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A B S T R A C T   

Acute cellular rejection (ACR) is a prevalent postoperative complication following liver trans
plantation (LT), exhibiting an increasing incidence of morbidity and mortality. However, the 
molecular mechanisms of ACR following LT remain unclear. To explore the genetic pathogenesis 
and identify biomarkers of ACR following LT, three relevant Gene Expression Omnibus (GEO) 
datasets consisting of data on ACR or non-ACR patients after LT were comprehensively investi
gated by computational analysis. A total of 349 upregulated and 260 downregulated differentially 
expressed genes (DEGs) and eight hub genes (ISG15, HELZ2, HNRNPK, TIAL1, SKIV2L2, PABPC1, 
SIRT1, and PPARA) were identified. Notably, HNRNPK, TIAL1, and PABPC1 exhibited the highest 
predictive potential for ACR with AUCs of 0.706, 0.798, and 0.801, respectively. KEGG analysis of 
hub genes revealed that ACR following LT was predominately associated with ferroptosis, protein 
processing in the endoplasmic reticulum, complement and coagulation pathways, and RIG-I/ 
NOD/Toll-like receptor signaling pathway. According to the immune cell infiltration analysis, 
γδT cells, NK cells, Tregs, and M1/M2-like macrophages had the highest levels of infiltration. 
Compared to SIRT1, ISG15 was positively correlated with γδT cells and M1-like macrophages but 
negatively correlated with NK cells, CD4+ memory T cells, and Tregs. In conclusion, this study 
identified eight hub genes and their potential pathways, as well as the immune cells involved in 
ACR following LT with the greatest levels of infiltration. These findings provide a new direction 
for future research on the underlying mechanism of ACR following LT.   
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1. Introduction 

Acute liver allograft rejection can be categorized into acute cellular rejection (ACR) and antibody-mediated rejection (AMR). It 
remains an important cause of allograft dysfunction, with an estimated ACR incidence of 10–30 % in LT recipients [1,2], while AMR 
has a lower incidence (approximately 1 %) in LT recipients [3]. ACR is associated with an increased risk of graft loss, graft 
failure-related death, and all-cause mortality [1,4]. Predicting acute rejection is challenging, and diagnosis requires an invasive liver 
biopsy, remaining the gold standard [4]. However, this procedure is commonly associated with complications (e.g., pain, hemorrhage, 
and biliary leakage) and is prone to sampling issues [5,6]. Unfortunately, due to the unclear mechanism of ACR following LT, it is 
difficult to develop a precise anti-rejection therapeutic regimen [7,8]. Recently, the discovery of omics-based biomarkers has provided 
new insights into identifying novel mechanisms and therapeutic targets of organ transplant rejection [9]. Any difference in the his
tocompatibility antigens between the donor and the recipients can potentially trigger an immune response, which may subsequently 
lead to ACR [10–12]. Therefore, it is crucial to profile and analyze changes in the immune microenvironment of the transplanted livers 
and alterations in gene expression modulating immune cell infiltration for their relevance to the ACR following LT. 

In this study, we performed a preliminary computational analysis and applied various bioinformatics tools to integrate omics data 
to elucidate the genetic pathogenesis and novel biomarkers associated with ACR following LT. Our findings can provide compre
hensive insights into the pathogenesis and therapeutic targets of ACR following LT, as well as preliminary data for future research on 
genetic and molecular mechanisms. 

2. Materials and methods 

In silico analysis. 

2.1. Dataset collection 

We searched the Gene Expression Omnibus (GEO) database from NCBI (https://www.ncbi.nlm.nih.gov/geo/) using the following 
keywords: (“liver transplantation” OR “liver transplant*” OR “liver graft*”) AND (acute rejection OR “graft failure” OR “liver failure” 
OR “acute graft rejection” OR “acute allograft rejection” OR “acute liver allograft rejection”). Afterward, the title and abstract of the 
publications were screened. 

Inclusion criteria for datasets are as follows: 1. GEO datasets from patients who only underwent LT and either experienced or did 
not experience acute rejection; 2. The sequencing data originated from a needle biopsy of transplanted liver tissue; 3. Rejection 
occurred before immunosuppression was completely discontinued. Exclusion criteria: 1. Combined organ or multi-organ transplant 
patients; 2. GEO datasets from animal experiments; 3. Chronic rejection or AMR of LT. 

2.2. Data normalization and differential expression analysis 

Before differential expression analysis, the raw gene expression data of the eligible GEO datasets were normalized using the R 
package “preprocessCore.” After pre-processing, the differentially expressed genes (DEGs) were screened with a threshold of P-value 
<0.05 and |log2 fold-change (FC)| > 0 using the “limma” package. By Venn diagram analysis, genes up- or down-regulated simul
taneously in at least two datasets were selected as DEGs for subsequent analysis. 

2.3. Enrichment analysis 

To identify possible functions and pathways, we conducted functional enrichment analysis of DEGs using the R package “clus
terProfiler,” including Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Subsequently, 
the results were visualized using the clusterProfiler. 

2.4. Weighted gene co-expression network analysis (WGCNA) 

The gene co-expression networks and gene modules of DEGs were constructed using the R package “WGCNA” and a hierarchical 
clustering dendrogram. Subsequently, genes exhibiting similar expression patterns were divided into different modules, and the 
expression profiles of each module were summarized using the module eigengene (ME). Finally, the correlation between the ME 
modules and ACR following LT was explored. Genes in modules showing a high correlation coefficient with ACR following LT were 
selected to construct a protein-protein interaction (PPI) network. 

2.5. PPI network analysis and hub gene recognition 

Key genes from WGCNA were input to the STRING (https://string-db.org/) database to build a PPI network, which was then 
visualized using Cytoscape software. The CytoHubba plugin within Cytoscape was employed to identify hub genes. Three algorithms 
(Betweenness, Closeness, and Stress) were used to identify the 10 hub genes, each defined as a core gene of the PPI network. To identify 
the most relevant hub genes, a Venn diagram analysis was performed to determine the intersection of the top 10 hub genes ranked by 
all three algorithms. 
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2.6. Immune infiltration analysis 

The infiltration levels of immune cells were evaluated using the R package “CIBERSORT” (https://cibersort.stanford.edu/). 
Additionally, the correlation between hub genes and immune cell infiltration levels was explored. 

2.7. Statistical analysis 

All statistical and bioinformatics analyses were conducted using R software (version 4.1.1) and its program packages. P-value 
<0.05 was considered statistically significant. 

3. Results 

3.1. Baseline information of the eligible GEO datasets 

According to the inclusion criteria, the GSE26622, GSE26625, and GSE52420 datasets were included [13,14], including 97 liver 
biopsy samples consisting of 45 non-ACR and 52 ACR LT recipients’ samples. The mRNA expression profiles and clinical information of 
these datasets were extracted for further analysis. All details are shown in Table 1. 

3.2. Identification of DEGs 

After normalizing the mRNA expression data (Figs. S1(a–f)), a total of 723 up- and 225 down-regulated DEGs were identified in 
GSE26622, 2787 up- and 2962 down-regulated DEGs in GSE26625, and 1671 up- and 1884 down-regulated DEGs in GSE52420 
through differential expression analysis. The volcano plots and heat maps of the top 10 up- and down-regulated genes across three 
datasets are shown in Fig. S2. As expected, Venn diagram analysis revealed 349 up- and 260 down-regulated DEGs in the ACR groups of 
three datasets (Fig. 1(a–b)). The complete list of the identified DEGs is shown in Tables S1–S4. 

3.3. Functional enrichment analysis 

The identified DEGs were functionally enriched for possible biological functions. GO analysis showed that DEGs were mainly 
related to cell growth, positive regulation of the catabolic process, macroautophagy, the vacuolar membrane, the mitochondrial 
matrix, and ribonucleoside binding (Fig. 2(a–c)). The KEGG analysis showed significant enrichment of genes involved in the phag
osome, oxidative phosphorylation, autophagy, ferroptosis, drug metabolism, steroid hormone biosynthesis, and amino acid meta
bolism in ACR following LT (Fig. 2(d)). The complete list of GO terms and KEGG pathways for the identified DEGs is shown in Table S5. 

3.4. Weighted gene co-expression network analysis and identification of key modules 

To identify key gene functional modules associated with ACR following LT, WGCNA was further conducted in GSE26625, which 
had the largest sample size among the three datasets. The distribution of the clinical characteristics in the samples from GSE26625 is 
illustrated in Fig. S3(a). Seven was determined to be the best soft threshold (Fig. S3(b)). After merging similar modules (Fig. S3(c)), 
three modules were obtained, namely, ME-blue, ME-turquoise, and ME-grey modules (Fig. 3). The ME-blue module exhibited a positive 
correlation with ACR features of LT patients (Fig. 3(a–d)). Subsequently, GO and KEGG pathway analyses were conducted based on the 
DEGs in the three modules (Table S6). KEGG pathway analysis in the three modules revealed that the ME-blue module was associated 
with pathways of Ribosome, Phagosome, Drug metabolism, and Steroid hormone biosynthesis (Fig. 4(a)). Neurodegeneration, Syn
aptic vesicle cycle, and Autophagy passways were associated with the ME-turquoise module (Fig. 4(b)). Moreover, the p53 signaling 
pathway, Endocytosis, and Axon guidance exhibited associations with the ME-grey module (Fig. 4(c)). Fig. 4(d–f) also shows the 
association of DEGs with the top 5 KEGG terms in each module. In this study, genes in the ME-blue module having a significant positive 
correlation with clinical features of ACR following LT were selected for subsequent analysis. 

Table 1 
Characteristics of the three GEO datasets.  

GEO 
accession 

Author Platform Samples (Non-ACR: 
ACR) 

Year Country 

GSE26622 Bohne 
F 

GPL570[HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array 

9:10 2012 Italy, Germany, Spain, Belgium, the 
Netherlands 

GSE26625 Bohne 
F 

GPL6947 Illumina Human HT-12 V3.0 Expression 
BeadChip 

24:29 2012 Italy, Germany, Spain, Belgium, the 
Netherlands 

GSE52420 Bohne 
F 

GPL10558 Illumina Human HT-12 V4.0 Expression 
BeadChip 

12:13 2014 Germany, Spain  
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3.5. Protein-protein interaction network construction and identification of hub genes 

The PPI network of DEGs in the ME-blue module was constructed using the STRING database (Fig. S4). Then, the top 10 hub genes 
were identified using three algorithms (Betweenness, Closeness, and Stress) available in the cytoHubba (Fig. 5(a–c)). To identify the 

Fig. 1. Venn diagrams analysis of DEGs in three datasets. (a) A total of 349 upregulated DEGs in the ACR groups of three datasets were identified by 
intersecting with Venn diagrams analysis. (b) A total of 260 down-regulated DEGs in the ACR groups of three datasets were identified by intersecting 
with Venn diagrams analysis. |log2FC| > 0 and P-value <0.05 were set as the threshold values. 

Fig. 2. Functional enrichment on the identified DEGs. (a–c) The top 20 terms of biological process (BP) terms, molecular function (MF) terms, and 
cellular component (CC) terms of DEGs identified by GO analysis. (d) The top 20 terms of KEGG pathways of DEGs identified by KEGG 
pathway analysis. 
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most relevant hub genes, the top 10 hub genes ranked by all three algorithms were intersected through Venn diagrams analysis. 
Finally, only eight overlapped hub genes were identified, namely, ISG15, HELZ2 (also known as RPIC285), HNRNPK (also known as 
HNRPK), TIAL1, SKIV2L2, PABPC1, SIRT1, and PPARA (Fig. 5(d)). Fig. 6(a) shows the log2FC of each gene in GSE26622, GSE26625, 
and GSE52420, and the correlation of the eight hub genes was further examined using these three datasets (Fig. 6(b–d)). The results 
indicated a downregulation of ISG15 and HELZ2 in the rejection group, while SKIV2L2, SIRT1, and PPARA exhibited an upregulation in 
all three GEO datasets. Moreover, HNRNPK, TIAL1, and PABPC1 were upregulated in the ACR group in GSE26625 and GSE52420 but 
were downregulated in GSE26622. ISG15 was positively correlated with HELZ2 but negatively correlated with the other six genes in all 
three datasets (Fig. 6(b–d)). Finally, receiver operating characteristic (ROC) analysis was performed to evaluate the efficiency of the 
eight hub genes for predicting the ACR event. HNRNPK, TIAL1, and PABPC1 exhibited the highest predictive potential, with AUCs of 
0.706, 0.798, and 0.801 in GSE26622, GSE26625, and GSE52420 (Fig. 6(e–g)), respectively. 

3.6. Immune cell infiltration analysis 

We subsequently analyzed the immune cell infiltration in tissues obtained from GSE26625, which had the largest sample size 
(Fig. 7). Moreover, the correlation between hub genes and various immune cells was analyzed, including NK cells, memory B cells, 
CD4+ memory T cells, T regulatory cells (Tregs), naïve B cells, neutrophils, mast cells, dendritic cells, and M1/M2-like macrophages 
(Fig. 7(a)). Interestingly, the levels of SKIV2L2 encoding mRNA were positively associated with amount of resting NK cells but 
negatively associated with amount of activated NK cells and resting mast cells (Fig. 7(b)). The levels of ISG15 encoding mRNA 
exhibited a positive correlation with amount of γδT cells, M1-like macrophages, and activated dendritic cells but a negative correlation 
with amount of resting NK cells, resting CD4+ memory T cells, and Tregs (Fig. 7(c)). The levels of HELZ2 encoding mRNA were 
positively correlated with amount of γδT cells, activated dendritic cells, and M1-like macrophages but negatively correlated with 
amount of M2-like macrophages, resting NK cells, and neutrophils (Fig. 7(d)). The levels of HNRNPK encoding mRNA were positively 
correlated with amount of resting CD4+memory T cells (Fig. 7(e)). The levels of both TIAL1 and PPARA encoding mRNA were 

Fig. 3. Identification of key modules via WGCNA in GSE26625. (a) Three modules (ME-blue, ME-turquoise, and ME-grey modules) and the module- 
trait relationships of the three modules were identified via WGCNA. (b–d) The correlation of gene significance with ACR features and indicated 
module membership. 
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Fig. 4. KEGG pathway analysis of DEGs from three key modules. (a–c) The top 20 terms of KEGG pathways of DEGs from ME-blue, ME-turquoise, 
and ME-grey, respectively. (d–f) The association of DEGs with top 5 KEGG terms from ME-blue, ME-turquoise, and ME-grey, respectively. 
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negatively associated with amount of γδT cells. The levels of TIAL1 encoding mRNA were negatively associated with amount of 
activated NK cells but positively correlated with amount of Tregs. In contrast, the levels of PPARA encoding mRNA were positively 
correlated with amount of naïve B cells and resting NK cells (Fig. 7(f and g)). The levels of PABPC1 encoding mRNA were positively 
correlated with amount of resting NK cells, resting CD4+ memory T cells, and naïve B cells but negatively correlated with amount of 
γδT cells, M1-like macrophages, and activated NK cells (Fig. 7(h)). The levels of SIRT1 encoding mRNA were positively correlated with 
amount of resting NK cells, resting CD4+ memory T cells, Tregs, naïve B cells, neutrophils, and M2-like macrophages but negatively 
correlated with amount of γδT cells and memory B cells (Fig. 7(i)). The populations of immune cells that exhibited the highest 
infiltration included CD4+ memory T cells, γδT cells, NK cells, Tregs, and M1/M2-like macrophages. These preliminary data suggest 
that eight hub genes may drive ACR following LT by regulating immune cell infiltration. However, the underlying regulatory 
mechanism needs to be further investigated. 

3.7. Exploration of hub genes 

The correlation between hub genes and all genes in GSE26625 was examined. The heat maps of the top 50 genes with positive 
correlation are shown in Fig. S5(A–H). Based on the correlation analysis, KEGG pathway analysis was performed, and the top 20 
associated pathways correlated with each of the eight hub genes were obtained (Fig. 8). For the top three predictors, HNRNPK was 
closely associated with protein processing in the endoplasmic reticulum, salmonella infection, and ferroptosis (Fig. 8(a)); TIAL1 
demonstrated a significant association with the endoplasmic reticulum, complement and coagulation, and regulation of the actin 
cytoskeleton (Fig. 8(h)); PABPC1 displayed a strong correlation with protein processing in the endoplasmic reticulum, complement 
and coagulation, and ferroptosis (Fig. 8(c)). The KEGG analysis of the eight hub genes revealed that the pathways most associated with 
ACR following LT were ferroptosis, protein processing in the endoplasmic reticulum, complement and coagulation, and the RIG-I/ 
NOD/Toll-like receptor signaling pathway (Fig. 8(a–h). Ferroptosis was associated with HNRNPK, ISG15, PABPC1, PPARA, SIRT1, 
and SKIV2L2 (Fig. 8(a–d), (f-g)). Protein processing in the endoplasmic reticulum pathway was associated with HNRNPK, ISG15, 
PABPC1, PPARA, SIRT1, SKIV2L2, and TIAL1 (Fig. 8(a–d), (f–h)). The complement and coagulation pathways were associated with 
HNRNPK, PABPC1, SIRT1, and TIAL1 (Fig. 8(a), (c), (f), and (h)). RIG-I/NOD/Toll-like receptor signaling pathway and antigen pro
cessing and presentation pathway were associated with ISG15 and HELZ2 (Fig. 8(b), (e)), and a significant correlation was observed 
between Th17 cell differentiation and ISG15 (Fig. 8(b)). Autophagy, ribosome, and proteasome were also identified as closely 

Fig. 5. Identification of hub genes. (a–c) The top 10 hub genes identified using different algorithms in cytoHubba, including Betweenness (a), 
Closeness (b), and Stress (c). (d) Eight overlapped genes from three algorithms identified by Venn diagram analysis. 
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associated pathways. 

4. Discussion 

In this study, we analyzed three datasets related to ACR following LT from the GEO database and obtained 349 up- and 260 down- 
regulated DEGs in the rejection group. The significant differences in the number of up- and down-regulated genes among the three 
datasets were identified, which can be attributed to the different sample sizes of each data set, consistent with the findings of Alfaro R 
[15]. By integrating different sequencing datasets and bioinformatics analysis methods, eight hub genes and their potential pathways, 
as well as the greatest infiltration immune cells associated with ACR following LT, were mined and identified. No similar reports have 
been retrieved according to a PubMed literature search. Therefore, applying bioinformatic tools for integrating omics data to uncover 
the genetic pathogenesis associated with organ transplantation rejection is a valuable research method [15]. Through functional 
enrichment analysis, potential biological functions related to these DEGs have been identified. Consistent with the results of KEGG 
analysis, these DEGs were enriched in oxidative phosphorylation, autophagy, and ferroptosis, and the function of autophagy in LT 
rejection has been extensively investigated [16]. Moreover, ischemic preconditioning has been reported to induce autophagy and limit 
necrosis in human recipients of fatty liver grafts, decreasing the incidence of rejection episodes [17]. However, the most remarkable 
finding among these pathways was the ferroptosis pathway, which was first identified in 2012 as an iron-dependent form of oxidative 
cell death characterized by iron-dependent accumulation of intracellular reactive oxygen species [18]. As an emerging form of 

Fig. 6. Validation and ROC curves of the eight hub genes in the indicated GEO datasets. (a) Heat map showing the log2(FC) values of the eight hub 
genes. Correlation of the eight hub genes in GSE26625 (b), GSE26622 (c), and GSE52420 (d). The red line represents a positive correlation, and the 
green line represents a negative correlation, with a deeper color indicating a stronger correlation. (e–g) ROC curves reflecting the efficiency of the 
eight hub genes for predicting the ACR event in the indicated GEO datasets. 

C. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33359

9

programmed cell death, limited studies have confirmed the contribution of ferroptosis to the pathogenesis of hepatic I/R injury during 
LT [19,20]. Recently, an integrated analysis of omics-based data was conducted to establish a ferroptosis-related gene signature to 
predict graft loss following allogeneic kidney transplantation based on graft rejection-related genes. The results suggested a close 

Fig. 7. Results of immune infiltration analysis in tissues from GSE26625. (a) The proportion of indicated immune cells in GSE26625. (b–i) The 
correlation of the infiltrated immune cells with the indicated hub genes. 
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association between ferroptosis and graft rejection as well as the loss of kidney transplantation, although further investigation is 
required to elucidate the underlying mechanisms [21]. 

Through WGCNA and PPI network analysis, we identified eight hub genes controlling the main biological pathways related to ACR 
following LT. In addition, ISG15 and HELZ2 were downregulated in the rejected group, while the other six genes were upregulated in 
the rejected group. ISG15 was positively correlated with HELZ2 but negatively correlated with the other six genes in all three GEO 
datasets, suggesting that ISG15 played a key role during ACR following LT. According to the previous dataset-derived research, ISG15 
was associated with rejection [14]. With ROC analysis, three genes with the highest predicting potential were identified, including 
HNRNPK, TIAL1, and PABPC1. Notably, these three and the other five hub genes have not been reported in previous research on ACR 
following LT, while PPARA has been reported to be involved in tacrolimus metabolism among kidney transplantation patients [22]. 
Therefore, we hypothesize that these genes may serve as novel biomarkers for patients with ACR following LT, although further 
research is required to elucidate the underlying mechanisms. 

Immune cells serve as the primary initiators of transplant rejection, and their role in regulating immune cell infiltration during ACR 
following LT remains unclear. Therefore, we first evaluated the immune cell infiltration in tissues obtained from GSE26625. The 
findings revealed that the main infiltrating cells consisted of NK cells, memory B cells, CD4+memory T cells, Tregs, naïve B cells, 
neutrophils, mast cells, dendritic cells, and M1/M2-like macrophages. All these cell subsets are classical immune cell subsets involved 
in LT rejection [8]. We further investigated the correlation between the eight hub genes and infiltrating immune cells. The results 

Fig. 8. Top 20 terms of the KEGG pathways of the indicated hub genes from GSE26625. (a–h) The top 20 terms of KEGG pathways associated with 
the eight hub genes (HNRNPK, ISG15, PABPC1, PPARA, HELZ2, SIRT1, SKIV2L2, and TIAL1). 
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showed that all eight genes were closely related to infiltrating immune cells. In particular, ISG15 was positively correlated with γδT 
cells, M1-like macrophages, and dendritic cells activated but negatively correlated with resting NK cells, resting CD4+ memory T cells, 
and Tregs. Furthermore, SIRT1 was positively correlated with resting NK cells, resting CD4+ memory T cells, Tregs, naïve B cells, 
neutrophils, and M2-like macrophages but negatively correlated with γδT cells and memory B cells. Interestingly, the rejected group 
exhibited downregulation of ISG15 and upregulation of SIRT1, and ISG15 was negatively correlated with SIRT1 in all three GEO 
datasets. Interferon-stimulated genes (ISGs) are induced by type I interferons during pathogen invasion [23]. Among these ISGs, the 
ubiquitin-like protein ISG15 is one of the most powerful and fastest inducible proteins [24]. Previous studies have demonstrated that 
ISG15 can be secreted by various cellular components, including particles, exosomes, neutrophil granules, secretory lysosomes, and 
apoptotic cells. Its immunomodulatory effects can stimulate NK cell proliferation, promote dendritic cell maturation, and activate 
macrophages to release IL-12. These actions contribute to the exacerbation of the inflammatory response [25]. Moreover, in the tumor 
microenvironment, ISG15 induces M2-like tumor-associated macrophages to inhibit the cytotoxic T-lymphocyte response and facili
tate tumor progression [26]. Recent studies have shown that SIRT1 can inhibit M1-like macrophage polarization by deacetylating the 
transcription factor IRF8 [27,28]. These findings suggest a regulatory role of both ISG15 and SIRT1 in macrophage polarization. 
Previous studies have shown that increasing the number of CD4+ Tregs improves tolerance in liver transplantation [12,29,30], and 
studies have proven that both ISG15 and SIRT1 can regulate Tregs in a positive or negative manner [31,32]. These results are consistent 
with our findings. However, the potential modulation of macrophage polarization, Tregs, and NK cells by ISG15 and SIRT1 in the 
context of ACR following LT and their associations remain unexplored. 

The results of KEGG analysis of the eight hub genes showed that the pathways associated with ferroptosis, protein processing in the 
endoplasmic reticulum, complement and coagulation, and the RIG-I/NOD/Toll-like receptor signaling pathway showed the most 
significant correlation with ACR. Ferroptosis was expected to be involved in ACR following LT, and it was also found to be associated 
with the hub genes ISG15, HNRNPK, PABPC1, SKIV2L2, SIRT1, and PPARA. These results suggest a significant correlation between the 
ferroptosis pathway and ACR following LT. In solid organ transplantation, increasing evidence from both experimental and human 
studies suggests that Toll-like receptor (TLR) activation is involved in the innate immune recognition of allografts and is closely 
associated with acute allograft rejection after LT [33,34]. Therefore, close attention should be devoted to these signaling pathways for 
the development of new drugs and therapeutic strategies for ACR following LT. 

In summary, we identified eight hub genes and their potential pathways and infiltrating immune cells involved in ACR following LT 
with omics-based data in the dry lab. Our study has certain limitations, as the results were validated by bioinformatics tools in the dry 
lab without wet lab validation from our cohort study. In addition, the molecular mechanisms underlying these hub genes, potential 
pathways, and the involvement of infiltrating immune cells in ACR of LT remain to be explored. In future studies, the results obtained 
will be further validated, and the potential use of these hub genes as rejection biomarkers will be evaluated. However, these pre
liminary findings have important implications for guiding future mechanism research and improving the treatment of ACR following 
LT. 
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