced short palindromic repeats) screens in Vero-E6 cells.
Authors identified epigenetic regulatory molecules High mobility
group box 1 (HMGB1) and SWItch/Sucrose Non-Fermentable
(SWI/SNF) chromatin remodeling complex—critical for CoV-
induced host cell death, including SARS-CoV-2 (144).

People with blood group O were found to have slightly lesser
chances of getting COVID-19 as well as relative protection from
developing severe symptoms and death in comparison to persons
with blood groups A, B, and AB (145–147). Of note, a very recent
case-control study involving a very large data of COVID-19
patients (more than 11,000 positive cases) neither found
increased risks in persons with A, B, and AB blood groups nor
any protection for O blood group for contracting infection,
hospitalization, disease severity, and outcomes (148).

Autoimmunity has also been an issue in the pathogenesis of
severe symptoms in COVID-19. A study observed that at least
10.2% of the patients who are aged 25–87 years had
autoantibodies against IFN type I, of which 95 (94%) were
men. A further instance of generation of autoantibodies in
COVID-19 patients has been noted against host cell
phospholipids (149). The presence of prothrombotic
antiphospholipid (aPL) antibodies in the serum of COVID-19
patients could also be a reason for enhanced thrombotic
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incidences in some patients (150, 151). In contrast, a study by
Borghi et al. (152) found a low prevalence of aPL in COVID-19
patients and no association between thrombosis and aPL.

Gut Microbiome
The gut microbiome is said to have a significant role in disease
severity and patient outcomes in COVID-19, as they build up the
local mucosal immunity against viral invasions (153). Recent
studies showed that patients with COVID-19 have a different
microbiome compared with controls, enriched with the
opportunistic pathogens, and depletion of the beneficial
commensals showed a correlation with severity of the
symptoms (65, 154). The studies have further indicated that
the composition of the gut microbiome may influence SARS-
CoV-2-induced production of inflammatory cytokines and
consequently in the onset of a cytokine storm (65, 153, 155).

Cross Immunity and Protection From
Severe Disease
SARS-CoV-2-reactive T cells and antibodies were found present
in many individuals without a previous exposure (156, 157),
indicating that previous infections with other CoVs might have
caused this. Respiratory infections in humans by CoVs, especially
those causing common cold are common. Accumulating
evidence suggests that existing exposures to common cold
strains can be protective from developing severe symptoms, if
infected with SARS-CoV-2 (158). Apart from CoVs, infections
with other respiratory viruses, recent flu shots (influenza
vaccines), and childhood vaccinations with live attenuated
bacteria/viruses, such as Bacille Calmette-Guerin (BCG) and
measles-mumps-rubella (MMR) may be partially protective
(159–162). The exact biological mechanisms for the protection
are not known; however, an epigenetic mechanism leading to the
“trained immunity” of the myeloid cells from the previous
exposures to the related pathogens may be a plausible reason
for this, with the information available from the existing
literature (163).
POSSIBLE PATHOPHYSIOLOGY OF
“LONG COVID”

Persistence or recurrence of the clinical symptoms as “long
COVID” has turned up as a significant health issue in the
discharged patients of COVID-19 (17–19). In addition to the
persistence or recurrence of certain clinical symptoms, a possible
risk of infertility in men, chronic fatigue, and the new onset of
diabetes in COVID-19 survivors have been reported (17, 19, 72,
164). Furthermore, the formation of autoantibodies in many
COVID-19 patients has been observed, which indicates that the
survivors may have an increased risk of autoimmune disorders
(149, 165). Newly developed disabilities (165, 166), and a likely
decrease in life expectancy as being indicated by recent studies
(167, 168), are other key concerns in the survivors. Long-term
health issues are also noted in infection with other BCoVs, such
as SARS-CoV-1 and MERS-CoV (169); however, the reasons
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have not been well understood yet. At present, its
pathophysiology is not clearly understood; however, various
speculations are being presented based on the known facts of
the virus–host interactions in COVID-19. In general, the chronic
illness and subsequent scarring and dysfunction of the affected
organs may be the reasons for the long-term health issues (167).
Apart from that, the chronic infection with SARS-CoV-2 may
induce epigenetic changes in vital organs, thus reprogramming
its functions, as have been recently demonstrated in a murine
model of COVID-19, which may set the platform for long-term
health issues (38). Profound inhibition of cell growth in the
virally infected cells across the organs may be another potent
molecular mechanism leading to long-term health issues (37).
The cell growth inhibition may particularly affect the tissues with
a high mitotic rate like reproductive and endocrine organs,
mucosal and vascular epithelium, and neurogenic brain
regions; hence, health issues, including those related to
learning and memory may particularly arise in the long-term
in COVID-19 survivors.
CHANGING FACE OF THE PANDEMIC: A
SHIFT IN HOST–VIRUS INTERACTIONS
WITH EMERGING SARS-COV-2 VARIANTS

The vast spread of the first COVID-19 wave beyond geographical
boundaries had supposedly created an immunological barrier in
the infected population against the wild-type (WT) SARS-CoV-2
strain (nCoV-2019), hopefully limiting recurrent waves. In a
paradox, the massive new COVID-19 waves driven by emerging
SARS-CoV-2 variants have appeared in the years 2020–2021
across the globe (170–173). The emerging SARS-CoV-2 variants,
which seem to have greater transmissibility and virulence and are
capable of escape against natural and acquired (from vaccines
and therapeutically used monoclonal antibodies) immunity
against the WT strains (172–175) (Table 2), have doomed the
hope of a sooner ending of the pandemic. Recent in situ and
animal models and clinical studies have confirmed that the
variants have a shorter incubation period, higher viral load,
and prolonged viral shedding (176–181). The variants may
cause greater damage in the infected host tissue; however, if
there has been a change in the tissue type/organ-specific
pathogenesis is currently least understood (172). WHO has
identified four variants of concerns (VOCs) and four variants
of interest (VOIs) globally (173). The SARS-CoV-2 variants are
characterized by lineage-specific key mutations in the spike
protein regions, which are said to contribute to increased
transmissibility and/or virulence and immune escape to natural
and vaccine-acquired antibodies (3, 172, 176, 177) (Figure 7).
Many of the spike protein mutations are shared across the
variants indicating their convergent evolution and selective
advantage for the epidemiological fitness (2) (Figure 7). The
lineage-specific mutations are also present in the non-spike
regions of the variants (182); however, currently, there is little
known about their epidemiological significance.
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TABLE 2 | Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants across the globe and their clinical–epidemiological characteristics.
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PLAUSIBLE MECHANISMS FOR
ENHANCED TRANSMISSIBILITY/
VIRULENCE AND IMMUNE ESCAPE
CAPABILITIES IN VARIANTS

Increased transmissibility and/or virulence has been reported for
nearly all of the VOCs and multiple VOIs (174) (Table 2). The
spike protein regions bear the binding site for the host cell entry
receptor and the natural and acquired host antibodies. Key
mutations in the spike protein (Table 2), chiefly in the
receptor-binding domain (RBD), are believed to induce
conformational changes resulting in stronger binding to the
key host cell entry receptor ACE2 (2, 3). Moreover, certain
mutations have created newer contact sites or stronger
electrostatic or newer hydrogen bonds between RBD and host
ACE2 (2) [Reviewed in (176, 177)].

Interestingly, the mutations in the spike protein sequence of
certain variants (B.1.1.7 and B.1.617 lineage) occurring at amino
acid position 681 (P—H/R), which falls in the FCS, improve
proteolytic cleavage of the spike protein strengthening fusion of
the viral membrane with the host cell membrane [Reviewed in
(1)]. An improved viral–host cell fusion may supposedly result in
larger syncytia formation (1). Syncytia formation, a fusion of the
infected host cell with other cells, is believed to facilitate viral
spread, thus imparting higher transmissibility to the variants
(183–185). Notably, syncytia formation has been a distinctive
characteristic of SARS-CoV-2 when compared to SARS-CoV-1
[Reviewed in (1)].

Other than increased transmissibility and virulence, recent
studies have shown that most of the variants, primarily VOCs,
have gained a certain level of resistance against the natural and
acquired (from vaccines and therapeutically used monoclonal
antibodies) immunity (174) (Table 2). Frequent repeated and
vaccine breakthrough infections have been reported with the
variants (172, 186, 187). The exact mechanisms for the gain of
immune escape capabilities in variants are currently not well
understood. Although, based on the emerging literature, the
most likely immune escape mechanisms are (i) inclusion or
deletion of amino acid residue at immunogenic epitopes (for the
natural and acquired antibodies) bringing conformational
changes at the binding inter face (2–4, 176, 177) ;
(ii) remodeling of the electrostatic surface potential at the
antigen–antibody binding interface (2–4, 176, 177); and (iii)
gain of additional glycosylation sites, which shield the binding
site for the neutralizing antibodies (188). Future studies are
warranted that can unravel the mechanisms that the variants
utilize for the immune escape.
CONCLUDING REMARKS

Extensive research has been performed globally, unraveling the
various mechanisms involved in the pathogenesis and host immune
responses for COVID-19. These studies have mainly targeted viral
proteomics and genomics and host-dependent factors. Extensive
experimental studies have been conducted involving both cell
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culture-based and animal models of COVID-19. Furthermore, a
human-specific adaptation of the viral–host interaction
mechanisms has been derived from the laboratory data from the
patients with COVID-19 and the experimental studies involving
human tissue organoids. In light of the extensive findings achieved
so far, we currently have a broad understanding of the virus–host
interactions, tissue tropism and organ-specific pathogenesis,
involvement of physiological systems, and the human immune
response against the SARS-CoV-2 infection. The widespread
expression of SARS-CoV-2 host cell entry factors across human
tissue types, RAAS dysregulation, and a hyperactive innate immune
response accompanied by delayed or suppressed adaptive immunity
seem to be key factors behind systemic manifestations and poor
clinical outcomes in the patients. The inclusion of FCS in the spike
protein sequence may be a reason for the increased virulence of
SARS-CoV-2. Additionally, dampening of the early IFN response
and subsequent cytokine storm and suppressed/delayed adaptive
immune response marked by intense lymphocytopenia and
suboptimum synthesis of immunoglobulins are the prominent
immunological features, which seem to drive the severity of the
disease. The preexisting genetic factors may be the prime reason
behind the increased vulnerability of certain individuals for
contracting the infection and the severity of the disease; however,
little is known on this issue yet. Gut microbiome may also have a
significant role in disease outcomes as has been indicated from the
emerging literature. Multiple knowledge gaps in aspects of the
Frontiers in Immunology | www.frontiersin.org 17
disease are remaining, which need to be addressed in future
studies. Furthermore, the persistence or recurrence of the
symptoms as “long COVID” is a very important health concern
that needs to be intensively researched. Most importantly, the
emerging SARS-CoV-2 variants driving recurrent COVID-19
waves, imparted by increased transmissibility/virulence and
immune escape capabilities, requires further in-depth research to
address its mechanism(s) precisely.
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