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A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body
mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor
allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the
Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in
a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large
cohorts from eight populations across multiple ethnicities (total n¼16,969). We tested this variant for association with BMI
in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a
significant (p , 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the
strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the
Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this
association in both unrelated (p¼0.046) and family-based (p¼0.004) samples. The estimated risk conferred by this allele is
small, and could easily be masked by small sample size, population stratification, or other confounders. These validation
studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every
data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples.

Citation: Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, et al. (2007) The association of a SNP upstream of INSIG2 with Body Mass Index is reproduced in several but not
all cohorts. PLoS Genet 3(4): e61. doi:10.1371/journal.pgen.0030061

Introduction

Body mass index (BMI) is a heritable measure of obesity
that is routinely obtained in large cohorts, is correlated with
other measures of obesity, and predicts morbidity and
mortality from obesity-related diseases [1–4]. Thus, BMI is a
readily accessible trait that can be used to screen for genetic
variants that increase an individual’s risk for obesity and its
complications. There have been more than one hundred
publications reporting association between common genetic
variants and BMI, but few of the associations have been
reproducible in multiple populations [5]. Genotyping of
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variants has increased exponentially in scale over the past few
years, and much more comprehensive screens of common
genetic variation for association with obesity are now
possible. The poor rate of reproducible findings in associa-
tion studies in general and obesity in particular are likely due
to a combination of false-positive results, underpowered
attempts to reproduce associations with modest effects,
systematic bias due to technical artifacts or population
stratification, and perhaps true heterogeneity in effect across
populations due to differences in genetic or environmental
modifiers [6,7]. Thus, new reports of association require
rapid, well-powered studies to validate true associations or
identify false positives that could otherwise trigger unwar-
ranted investigation of spurious findings.

Recently, Herbert and colleagues, including several of the
authors of this study, reported a novel association between
homozygosity for the minor allele of a single nucleotide
polymorphism (SNP), rs7566605, and increased BMI [8]. The
SNP has no known function, and the closest gene codes for
the insulin signaling protein type 2 (INSIG2), a hijacking
protein in the endoplasmic reticulum that, in response to
changes in lipid levels, impedes the movement of sterol
regulatory element binding proteins to the Golgi apparatus
for processing and ultimately its release to act as a nuclear
transcription factor and regulator of lipid biosynthesis [9–11].
Animal data suggests a role for INSIG2 in increasing
triglyceride level in rats [12], as well as linkage to obesity
phenotypes in mice [13].

The association of SNP rs7566605 with obesity was initially
found in a set of related individuals from the Framingham
Heart Study (FHS) offspring cohort [8]. The SNP was
genotyped in five additional cohorts, and the association
was observed again in four of these, including population-
based studies, case-control samples, and family-based cohorts.
However, no significant association was found in a fifth
cohort (the Nurses Health Study [NHS]), where a slight trend
in the opposite direction was seen. Approximately 10% of
individuals were homozygous for the minor allele (C/C), and
in a meta-analysis of the case-control samples (including the
NHS cohort and excluding the FHS discovery cohort), these
individuals had a 22% increased risk of obesity (defined as

BMI � 30 kg/m2). In the NHS cohort alone, the 95%
confidence interval (CI) for the odds ratio (OR) for obesity
was 0.58–1.13. Subsequently, two further groups reported no
evidence of association in large cohorts, and a third found
association only for people on the overweight end of their
population [14–17].
We considered several possible explanations for observing

an association in four cohorts but not in the fifth. The failure
to observe association in the NHS sample could be due to
more modest effects in this cohort and therefore inadequate
sample size, population stratification, ascertainment bias,
other unmeasured confounders, or any combination of these.
It is also possible that evidence in the four cohorts was falsely
positive, for any of a combination of reasons that could
include hidden population substructure, technical artifacts,
or statistical fluctuations causing false positives. However,
because of the consistency across multiple cohorts, including
studies with family-based design, we felt that these explan-
ations were less likely. Finally, it is also possible that the
association is heterogeneous across populations, either due to
differences in ascertainment, or differences in genetic or
environmental modifiers. Of these possibilities, it is most
critical to assess first whether the original associations were
spurious, so as to avoid further efforts expended on a false
finding. Our primary objective was therefore to test addi-
tional large populations to evaluate further the validity and
generalizability of this association. By studying these addi-
tional populations, including a sample with longitudinal data,
we hoped to better assess the strength and consistency of the
association between increased BMI and the risk genotype at
rs7566605, and perhaps generate hypotheses about any
inconsistencies in this association.

Results

Descriptions of the cohorts used in this study are presented
in Table 1, Table S1, and in the Methods. These nine cohorts
are drawn from eight different populations and include a
total of almost 17,000 individuals. The cohorts were not
ascertained for BMI, except for the Essen study cohort, which
was selected from the upper (BMI � 30 kg/m2) and lower (BMI
, 20 kg/m2) ends of the BMI distribution of their population
and a portion of the African-American sample that was
enriched for obese individuals. We tested for association with
obese (BMI � 30 kg/m2) versus non-obese (BMI ,30 kg/m2)
and also with BMI as a continuous trait, to mimic the
association tests performed in the initial publication. All
analyses were performed under a recessive model, with the
prior hypothesis that C/C homozygotes would have a higher
BMI than individuals in the other two genotype classes.
The frequency of C/C homozygotes was increased in obese

individuals compared to non-obese control individuals in
several cohorts (Table 2). Nominally significant (two-tailed p
, 0.05) associations between obesity (BMI � 30 kg/m2) and
the C/C were present in three samples: the Iceland cohort (OR
¼ 1.29, 95% CI¼ 1.06–1.57, p¼ 0.0064), the Essen cohort (OR
¼ 1.75, 95% CI¼ 1.15–2.68, p¼ 0.008), and in one of six exam
cycles within the longitudinal data from the FHS cohorts
(Table 2). In the Iceland cohort, the homozygote C/C
genotype was associated with a 0.69 kg/m2 increment in
BMI, which is in good agreement with the effect observed by
Herbert et al. [1].
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Author Summary

Obesity is an epidemic in the United States of America and
developing world, portending an epidemic of related diseases such
as diabetes and heart disease. While diet and lifestyle contribute to
obesity, half of the population variation in body mass index, a
common measure of obesity, is determined by inherited factors.
Many studies have reported that common sequence variants in
genes are associated with an increased risk for obesity, yet most of
these are not reproducible in other study cohorts, suggesting that
some are false. Recently, Herbert et al. reported a slightly increased
risk of obesity for people carrying two copies of the minor allele at a
common variant near INSIG2. We present our attempts to further
evaluate this potential association with obesity in additional
populations. We find evidence of increased risk of obesity for
people carrying two copies of the minor allele in five out of nine
cohorts tested, using both family- and population-based testing. We
indicate possible reasons for the varied results, with the hope of
encouraging a combined analysis across study cohorts to more
precisely define the effect of this INSIG2 gene variant.



The KORA S3, Maywood, and Scandinavian cohorts, and
five of six exam cycles in the FHS cohort, did not show
nominally significant associations under a recessive model.
The Scandinavian, FHS, and Maywood samples may have
been too small to achieve statistical significance with an
association of the magnitude estimated by Herbert et al. (OR
¼ 1.22). The Scandinavian cohort had an estimated OR (1.25)
similar to the original report, but a p value of 0.46 and a wide
95% CI around the estimated OR (0.69–2.24). In particular,
this cohort had only 120 people with BMI . 30 kg/m2, and the
power to achieve nominal significance for an OR of 1.22 (as

estimated in the original report) is only 15%. The estimated
OR in the Maywood cohort was 0.88 but the CIs were also
wide (p ¼ 0.68, 95% CI ¼ 0.49–1.59), which suggests that the
sample was also underpowered to find this modest association
and/or that the effect in this sample is smaller than in the
original report.
The KORA S3 sample was much larger (851 obese and 3,233

non-obese), but had an OR of 0.90, with a 95% CI of 0.71–
1.16, suggesting that the association is either more modest or
absent in this cohort, limited to a particular subgroup of this
population (see Discussion), and/or that when several samples

Table 1. Eight Populations (n¼ 16,969) Used in Association Testing of rs7566605 and Obesity/BMI

Cohort Sample or Exam n Male/Female Age Mean (SD) BMI Mean (SD) BMI Range BMI � 30 (n) BMI , 30 (n)

CAMP Families 1,224 254/154* 8.74(2.07)* 17.78(3.08)* 12.70–28.62* 0 408*

Costa Rica Families 1,284 251/157* 9.26(1.76)* 17.77(3.38)* 11.31–30.00* 1 407

Scandinavia Families 512 213/299 62.20(10.05) 26.35(3.43) 16.97–41.44 66 446

Essen Unrelated lean 391 147/244 25.45(4.89) 18.17 (1.00) 13.71–20.00 N/A 391

Essen Unrelated obese 990 364/626 46.34(14.74) 36.02 (5.38) 30.00–65.58 990 N/A

FHS Unrelated exam 1 1,491 711/780 37.05 (8.93) 25.08 (4.24) 14.93–50.86 168 1,323

FHS Unrelated exam 2 1,267 608/659 44.74 (9.21) 25.50 (4.32) 16.18–52.49 159 1,108

FHS Unrelated exam 3 1,310 625/685 49.20 (9.26) 26.20 (4.61) 15.58–53.95 212 1,098

FHS Unrelated exam 4 1,431 681/750 52.51 (9.28) 26.83 (4.71) 17.33–66.40 298 1,133

FHS Unrelated exam 5 1,431 680/751 56.12 (9.25) 27.38 (4.82) 17.11–51.30 350 1,081

FHS Unrelated exam 6 1,429 683/746 60.08 (9.16) 27.82 (4.97) 17.16–52.85 409 1,020

Iceland Unrelated 5,187 2388/2799 54.44(16.62) 28.74(6.68) 13.74–72.23 1,818 3,369

KORA Unrelated S3 4,084 2039/2045 48.70(13.77) 26.91 (4.44) 16.44–56.93 851 3,233

Maywood Unrelated 893 430/463 42.96(10.82) 28.28(7.06) 12.88–68.34 332 561

Scandinavia Unrelated 913 498/415 66.42(11.91) 26.55(3.63) 18.36–43.34 120 793

*Indicates numbers of children with their mean BMI, range, and age.
n, number.
doi:10.1371/journal.pgen.0030061.t001

Table 2. Association Studies of rs7566605 C/C Genotype and Obesity (BMI � 30) and BMI as a Continuous Trait in Each of the
Individual Unrelated Samples

Cohort FHS

Exam

Obesity Association Testa Frequency C/C

Obese/Non-obese

Mean BMI

for C/C (n)

Mean BMI

for C/G (n)

Mean BMI

for G/G (n)

BMI Association Testb

OR 95% CI p Value Linear Effect

Estimate (se)

p Value

Essen 1.75 1.15–2.67 0.008 0.05/0.05

FHS 1 1.26 0.78–2.01 0.06 0.14/0.11 25.38 (172) 24.89 (625) 25.17 (694) 0.006 (0.005) 0.270

FHS 2 1.52 0.95–2.43 0.08 0.16/0.11 25.81 (146) 25.17 (534) 25.72 (587) 0.005 (0.006) 0.395

FHS 3 1.81 1.22–2.70 0.003 0.18/0.11 26.79 (156) 25.90 (549) 26.31 (605) 0.010 (0.006) 0.096

FHS 4 1.18 0.80–1.74 0.39 0.13/0.11 27.08 (167) 26.59 (600) 27.00 (664) 0.004 (0.006) 0.442

FHS 5 1.14 0.79–1.65 0.48 0.12/0.11 27.65 (165) 27.31 (601) 27.38 (665) 0.004 (0.006) 0.514

FHS 6 1.12 0.79–1.59 0.51 0.13/0.11 28.10 (169) 27.74 (597) 27.82 (663) 0.003 (0.006) 0.565

Iceland 1.29 1.06–1.57 0.006 0.13/0.11 29.35 (606) 28.81 (2,319) 28.51 (2,262) 0.023 (0.010)c 0.020c

KORA S3 0.90 0.70–1.16 0.44 0.10/0.11 26.95 (438) 26.75 (1,871) 27.07 (1,775) 0.002 (0.008) 0.810

Maywood 0.88 0.49–1.59 0.68 0.06/0.06 27.47 (52) 29.23 (281) 27.83 (541) �0.010 (0.014)d 0.484d

Scandinavia 1.25 0.69–2.24 0.46 0.13/0.10 26.8 (96) 26.50 (396) 26.51 (393) 0.008 (0.009) 0.354

aEstimated ORs for BMI � 30 kg/m2 vs. BMI , 30 kg/m2 of the C/C genotype at rs7566605 are shown for all studies, along with the 95% CIs around the estimated ORs (95% CI) and two-
tailed p values generated using a 1-degree-of-freedom v2 test under a recessive model. For each sample, the mean BMI and in parentheses the number of individuals for each genotype at
rs7566605 are shown.
b Linear effect estimate for log BMI at each exam adjusted for age and gender using linear regression unless otherwise indicated.
cLinear regression model with log transformed BMI as a quantitative trait adjusting for age and sex in the multiple regression (sex þ age þ sex 3 age). p value and CI adjusted for
relatedness of the individuals using simulations as previously described (see Methods).
dLinear regression analysis done excluding 270 people who were chosen as the most obese members of their family (see Methods).
n, number; se, standard error.
doi:10.1371/journal.pgen.0030061.t002
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are tested, some statistical fluctuation either away from or
toward the null is expected. Association tests in the FHS
cohort between the C/C genotype and obesity showed some
apparent variability, achieving significance in some but not
all of the six exams, with p values ranging from 0.003–
0.51(Table 2); correcting the best p value for having tested six
exams suggests that the totality of these findings are
consistent with a replication (corrected p value ¼ 0.018).
There was no formal evidence of heterogeneity across the six
exams (p¼0.47), and the 95% CIs for all exams include an OR
of 1.22 (Table 2).

We also analyzed the five population-based samples—
Maywood, Iceland, KORA S3, Scandinavia, and FHS (see
Methods for details)—for association with BMI as a contin-
uous trait, again under a recessive model controlling for age
and gender. We saw similar results to those observed for the
dichotomous analysis, with nominally significant associations
between C/C homozygotes and increased BMI observed in the
Iceland and FHS cohorts but not in KORA S3, Maywood, or
Scandinavia (Table 2). When we analyzed association with
BMI at each exam cycle from FHS separately, there was no
significant evidence of association in a recessive model. The
effect estimates trended in the same direction (exam 3, two-
tailed p value¼0.096) (Table 2) as did estimates in the analysis
using z-scores for BMI (see Methods) and mean z-score over
six exams (unpublished data).

Finally, we tested SNP rs7566605 for association with
increased BMI in three family-based samples, using PBAT
[18]. Two of the three cohorts showed an association between
SNP rs7566605 and BMI as a continuous trait under a
recessive model (Table 3). (A dichotomous analysis was not
done in these cohorts, because the definition of obesity we
used for the remainder of the samples [BMI . 30 kg/m2] was
not applicable to the children that made up a substantial part
of each cohort.) The family-based portion of the Scandina-
vian cohort was composed of adults, but the incidence of
obesity was only 13% (n ¼ 66), limiting the power of a
dichotomous analysis. Because BMI changes rapidly during
childhood, we compared the results for the pediatric cohorts
using three different measured outcomes: BMI, BMI adjusted
for age and gender, and BMI-for-age percentile (Centers for
Disease Control and Prevention 2000 National Center of
Health Statistics); the p values for the corresponding FBAT

statistics were essentially identical in each cohort (unpub-
lished data).
To estimate the overall significance and effect size in the

samples we studied, we performed a pooled analysis for both
the unrelated and family-based cohorts. These combined
analyses, which included both cohorts that showed associa-
tion and those that did not, yielded independent, statistically
significant associations for both the unrelated samples (Table
4) and the family-based samples (Table 3). Combining the p
values of the family-based studies using Fisher’s method
provided evidence of replication (Fisher’s combined p ¼
0.004; Table 3). For the unrelated samples (Table 4), we
compared obese and non-obese people, and performed a
combined analysis using each exam cycle of the FHS cohort in
turn. Since the Essen cohort was ascertained as a severe
obesity cohort with non-age matched controls, we tested for
heterogeneity between studies using a modified Breslow-Day
test [19,20]. There was evidence for heterogeneity when
including the Essen cohort (p values for homogeneity¼0.007–
0.08) so this cohort was excluded from the combined analyses.
Mantel-Haenszel two-tailed p values ranged from 0.011 using
FHS exam 3 to 0.054 using FHS exam 6 (Table 4). In these
combined analyses, the estimated OR for obesity (BMI . 30
kg/m2) associated with the C/C homozygous genotype ranged
from 1.13 to 1.18, somewhat lower than the effect size
estimated by the original report [8]. There was also modest
evidence of heterogeneity; p values for homogeneity ranged
from 0.03 to 0.20, depending on which exam from FHS was
included in the combined analysis (Table 4), suggesting that
there might be some real variability in effect size across the
samples in this study.

Discussion

Association testing in these nine cohorts shows further
evidence that individuals homozygous for the C/C genotype at
SNP rs7566605 have a higher BMI and a higher risk of obesity.
The association is detectable in diverse cohorts, in children as
well as in adults, and in both family-based and population-
based samples. The association is not likely to be due to
stratification because it was seen in family-based samples such

Table 3. Association Studies of rs7566605 C/C Genotype Body
Mass Index in Family Cohorts

Cohort p Value Mean

BMI C/C(n)

Mean

BMI G/C(n)

Mean

BMI G/G(n)

CAMP 0.026 18.05 (49) 17.97 (181) 17.52 (178)

Costa Rica 0.027 18.19 (28) 17.46 (165) 17.72 (218)

Scandinavia 0.960 25.70 (57) 26.43 (211) 26.43 (224)

Combined 0.004

The two-tailed PBAT p value for association between the C/C genotype and BMI is shown
for each cohort. The mean BMI for each genotype (with number of individuals) is also
shown. To assess overall significance, p values from each cohort were combined using
Fisher’s method.
n, number.
doi:10.1371/journal.pgen.0030061.t003

Table 4. Association Studies of rs7566605 C/C Genotype in a
Combined Analysis of All Urelated Samples Using One of Each
FHS Exam Cycles

Cohort FHS

Exam

OR 95% CI p Value p Value for

Homogeneity

Combined 1 1.14 1.00–1.30 0.046 0.188

Combined 2 1.16 1.02–1.32 0.029 0.117

Combined 3 1.18 1.04–1.34 0.011 0.029

Combined 4 1.14 1.00–1.29 0.047 0.197

Combined 5 1.13 0.99–1.29 0.052 0.200

Combined 6 1.13 1.00–1.28 0.054 0.199

The results for combined Mantel-Haenszel analyses are shown, using, in turn, data from
each of the six FHS exam cycles combined with data from all of the other cohorts. The
combined analysis does not include the Essen cohort due to observed heterogeneity. The
p values for homogeneity when including the Essen cohort ranged from 0.007–0.08. The p
values for homogeneity are shown for each of the six combined analyses, using Tarone’s
modification of the Breslow-Day method [8,14,15].
doi:10.1371/journal.pgen.0030061.t004
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as Costa Rica and CAMP, which are immune to stratification,
and because the original publication also described associa-
tions in family-based testing [8].

The effect of ascertainment on these analyses could
potentially provide confounding of the association in four
of these studies. Because index children in family-based
studies in CAMP and Costa Rica were ascertained on the basis
of asthma, a spurious association between SNP rs7566605 and
BMI could be found if the SNP of interest was directly
associated with asthma. However, none of the other cohorts
were ascertained in this manner, lessening concerns about
this source of bias as a potential cause of false-positive
associations. In addition, the Scandinavian sample was
ascertained as control subjects for a diabetes case control
study (similar to the NHS in the original report). A further
bias could potentially have been introduced by the selection
of non-obese people in the Essen cohort who have a younger
mean age than the obese people from this cohort (Table 1).
The lean controls (mean BMI¼18.2 kg/m2) are less likely to be
obese later in life, but a small portion of them could be
misclassified as non-obese, which would tend to bias the
estimate toward the null. Of note, the combined analysis
remains significant even if we include this study (unpublished
data).

The longitudinal nature of the FHS data may provide a clue
to a possible cause for inconsistency in the association
between SNP rs7566605 and obesity. In this cohort, a stronger
effect on BMI was seen in the data from the first three exams
than in the last three exams. The individuals at each exam are
largely overlapping, making confounders less likely to explain
a positive association in the early exam data and a lack of
association in later data. Assuming that the association in this
cohort is not a false positive due to statistical fluctuation,
then the passage of time is the most likely explanation for the
diminution of the association in this cohort. The decreasing
evidence of association in theory could be due to an
interaction with age, namely decreasing effect size with
increasing age. Alternatively, a change in the environment
could have diminished the strength of the association over
time; this would be, in theory, consistent with a well
documented ‘‘secular trend’’ of increased obesity over the
relevant time period [21,22]. A preliminary and post hoc
examination of the FHS data suggests that age may play an
important role in modifying the strength of the association
(unpublished data). This hypothesis would also be consistent
with stronger effects in controls matched for early-onset
disease (such as asthma) than in controls matched for later-
onset diseases (such as diabetes). Finally, an additional post hoc
analysis of the KORA S3 data suggests a stronger association
in the most severely obese individuals (OR for BMI � 38 kg/
m2 was 1.78, 95% CI, ¼ 0.99–3.21, p ¼ 0.054), who perhaps
became obese at an earlier age. Although these hypotheses
are speculative at this time, they and other possibilities could
and should be tested by a formal meta-analysis of our data,
recent studies showing no association [14–16], and additional
data that are likely to emerge. We (I.M.H. and colleagues) are
in the process of organizing a meta-analysis to reexamine the
INSIG2 association in light of these hypotheses to better
understand the relationship of this gene to obesity in the
population.

In summary, the association of SNP rs7566605 with higher
BMI is found in diverse populations. The number of studies

in which a nominal association has been observed (five out of
the nine cohorts reported here) appears more frequently
than expected by chance. However, a more precise assessment
of this apparent excess of associations will depend on the
availability of a complete set of studies of this polymorphism.
Large sample sizes were required to observe the association,
but even some large samples have not demonstrated an
association with this allele, possibly due to modification by
age or other issues related to ascertainment. A combined
analysis of both positive and negative studies presented here
suggests that the association is valid but also suggests the
possibility of heterogeneity across populations. Additional
data, both positive and negative, ideally from large samples
with good information regarding potential confounders and
in a format suitable for meta-analysis, would be required to
confirm the existence of heterogeneity and to further refine
the estimate of the effect of this SNP on BMI in different
populations. However, the evidence to date suggests that this
variant has a detectable influence on BMI in a diverse range
of populations.

Materials and Methods

Iceland cohort. DNA samples were obtained from a large group of
5,187 Icelanders. The study group was composed of individuals who
participated in studies of the genetic etiology of cardiovascular and
metabolic diseases and the majority of these subjects were recruited
as unaffected relatives of probands or as controls and did not have
any history of metabolic or cardiovascular diseases. All participants
in the study signed informed consent. All personal identifiers
associated with tissue samples, clinical information, and genealogy
were encrypted by the Icelandic Data Protection Authority, using a
third-party encryption system in which the Data Protection Authority
maintains the code [23]. Association testing was done according to
that of the KORA S4 study design described in Herbert et al [1]. OR
of genotype G1 (C/C) compared to genotype G0 (G/C þ G/G) was
calculated by [n(G1)/m(G1)]/[n(G0)/m(G0)], where n and m denote
genotype counts in obese and non-obese individuals, respectively.
The genotyping procedure has been previously described [24].
Genotype call rate was 97.3%. p value and CI were adjusted for
relatedness of the individuals using simulations as previously
described [25]. In each simulation, genotypes for the SNP are
simulated through the Icelandic genealogy and the association test
repeated treating those genotypes as real genotypes. By repeating this
procedure 50,000 times we get the standard deviation of log(OR)
under the null hypothesis of no association, which is used to calculate
both the p value and the CI. We regressed the log transformed values
for BMI on C/C carrier status by adjusting for age and sex in the
multiple regressions as shown in Table 2.

KORA S3 cohort. In the Southern German region of Augsburg,
which includes the city of Augsburg and the two surrounding
counties, population-based surveys of the 25–74-y-old population
were implemented in 1984 as part of the World Health Organization’s
Multinational Monitoring of Trends and Determinants in Cardiovas-
cular Disease [MONICA]) project and continued since 1996 within
the German Kooperative Gesundheitsforschung in the Region
Augsburg (KORA) platform. The third survey, KORA S3, which was
the study used in our analysis, was conducted in 1994–1995. Subjects
(4,856) were recruited via registry according to the same protocol as
the fourth survey (KORA S4) performed in 1999–2001, which was part
of the initial replication samples in Herbert et al. The KORA surveys
were described previously [22,26]. Genotyping was performed using a
MALDI-TOF mass spectometry system (MassEXTEND; Sequenom,
http://www.sequenom.com) and the call rate was 99.3%.

FHS cohort. DNA samples were obtained from 1,515 unrelated
people from the offspring generation of the FHS [27]. We considered
the possibility of overlap between the ‘‘unrelated plate’’ of the
offspring cohort used here and with the family-based panel,
approximately half of which was used in the analysis in the Herbert
et al. report. There were 283 people who overlap between the
‘‘unrelated plate’’ and the full family-based panel, so these 283 people
were excluded from the analyses reported here. The samples were
genotyped using allele-specific primer extension of amplified
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products with detection by MALDI-TOF mass spectroscopy using a
Sequenom platform as previously described [28–30]. Genotype call
rate was 99.1% with no discordancies among replicate samples.
Association testing was done with linear regression using BMI log
transformed and adjusted for age and gender at all six exams.

Maywood cohort. DNA samples were obtained from 874 unrelated
people, self-described as African-Americans, from the same cohort as
was described in the original association report [8]. Unrelated people
were selected from this population for genotyping. In 270 families,
the most obese sibling was chosen to enrich the sample for obese
people in the case-control comparison. These were not included in
the quantitative trait analysis as described below in Statistical
Analysis. Samples were genotyped as previously described [8,29].
Genotype call rate was 97.9% with no discordancies among replicate
samples. Association testing was done with linear regression model-
ing of using log BMI corrected for age and gender with genotype in a
recessive and additive model.

Essen cohort. DNA samples were obtained from 1,381 adults from
Marburg, of which 990 were obese cases (BMI � 30 kg/m2; mean BMI
36.02 6 5.38 kg/m2) and 391 were lean controls (BMI � 20 kg/m2,
mean BMI 18.17 6 1.00 kg/m2 [31]. Genotyping was carried out by
PCR-RFLP with Bsp143I (digests the C-allele) (primers: 59-
TGAAGTTGATCTAATGTTCTCTCTCC-39 and 59-AAACCAAGG-
GAATCGAGAGC-39). Association analysis under the recessive model,
by v2 testing.

Costa-Rica cohort. Nuclear families (415) of children with asthma
in the Central Valley of Costa-Rica, a relative genetic isolate of
predominantly Spanish and Amerindian ancestry [32,33]. Children
and their families were enrolled as described previously [34] and
anthropometric measurements of all probands included weight and
height. However, this population was not ascertained based on
morphometric phenotypes. Genotyping was performed using the
Illumina BeadStation 500G system (http://www.illumina.com). Geno-
typing completion rate was .99.8% with no discordances among
replicate genotypes. Of the 415 families with genotypic data, 408 had
complete phenotypic data and were included in the analysis.

Childhood Asthma Management Program. The Childhood Asthma
Management Program (CAMP) is a multicentered North American
clinical trial designed to investigate the long-term effects of inhaled
antiinflammatory medications in children with mild to moderate
asthma [35]. Children ages 5 through 12 were eligible for inclusion in
the study if they had a diagnosis of asthma and no other clinically
significant conditions. Height and weight measurements were
collected on these children during the prerandomization period. Of
the 1,041 children originally enrolled, 968 children and 1,518 parents
contributed DNA samples for genetic studies. Complete nuclear
families (408) of self-described non-Hispanic white race with baseline
BMI measurements are included here. Genotyping was performed
using the Sequenom genotyping platform.

Scandinavia cohorts. The unrelated sample consisted of individuals
from the Botnia Study chosen as control subjects from two cohorts to
study diabetes. The first group were controls from a Scandinavian
sample of 471 case-control pairs individually matched for gender,
age, BMI, and geographic region in Sweden and Finland. The second
group were from a Swedish sample of 514 case-control pairs who
were individually matched for gender, age and BMI. Subjects were
characterized as unaffected for diabetes by glucose tolerance testing
as previously described [29]. The family cohort was comprised of 512
unaffected siblings from a Scandinavian sample of 1,189 siblings with
and without diabetes, as previously described [36,37]. The samples
were genotyped using by an allele-specific primer extension of
amplified products with detection by MALDI-TOF mass spectroscopy
using a Sequenom platform as previously described [28,29]. Genotype
call rate was 96.5% with one Mendel error in one family and no
discordancies among replicate samples.

Statistical analyses. The genotype data in each population was
tested for deviation from Hardy-Weinberg and found to be consistent
(p value . 0.01). Tests for association of rs7566605 with obesity were
performed for the five population-based cohorts under a recessive
model, classifying non-obese people as BMI , 30 kg/m2 and obese as
BMI � 30 kg/m2. Significance was assessed using a v2 test with one
degree of freedom and two-tailed p values were reported. The
Mantel-Haenszel method was used for the combined analysis, and
testing for heterogeneity was performed using the Breslow-Day test,
as described previously [7,19,20].

For the four samples that had population-based components, an
association analysis was performed using BMI as a continuous trait,
adjusting for age and gender. A second analysis of the FHS cohort was
done to make use of longitudinal data collected across six exams,
approximately 4 y apart spanning 26 years from 1971–1997. For each

exam, Z scores were calculated by the following process: within each
decade of life and gender, log BMI was regressed against age. A Z
score was then calculated for these age-adjusted BMIs based on the
mean and standard deviation within each decade and gender for each
exam. These were then analyzed using standard regression methods
(implemented in SAS) for each exam individually, and also for the
mean of all available Z scores across the six exams. For the KORA S3,
Maywood, and Scandinavian cohort analyses we used standard linear
regression with log transformed BMI and adjusted for age and
gender. The linear regression analysis in the Maywood cohort
excluded 270 people, who had been selected as the most obese
person in their family, to avoid possible bias. The Iceland analysis was
done with log transformed BMI as a continuous trait under a
recessive model, adjusting for age and sex in the multiple regression
(sexþ ageþ sex 3 age).

Association testing of rs7566605 in the family-based cohorts was
performed using the FBAT-approach as implemented in PBAT
[18,38], with BMI as a quantitative (continuous) trait adjusted for
age and gender by Z score under a recessive model. For the Costa Rica
and CAMP populations, tests were also done for the outcome BMI
adjusted for age and gender, and BMI-for-age percentile (Centers for
Disease Control and Prevention 2000 National Center of Health
Statistics). Because these studies were similarly sized, a combined
analysis was performed using Fisher’s method for combining p values,
in which twice the negative sum of the natural log of k one-tailed p
values is distributed as a v2 distribution with 2k degrees of freedom
[39]. In this method, a one-tailed p value for an effect in the opposite
direction is first corrected by subtracting the p value from one; as all
the effects in our studies were in the same direction, this correction
was not necessary.

Supporting Information

Table S1. Six Populations Divided into Non-obese (BMI,30 kg/m2)
and Obese (BMI�30 kg/m2) with Mean Age in years.

Found at doi:10.1371/journal.pgen.0030061.st001 (66 KB DOC).
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