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This perspective outlines an approach to improve mechanistic understanding of

macrophages in inflammation and tissue homeostasis, with a focus on human

inflammatory bowel disease (IBD). The approach integrates wet-lab and in-silico

experimentation, driven by mechanistic mathematical models of relevant biological

processes. Although wet-lab experimentation with genetically modified mouse models

and primary human cells and tissues have provided important insights, the role of

macrophages in human IBD remains poorly understood. Key open questions include:

(1) To what degree hyperinflammatory processes (e.g., gain of cytokine production) and

immunodeficiency (e.g., loss of bacterial killing) intersect to drive IBD pathophysiology?

and (2) What are the roles of macrophage heterogeneity in IBD onset and progression?

Mathematical modeling offers a synergistic approach that can be used to address

such questions. Mechanistic models are useful for informing wet-lab experimental

designs and provide a knowledge constrained framework for quantitative analysis and

interpretation of resulting experimental data. The majority of published mathematical

models of macrophage function are based either on animal models, or immortalized

human cell lines. These experimental models do not recapitulate important features of

human gastrointestinal pathophysiology, and, therefore are limited in the extent to which

they can fully inform understanding of human IBD. Thus, we envision a future where

mechanistic mathematical models are based on features relevant to human disease and

parametrized by richer human datasets, including biopsy tissues taken from IBD patients,

human organ-on-a-chip systems and other high-throughput clinical data derived from

experimental medicine studies and/or clinical trials on IBD patients.

Keywords: macrophages, monocytes, IBD, mechanistic mathematical models, in silico experimentation

INTRODUCTION

Macrophages are heterogeneous cells with key functions in inflammatory immune responses, tissue
homeostasis, and immune regulation. They are a first line of defense against pathogens, and, play
a major role in maintaining tissue integrity by accelerating repair processes (1). Macrophages
are also involved in the pathogenesis and progression of human inflammatory diseases including
rheumatoid arthritis (RA), atherosclerosis, and inflammatory bowel disease (IBD). Common
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polymorphisms that confer disease susceptibility and Mendelian
genetic disorders that can present with IBD and RA clearly
suggest an important role for macrophage signaling pathways.
Loss of function defects in IL-10 signaling induce early
onset IBD with complete penetrance and in mouse models
macrophage specific loss of IL10R expression causes the
spontaneous development of severe colitis (2, 3). Monocyte-
derived macrophages are also major sources of inflammatory
cytokines such as TNF-α, IL-12/23, and IL-6, all therapeutic
targets in IBD and/or RA (4).

Despite genetic and pharmacological evidence that
macrophages are important in IBD pathophysiology, the
mechanistic details of this role remain to be fully elucidated.
For example, the complex intracellular signaling pathways
and extrinsic macrophage interactions with other cells
within diseased gastrointestinal tissues are still incompletely
understood. Key questions include to what degree do
hyperinflammatory processes and immunodeficiency intersect
to drive human IBD and other inflammatory diseases, and,
what is the role of macrophage heterogeneity in IBD onset and
progression? Addressing such questions may inform the rational
development of next generation treatments for IBD that target
macrophage function.

Lack of efficacy is a source of clinical trial failure. Furthermore,
mechanistic understanding of the role of drug targets in human
disease is a key indicator of therapeutic success (5). Multiple drug
targets, successful in mouse IBDmodels, have subsequently failed
in clinical IBD trials (6).We therefore see future opportunities for
the use of data derived from human cells and tissue, including
biopsy data from normal and diseased intestinal tissues, to
potentially increase the reliability and relevance of mathematical
models for human IBD pathophysiology (7, 8).

The development of high-throughput experimental methods
has made it possible to obtain increasingly rich data from
relevant human cells and tissues. Integration of genomics,

transcriptomics, proteomics, and immunohistochemistry
datasets derived from macrophages and other cells requires

the use of bioinformatics tools and machine learning, to
organize and analyse these integrated datasets. The ever-growing
availability of large-scale quantitative and structured human

datasets provides a unique opportunity to rationally and
systematically test hypotheses via calibrated models that may

provide deeper mechanistic insights into IBD pathophysiology.
In this perspective, the term “modeling” is used to describe
the use of mechanistic mathematical models to conduct
in-silico experiments, focusing on exploring macrophage
roles in inflammation and tissue homeostasis. Observed
discrepancies between a mathematical model and experimental
data can generate biological insight by challenging assumptions
on which the model is based, such as the assumption of
a perfectly mixed population by Zhou et al. (discussed in

Section Modeling macrophage behavior in the context of tissue
microenvironments). However, the fact that a model matches a
certain dataset need not generate biological insight on its own
(9). We therefore propose an iterative approach of wet-lab and

in-silico experimentation.

APPLICATION OF MATHEMATICAL
MODELS TO INFLAMMATORY
MACROPHAGE BIOLOGY

Mathematical models have been utilized to analyse the
role of macrophages in inflammatory processes and better
understand macrophage intracellular signaling pathways.
Relevant models were identified via PubMed and Web-of-
Science searches (executed 1st January 2018) containing the
words “computational” or “mathematical,” and “macrophage”
or “monocyte” in their abstract and published within
the last 10 years. These searches identified 605 and 736
references via PubMed and Web-of-Science. As summarized in
Supplementary Table 1, sixty-one models were identified from
these references by selecting mechanistic models of macrophage
function in inflammation while excluding those focused on:
(i) interactions between tumors and the immune system (10),
(ii) macrophages in tissue repair and replacement; and (iii) the
role of macrophages in debris engulfment. Although not the
focus of this perspective, tissue repair, and macrophage debris
engulfment are important functions in the context of the gut
tissue microenvironment, with modeling conducted by Weavers
et al. (11), Martin et al. (12), and Ford et al. (13) and reviewed
by Dunster (14). For just over half the selected models (n =

31), mathematical modeling was complemented by wet-lab
experimentation. The vast majority (n = 28/31) of associated
experimental systems consisted of mouse models, murine or
other animal/human immortalized cell lines. However, animal
models and cell lines do not recapitulate all features of human
disease pathophysiology and response to drug exposure (47).
As cellular pathways are both type and species specific, we see
future opportunities to develop models parametrized solely by
data derived from human cells and tissue.

Note that the models listed in the table are all dynamic,
describing time-dependent changes in macrophage cell numbers
and/or cytokine concentrations and knowledge-driven, i.e.,
model development was guided and informed by relevant
biology. Data-driven modeling is a more recent approach,
driven by advances in computational power and the availability
of large and complex data sets, including, whole genome
sequencing (WGS), single cell imaging and transcriptomics
derived data. As this perspective focuses on mechanistic models,
no data-driven models were included in Supplementary Table 1.
Machine learning techniques have been utilized to infer possible
gene interaction networks from gene expression data alone,
without leveraging relevant prior biological knowledge. However,
gene network inference is challenging and its accuracy is low
(15). Nonetheless, in the longer-term, as more complete datasets
become available, these approaches may inform automated
mathematical model development workflows. Examples of the
many algorithms used to infer gene interaction networks
from expression data [see for a comparison of methods
(16)], include CLR (Context Likelihood of Relatedness) (17),
ARACNe (Algorithm for the Reconstruction of Accurate Cellular
Networks) (18) and GENIE3 (GEne Network Inference with
Ensemble of trees) (19). ARACNe has been used to identify
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key genes involved in macrophage activation from a human
macrophage gene expression data set generated under varying
stimulatory conditions (20).

These methods are purely data-driven and produce static
gene networks. However, cellular interactions are dynamic and,
in part, driven by, dynamic protein interactions (e.g., signaling
pathways). Furthermore, intracellular protein concentrations
and related functional activity levels do not necessarily correlate
with corresponding gene transcription levels (21). Accordingly,
we anticipate that as gene interaction knowledge becomes richer
and integrated with other data types such as proteomic data,
future data-driven models will be increasingly dynamic in
nature and more deeply integrated with mechanistic modeling
approaches. Examples of data driven modeling techniques used
in a variety of other cell types to construct dynamic gene
networks from gene expression data include not only differential
equation models, but also Boolean and dynamic Bayesian models
[reviewed by Hecker et al. (22)]. A key challenge for data-driven
modeling is integration with existing knowledge of pathway
interactions, and more generally, known biological mechanisms.
Of note, emerging algorithms that integrate prior knowledge of
gene interactions typically outperform algorithms solely using
gene expression data (15). Advances in machine learning and
data driven tools, together with richer datasets, will improve
our ability to identify the critical biological determinants (e.g.,
key cell types, interactions, proteins, and associated pathways
and networks) mediating the observable behavior of human
tissues and organs (e.g., human intestine) and thereby inform the
development of dynamic mechanistic in silicomodels.

MODELING MACROPHAGE BEHAVIOUR IN
THE CONTEXT OF TISSUE
MICROENVIRONMENTS

The dynamic crosstalk between macrophages and their
microenvironment is key to understanding the role of
macrophages in normal, healthy, and diseased, IBD
gastrointestinal tissues. Their behavior depends on both
their origin (tissue resident vs. monocyte derived inflammatory
macrophages) and the stimuli they have previously encountered.
Activated monocyte-derived macrophages have historically been
identified as two mutually exclusive groups: pro-inflammatory,
classically activated, M1 and anti-inflammatory, alternatively
activated, M2 macrophages. Differentiation into one of these two
subtypes was assumed to be driven by the different stimuli the
macrophage receives within their resident tissue. Furthermore,
macrophage cytokine and growth factor production modulate
their microenvironment, within the intestinal lamina propria
(Figure 1A). Although the binary M1/M2 framework provides a
useful distinction between inflammatory and non-inflammatory
(tissue repair) macrophage populations, tissue macrophages are
extremely heterogeneous, existing in an essential continuum of
functional states, depending on the various stimuli they have
received and integrated over time (26).

Mesenchymal derived fibroblasts support the integrity of
intestinal and other mucosal barriers via synthesis of extracellular

matrix and growth factors required for both barrier repair
and macrophage homeostasis. Recently, Ruslan Medzhitov
and colleagues utilized a combination of experimentation and
modeling based on an in-vitro system of bone-marrow derived
macrophages and primary mouse embryonic fibroblasts to
dissect feedback signaling loops between macrophages and
stromal fibroblasts (24, 25). In this system the macrophages
and fibroblasts were plated together in culture medium without
addition of growth factors and cell numbers determined
by flow cytometry. The mathematical model describes how
simple macrophage-fibroblast interactions can reach stable cell
populations. This is an illustration of how modeling can provide
a useful framework for qualitative understanding of the dynamics
between different cells. The model also proved useful on a
quantitative level; cell-density had to be taken into consideration
to match experimentally observed cell numbers predicted by
the model. This in turn led to experimentally tested findings
that close macrophage-fibroblast contact is essential for growth
factor exchange.

Specifically, the experimentally confirmed findings were (1)
fibroblasts in the system produce bothmacrophage and fibroblast
growth factors, while the macrophages only produce a fibroblast
growth factor; (2) the growth rate of the fibroblasts, but
not the macrophages, is limited by their carrying capacity,
which was found to be dependent on available space. Based
on these two findings, a mathematical model was constructed
describing macrophage and fibroblast cell counts and growth
factor concentrations over time. Different wiring possibilities for
the model network were explored mathematically. Of the 144
possibilities considered, only 48 networks allowed for a stable
steady state across a wide range of parameters, corresponding
to a stable number of macrophages and fibroblasts. It was
found that all 48 networks that allowed for such a stable steady
state included a negative regulatory loop on the macrophage
growth factor. This is a necessary condition for stability, as a
cell population that is not limited by its carrying capacity will
keep expanding indefinitely if its growth factor is not regulated.
Experimental studies subsequently showed that macrophage
growth factor is negatively regulated by receptor internalization.
Furthermore, it was found that fibroblast growth factor is also
negatively regulated, both by receptor internalization and by the
macrophage growth factor, however the model indicates that
this regulation of fibroblast growth factor does not significantly
alter system dynamics (Figure 1B). The mathematical model
based on the final circuit generated in this way predicts that
apart from the stable steady state, there also exists a state
with only fibroblasts, sustaining themselves, and a state without
macrophages and fibroblasts. Depending on the initial absolute
cell numbers, the system will converge to one of these states
(Figure 1C), which was experimentally tested by quantifying cell
numbers over time using a combination of flow cytometry and
fluorescent imaging. Finally, it was found that the initial cell
numbers required to converge to the steady state of coexisting
cell populations was larger than the model predicted. This was
explained by density-dependent effects; the model assumes a
perfectly mixed population, but cell-dependent contact decreases
when cell numbers decrease. Thus, the discrepancy of the model
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FIGURE 1 | (A) TLR-2 can sense the bacterial product LPS both outside the cell and in vesicles, after engulfment of the bacterium. NOD-2 can sense the bacterial

product MDP that is exported from vesicles (23). The NF-κB activation in response to TLR-2 or NOD-2 signaling results in the production of cytokines such as

pro-inflammatory cytokine TNF-α, IL-6, or IL-8 (with positive feedback loops) or anti-inflammatory cytokine IL-10 (a negative feedback loop to downregulate

inflammation). Apart from the autocrine regulation, many cytokines stimulate other cell types (IL-12 for instance drives naïve T-cells toward a Th1 phenotype, while

IL-23 promotes Th17 differentiation etc.). Activated T cells in turn produce macrophage response shaping mediators themselves, such as IFN-γ, IL-17, and IL-22. (B)

Wiring diagram of the macrophage-fibroblast growth factor model by Zhou (24) and Adler (25). Fibroblasts produce both macrophage growth factor (CSF1) and

fibroblast growth factors (PDGFD, HBEGF), while macrophages produce a fibroblast growth factor (PDGFB), mediating cross talk between macrophages and stroma.

The dimensionless model derived from this diagram consists of two ODEs describing the population sizes of the macrophages and fibroblasts and two algebraic

equations describing the concentration of the two growth factors. Different wiring possibilities were explored (gray arrows), i.e., the addition of positive or negative

feedback of one growth factor on the production rate of the other (1, 2), removal of a growth factor through receptor mediated endocytosis (3, 4),

(Continued)
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FIGURE 1 | or autocrine growth factor production (5, 6). Of the 144 possibilities considered, only 48 networks allowed for a stable steady state for a wide range of

parameters, corresponding to a stable number of macrophages and fibroblasts. The final experimentally tested circuit is depicted by the solid arrows. (C) Phase

portrait of the macrophage and fibroblast cell population numbers of the model by Zhou (24) and Adler (25). Given initial cell numbers, the system will end up in one of

the three stable steady states. All initial values at the left-hand side of the separatrix (dashed line) will converge to the trivial steady state (yellow, no fibroblasts or

macrophages). At the right-hand side of the separatrix, the system will converge to the positive steady state if the initial system contains macrophages (red, positive

numbers of fibroblasts and macrophages), and converge to the “fibroblast only” steady state (green, only fibroblasts) otherwise. Several figure components taken from

the “Library of Science & Medical Illustrations” by SomerSault1824 were used in panel (A,B) (http://www.somersault1824.com/science-illustrations/). panel (B,C) are

based on Zhou et al. (24), Figures 3A, 4E, 5B.

predictions with the experimental results suggested that cell-cell
contact is essential for growth factor dynamics and the regulation
of tissue homeostasis.

MODELING MACROPHAGE
INTRACELLULAR SIGNALLING

Macrophages sense and respond to their localized tissue
microenvironments and in this role must integrate different
external stimuli and respond appropriately.Multiplemacrophage
receptor systems detect specific changes in local tissue
microenvironments including the presence of pathogens [Toll-
like receptors and NOD-like receptors (27, 28)], cell damage
[RAGE and Toll-like receptors via alarmins (29)], cytokines
(cytokine receptors that detect growth factors including M-
CSF, interleukins such as IL-1,6,10, tumor-necrosis factor-α,
and chemokines), and neurotransmitters (30). The resulting
macrophage responses may result in the production of activating
and inhibitory cytokines, orchestrating the timing of pathogen
specific innate and adaptive immune responses and associated
intra- and extra-cellular microbial clearance (23) (Figure 2A). To
better understand macrophage sensing and response behaviors,
intracellular signaling network models have been constructed
and used to generate experimentally testable predictions about
the effect of blocking individual proteins including TLR3 (33),
TLR4, TNF, IFN-β, and IL-10 (34), TLR3, TLR7, Type-1-IFNs,
and IL-10 (35), TLR, JAK/STAT, and ITAM (36), and TLR,
JAK/STAT and nitric oxide (37) on intracellular signaling
dynamics (38). Many models were based on experimental mouse
models or immortalized cell lines. Thus, the species and lineage
specificity of these networks and the interacting cell types needs
to be critically analyzed to understand their relevance to human
IBD pathophysiology (39).

A key integrator of different macrophage signaling pathways
is the NF-κB pathway, which regulates nuclear localization
of NF-κB transcriptional regulators controlling expression of
hundreds of genes involved in inflammation (40). One of
the seminal mathematical descriptions of NF-κB signaling was
developed by Hoffmann et al. This model provided a quantitative
description of three NF-κB inhibitor isoforms, IκBα, IκBβ, and
IκBε (31). It was one of the first studies to use an iterative
approach of modeling (in-silico experimentation) and wet lab
experimentation to better understand intracellular signaling
mechanisms. The model was calibrated with data obtained from
an experimental mouse model with only one active NF-κB
inhibitor isoform and provides a mechanism-based explanation
for the oscillatory dynamics of nuclear NF-κB concentration

observed in wild-type mice, but not in mice that lack an active
form of IκBα (Figure 2B). Many more mathematical models
of NF-κB dependent processes were subsequently constructed,
including models of TNF-α receptor signaling (41), TNF-α
secretion (42), TLR4 receptor signaling, and the addition of
extrinsic noise to the synthesis rate of TLR4, the activation rates
of TRIF and MyD88 and the endosomal maturation rate, to
incorporate cell-to-cell variability (43) [see (44) for a review of
earlier models].

The above modeling frameworks (31) were developed by
converting a signaling, protein interaction network diagram into
a system of ODEs to quantitatively represent key reactions of
the network driving dynamic changes in the concentrations of
corresponding key proteins. In general, mass action, Michaelis-
Menten, or Hill equation kinetics were used to derive reaction
equations (45).

Static maps of all protein interactions believed to be involved
in mammalian macrophage TLR signaling pathways have
previously been generated [Figure 2C (Right), reproduced from
Oda and Kitano (32)], with the relationship of Hoffmann’s NF-
κB signaling model [Figure 2C (Left)] also illustrated. The model
derived from this latter network consists of 26-ODEs, one for
every network node. The interactions between nodes, denoted
by arrows in the network, are included in the terms for these
ODEs. Advances in computational power, high-throughput data
generation, data driven model parameterization and machine
learning techniques will empower larger scale modeling of
signaling pathways and their integration with extracellular
signals. For example, high-dimensional quantitative analysis
of macrophage signaling pathways in human tissue biopsies
from diseased and non-diseased regions of the intestine may
be used to inform model structure(s) and parameterization.
There are however remaining challenges including parameter
identifiability. These challenges stem from the fact that
current high-throughput datasets tend to have poor temporal
and spatial resolution, whereas biological systems including
human intestinal tissue are often spatially heterogeneous, and
relevant pathophysiological processes occur across a broad range
of time scales. Nonetheless, such approaches are becoming
feasible, and may allow explicit in silico identification of
key IBD mediators and processes, driving subsequent wet-lab
experimental exploration, testing, and verification.

FUTURE DIRECTIONS

Despite increasingly rich datasets on human inflammatory
processes, macrophage function is still not well understood. Open
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FIGURE 2 | (A) The activation of macrophage signaling pathways by various pathogens. Macrophage output in the form of cytokine production is amongst others

dependent on the type of pathogen and the receptor location. Green, yellow, and red arrows correspond to a Th1, Th17, and Th2 polarizing response, respectively.

(Continued)
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FIGURE 2 | Macrophage responses exist in a continuum. (B) The free nuclear NF-κB concentration against time generated by the equations of the model by

Alexander Hoffmann et al. (31). The model provides an explanation for the oscillatory dynamics of the nuclear NF-κB concentration that are observed in wild-type

mice, but not in mice that lack an active form of IκBα. Each NF-κB inhibitor can bind to a NF-κB molecule, forming an NF-κB-inhibitor complex. When IκB kinase (IKK)

also binds to this NF-κB-inhibitor complex, the inhibitor degrades, and the free NF-κB can travel to the nucleus and bind DNA. This results in the synthesis of various

proteins, one of which is IκBα. The production rate of the NF-κB inhibitor IκBα is thus dependent on the concentration of free NF-κB. The negative NF-κB–IκBα

feedback loop generates oscillations in the concentration of NF-κB. In contrast, the other two NF-κB inhibitors, IκBβ and IκBε, are produced at a constant rate,

independent of the amount of free NF-κB. Therefore, they have a damping effect on the oscillations generated by the IκBα negative feedback loop. A model without

IκBβ or IκBε, but with IκBα therefore produces oscillations (left, yellow), while a model without IκBα, but with IκBβ and IκBε does not (right, black). (C) Left: the wiring

network from the NF-κB model by Alexander Hoffmann et al. (31). The model derived from this network consists of 26 ODEs, one for every node in the network. The

interactions between nodes, denoted by arrows in the network, are included in the terms of these 26 ODEs. Right: a map of all protein interactions thought to be

involved in mammal macrophage TLR signalling pathways, with the relationship of Hoffmann’s NF-κB signaling model also illustrated. The map was constructed by

Kanae Oda and Hiroaki Kitano (32). Several figure components taken from the “Library of Science & Medical Illustrations” by SomerSault1824 were used in (A–C)

(http://www.somersault1824.com/science-illustrations/). Panel (C) is based on Oda and Kitano (32), Figure 1.

questions include: (1) how do macrophage hyperinflammatory
processes and immunodeficiency intersect to produce human
IBD; (2) what are the functional consequences of genetic
variant burden across the multiple human polymorphisms
associated with inflammatory diseases and that intersect
with macrophage signaling pathways; (3) what factors and
cellular processes drive granuloma formation in Crohn’s
disease and other granulomatous disorders; (4) what is the
relationship between peripheral blood monocytes and tissue
resident macrophages; (5) what is the role of macrophage
heterogeneity in IBD disease dynamics; (6) what is the
role of long lived tissue-resident macrophages, monocyte
derived macrophages, dendritic cells, neutrophils, and non-
professional APCs during active IBD inflammation and
remission? Mathematical models can help answer these
questions at the level of experimental design, data analysis,
and interpretation.

Models can be developed to predict the effects of perturbing
specific protein networks, from single cell to localized tissue
pathology, through to effects on higher-level physiology.
Additionally, they can identify the relative importance of
bacterial handling and cytokine production in tissue pathology.
Proposed mechanisms can be discarded based on simulations,
and new mechanisms proposed and experimentally tested (24).
Many challenges remain in both the proposed application of
human datasets including tissue biopsies from healthy donors
and IBD patients, and the combination of modeling with
high-throughput data. Parameter identifiability is challenging
due to high variability and poor spatial and temporal resolution
of available human datasets. Another key challenge is data
integration across different spatial and temporal scales,
and, in an informative way, while selecting optimal model
scope and granularity for the specific scientific questions
under investigation. Furthermore, within this context one
should note that the hypotheses on which mathematical
models are based can only be falsified, but never proven.
Therefore, mathematical modeling should be seen as an
investigative tool that can be used to challenge assumptions
and identify key uncertainties (46). For example, models
based on different mechanisms might equally well describe an
observed phenomenon and discrepancies between two such
models can inform experiments to distinguish between the two
alternatives (9).

CONCLUSIONS

There is a growing body of work focused on the mathematical
modeling of macrophage function, e.g., modeling intracellular
signaling pathways and the dynamic cross talk between these
cells and other cell types such as fibroblasts. However, to date
many modeling efforts have been disconnected from wet-lab
experimentation or guided by experimental work on mouse
models and isolated murine and human cell lines. These
experimental systems do not recapitulate important features
of human gastrointestinal pathophysiology, and, therefore, are
limited in the extent to which they can inform mechanistic
understanding of the role of macrophages in human IBD
pathophysiology. Consequently, there are many open questions
about the role of macrophages in human IBD. Thus, we envision
a future were mechanistic mathematical models will be based
on features relevant to human disease and parametrized by
richer human data sets, including high-throughput assessments
of biopsy tissues taken from IBD patients with increasing
spatial and temporal resolution. Furthermore, we envisage deeper
integration of mechanistic modeling with experimental design
whereby models are used to both inform experimental medicine
study designs and provide a knowledge constrained framework
for the quantitative analysis and interpretation of the resulting
clinical data.
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