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Abstract

During their evolution, proteins explore sequence space via an interplay between random mutations and phenotypic
selection. Here, we build upon recent progress in reconstructing data-driven fitness landscapes for families of homol-
ogous proteins, to propose stochastic models of experimental protein evolution. These models predict quantitatively
important features of experimentally evolved sequence libraries, like fitness distributions and position-specific muta-
tional spectra. They also allow us to efficiently simulate sequence libraries for a vast array of combinations of experi-
mental parameters like sequence divergence, selection strength, and library size. We showcase the potential of the
approach in reanalyzing two recent experiments to determine protein structure from signals of epistasis emerging in
experimental sequence libraries. To be detectable, these signals require sufficiently large and sufficiently diverged librar-
ies. Our modeling framework offers a quantitative explanation for different outcomes of recently published experiments.
Furthermore, we can forecast the outcome of time- and resource-intensive evolution experiments, opening thereby a way
to computationally optimize experimental protocols.
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Introduction
In the course of evolution, biological sequences encoding pro-
teins explore functional sequence space. The observable se-
quence variability between homologous sequences, that is,
sequences connected by common ancestry, results from a
delicate balance between mutation and selection. Mutations
tend to randomize sequences, whereas natural selection
prunes most of those mutations having a deleterious effect
on fitness. When analyzing large databases of homologous
protein families (Mistry et al. 2021), we therefore find sequen-
ces with 70–80% different amino acids, but highly conserved
functional and structural properties.

In turn, it is possible to search for statistical patterns in
ensembles of homologous proteins (Durbin et al. 1998), using
tools borrowed from statistical inference and unsupervised
machine learning, and to relate them to selective constraints
acting in these proteins. The most prominent signal is conser-
vation; a position in a protein not (or rarely) changing amino
acid over extended evolutionary time scales, is likely to play an
important role in the protein’s function (e.g., active sites in
enzymes) or for the protein’s structural stability (e.g., residues
buried in the protein core).

A second type of statistical signal has received a lot of
attention during the last decade (De Juan et al. 2013; Levy

et al. 2017; Cocco et al. 2018). The correlations between the
amino acids present in pairs of residue positions can be
extracted via global statistical models like those used in direct
coupling analysis (DCA) (Weigt et al. 2009; Morcos et al.
2011), Gremlin (Balakrishnan et al. 2011), or PSICOV (Jones
et al. 2012). This signal of residue–residue coevolution results
from epistatic couplings between residues in structural con-
tact in the folded proteins, that is, of residue pairs in direct
physical interaction in the 3D structure of the protein, even if
possibly located at long distance along the primary amino
acid sequence. Coevolutionary methods, in particular when
used as input for structurally supervised deep-learning meth-
ods like RaptorX (Xu 2019), DeepMetaPSICOV (Greener et al.
2019), AlphaFold (Senior et al. 2020), or trRosetta (Yang et al.
2020), have recently induced a revolution in protein-structure
prediction, reaching unprecedented accuracy in computa-
tionally predicted structures close to the accuracy of experi-
mentally determined structures (Jumper et al. 2021).
Hundreds of previously unknown protein structures have
been predicted this way (Ovchinnikov et al. 2017;
Tunyasuvunakool et al. 2021).

However, coevolutionary methods rely on the availability
of large alignments of homologous but diverged proteins,
since they rely on statistical signatures extracted from se-
quence variability (Haldane and Levy 2019). Recently, two
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groups have independently asked the question, if experimen-
tally generated sequences can be used instead of natural
homologs for contact prediction (Fantini et al. 2020; Stiffler
et al. 2020). To this aim, they have proposed and performed
similar experiments. First, starting from a given wildtype se-
quence, they have iterated several rounds of alternating se-
quence diversification via error-prone polymerase chain
reaction (epPCR) (Cadwell and Joyce 1992), and selection
for functionality (antibiotic resistance for both experiments).
In contrast to traditional directed evolution (Arnold 1998,
2018), selection was very weak (low antibiotic concentra-
tions), so proteins are not simply optimized for function,
but may diversify their sequences while maintaining a certain
level of functionality. After a certain number of rounds, the
resulting sequence library was sequenced, to provide the data
for statistical learning.

The resulting functional sequence libraries were quite di-
versified, with typical distances of 10–15% of the sequence
length from the wildtype protein used as a starting point. This
is much less than in natural protein families, characterized
typically by average distances of 70–80% between homologs.
However, the simultaneous emergence of about 10–40 muta-
tions, and the depth of more than 104 � 105 sequences in the
experimentally evolved libraries, could make the detection of
epistasis, and thus contact prediction, possible (Fantini et al.
2020; Stiffler et al. 2020).

Interestingly, both teams have run plmDCA (Ekeberg et al.
2013), or evCouplings based on plmDCA (Hopf et al. 2019),
on the data—with very different results. Although the con-
tact signal in (Fantini et al. 2020) was quite weak, and mostly
concentrated to nearby positions along the sequence, (Stiffler
et al. 2020) found a sufficiently accurate contact prediction to
enable the subsequent construction of a precise structural
model.

To understand the differences in results given the similarity
in approaches, we have developed a modeling scheme, which
allows us to simulate protein evolution in a data-driven se-
quence landscape. Comparison of simulated and experimen-
tal data of both experiments shows that our simulations
reproduce quantitatively the experimental observations.
Furthermore, the simulation scheme allows us to control
important parameters of the experiments, like the evolution-
ary distance from the wildtype in the final evolved library, the
sequencing depth of the library, or the strength of selection.
We find that our model is able to explain the difference in
contact prediction between the two experiments in terms of
sequence divergence and sequencing depth.

The agreement between simulations and experiments sug-
gests that our modeling framework allows for a quantitative
analysis of important questions about protein evolution, like
the mechanism underlying sequence space exploration and
the emergence of signatures of epistasis with sequence diver-
gence, compare also the related Sequence Evolution with
Epistatic Contributions (SEEC) model (de la Paz et al. 2020).
Beyond such basic questions in evolutionary biology, our
framework has also the potential to help in optimizing ex-
perimental design. To give an example, our simulations pre-
dict that both experiments would have benefited from

slightly weaker selection, represented by slightly lower antibi-
otic concentrations. This would have enabled a faster explo-
ration of the neighborhood of the wildtype sequence and the
occurrence of slightly more deleterious mutations, which
have a better chance to be coupled by epistasis than the
predominantly neutral mutations accepted at strong selec-
tion. Such predictions are very interesting, since our compu-
tational approach is efficient and can be applied to thousands
of protein families, whereas the experiments are expensive in
time and resources. Guiding them to increase the success
probability may therefore be an impactful strategy. For in-
stance, our approach can be used to explore different proto-
cols, such as alternating cycles of strong and weak selection.

Results
The general procedure of our modeling approach is graphi-
cally illustrated in figure 1. In this section, we first describe the
data-driven sequence landscape, which is inferred from mul-
tiple sequence alignments (MSA) of natural homologs of the
experimentally studied wildtype, that is, from data unrelated
to the experiment. As a first check of robustness, we show
that this landscape represents well the mutational effects of
single-residue substitutions when compared with a deep-
mutational scanning experiment, and that the inclusion of
epistatic couplings in the landscape model is essential for its
accuracy. The landscape can thus be used as a proxy for the
protein’s fitness landscape.

Next, we present a minimal model of evolutionary dynam-
ics, very similar to but more quantitative than SEEC. In this
model, mutations appear at the level of the DNA sequence
via single-nucleotide mutations, but selection acts exclusively
at the protein level, that is, on the amino acid sequence
translated from the DNA sequence, via the inferred sequence
landscape. We will show that sequences generated in silico by
this model reproduce quantitative features of the experimen-
tally generated sequences, like mutational profiles or the fit-
ness distribution.

Subsequently, we explore the potential of the experiments
by performing simulations under variable conditions for se-
quence divergence, sequencing depth, or selection strength.
This allows us to locate the two experiments in an exhaus-
tively scanned parameter space, to understand the limitations
of the experiments, and to propose schemes for overcoming
current limitations.

An Epistatic Data-Driven Sequence Landscape
Captures Mutational Effects
The basis of our approach is a computationally inferred se-
quence landscape, used as a proxy to quantify protein fitness
and selection acting on proteins. To obtain this landscape, we
first use the Pfam protein-family database (Mistry et al. 2021)
to extract an MSA of diverged homologs of the wildtype
protein used in the experiments. Both studies performed
experiments with a member of the beta-lactamase family
(Pfam accession PF13354), TEM-1 in (Fantini et al. 2020)
and PSE-1 in (Stiffler et al. 2020); the latter work also studied
the acetyltransferase AAC6 (PF00583). The details of the MSA
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construction are given in Materials and Methods below; we
find, for example, an MSA of 18,334 beta-lactamase
sequences.

The underlying idea of our work is to represent the natural
variability of this MSA via a generative statistical model
Pða1; . . . ; aLÞ, with ða1; . . . ; aLÞ representing an aligned
amino acid sequence, that is, the ai are either one of the 20
natural amino acids, or an alignment gap. Since data are
limited, we need to assume some mathematical form for
Pða1; . . . ; aLÞ. Introducing:

Pða1; . . . ; aLÞ ¼
1

Z
exp f�Eða1; . . . ; aLÞg ; (1)

we write the “statistical energy” Eða1; . . . ; aLÞ, which is to be
seen as a proxy for negative protein fitness (Morcos et al.
2014; Levy et al. 2017), in the form used by DCA (Weigt
et al. 2009; Morcos et al. 2011; Cocco et al. 2018),

Eða1; . . . ; aLÞ ¼ �
X

i

hiðaiÞ �
X

i< j

Jijðai; ajÞ ; (2)

as a sum over position- and amino acid-specific single-residue
biases, or fields, hiðaiÞ and pairwise epistatic residue–residue
couplings Jijðai; ajÞ. This model, also known as Potts model,
assigns low statistical energy E to “good/fit” sequences of high
probability, and high E to “bad/unfit” nonfunctional sequen-
ces of low probability. As illustrated in figure 1, we expect to
find low statistical energies for both natural and experimen-
tally evolved sequences. The strongest couplings are known
to be related to residue–residue contacts in the 3D protein
structure, compare with (Morcos et al. 2011).

The model parameters are inferred by the currently most
accurate version of DCA, called bmDCA (Figliuzzi et al. 2018),
which maximizes the model’s likelihood via Boltzmann-
machine learning (Ackley et al. 1985). As is known from the

literature (Sutto et al. 2015; Levy et al. 2017; Figliuzzi et al.
2018), this model is generative because sequences sampled
from Pða1; . . . ; aLÞ reproduce many statistical properties of
the MSA of natural sequences. This does not only concern
fitted quantities like one- and two-site amino acid frequen-
cies, but also nonfitted properties like three-residue amino
acid frequencies or the clustering of beta-lactamases into
subfamilies in sequence space. Note that the epistatic cou-
plings are essential for the model to be generative: a profile
model having only fields hiðaiÞ but no couplings Jijðai; ajÞ,
that is, a model assuming statistical independence of all posi-
tions in the protein, is not generative in the rather strict sense
discussed above (Figliuzzi et al. 2018). It misses both nontrivial
second- and higher-order correlations and the clustered se-
quence distribution. Note also that, in a different protein
family (chorismate mutase, PF01817), the same modeling ap-
proach was recently shown to artificially generate fully in vivo
functional protein sequences (Russ et al. 2020).

To test the quantitative character of our landscape
Eða1; . . . ; aLÞ, we compare the model predictions
DE ¼ EðmutantÞ � EðwildtypeÞ for the effect of mutations
introduced into a wildtype sequence, with the results of a
deep-mutational scan of the beta-lactamase TEM-1
(Firnberg et al. 2014). As is shown in figure 2A and B,
the two are highly correlated, with a Spearman rank cor-
relation of �0.77, compare also with (Figliuzzi et al. 2016)
and (Hopf et al. 2017) and the scatter plot supplementary
figure S1A, Supplementary Material online, directly compar-
ing prediction and experiment. This correlation shows that
our landscape Eða1; . . . ; aLÞ, even if inferred using distantly
diverged TEM-1 homologs, provides quantitative informa-
tion in the direct vicinity of TEM-1. As expected, low sta-
tistical energies correspond to high fitness values. To
underline the importance of the epistatic couplings in

FIG. 1. Scheme of our evolutionary modeling approach: starting from a wildtype sequence (red), we collect a large multiple sequence alignment of
naturally diverged homologs (blue), which are used to learn a generative landscape model using bmDCA (Figliuzzi et al. 2018). Evolution is
simulated as a Markov process in this landscape, leading to simulated, or in silico evolved mutant sequences. These sequences can be compared
with the results of evolution experiments (Fantini et al. 2020; Stiffler et al. 2020) (green), to assess estimated protein fitness (so-called statistical
energies, compare below), mutational profiles, and DCA-based epistasis and contact prediction. The simulation scheme also allows for changing
experimental control parameters like final sequence divergence, sequencing depth, and selection strength.
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our model, we also show in figure 2C and supplementary
figure S1B, Supplementary Material online, the predictions
of a nonepistatic profile model inferred from the same
beta-lactamase MSA: the correlation with the experimental
data decreases to �0.6, compare with (Figliuzzi et al. 2016).

This observation is central for our evolutionary model
since the selection of sequences with few mutations with
respect to the wildtype reference will be modeled by energy
differences DE as introduced above.

A Model of Evolutionary Dynamics Reproduces
Quantitative Features of Experimentally Evolved
Sequences
Evolution (natural and experimental) can be seen as a sto-
chastic process in a sequence landscape, with random muta-
tions and phenotypic selection modeled by our statistical
energy Eða1; . . . ; aLÞ. A minimal model realizing this idea is
SEEC (de la Paz et al. 2020): a random site i 2 f1; . . . ; Lg is
selected, and an amino acid b 2 fA; C; . . . ; Yg is selected to
substitute ai with a probability proportional to
exp f�DEðai ! bÞg, with DE being the statistical-energy
difference between the mutated and the unmutated sequen-
ces. A nonaccepted or synonymous mutation is characterized
by ai¼b. Note that deletions and insertions are currently not
considered in our model.

Although this model can be used to explore the qualitative
influence of epistasis on protein sequence evolution, our anal-
ysis requires a more quantitative model taking in particular
two differences into account:

• Mutations happen at the “nucleotide” level. As a conse-
quence, not all amino acids are accessible from all amino
acids via a single nucleotide mutation; and the set of
accessible amino acids depends specifically on the used
codon.

• The experiments allow to “vary selection strength.” For
TEM-1 and PSE-1, this is done by modifying the antibiotic
concentration: the same mutation can be more or less
strongly favored or suppressed.

To include these factors into our evolutionary model, we
introduce two important modifications with respect to SEEC:
first, we model evolution at the level of the nucleotide se-
quence ðn11; n12; n13; . . . ; ni1; ni2; ni3; . . . ; nL1; nL2; nL3Þ
coding for the amino acid sequence ða1; . . . ; aLÞ, that is,
the nucleotide triplet ðni1; ni2; ni3Þ codes for amino acid ai.
For each possible codon ðn1; n2; n3Þ 2 fA; C;G; Tg3 (with
the exception of the stop codons), we introduce the set of
amino acidsAaccðn1; n2; n3Þ � fA; . . . ; Yg, which are acces-
sible from ðn1; n2; n3Þ by at most a single nucleotide muta-
tion. Possible substitutions for ai are now only selected from
Aaccðni1; ni2; ni3Þ. Note that also ai is in Aaccðni1; ni2; ni3Þ,
accessible via its original codon and any synonymous
mutation.

Second, selection strength will be regulated by a new pa-
rameter b, having the form of an inverse temperature b ¼ 1
=T in statistical physics, which modifies the sequence prob-
ability to P � exp f�bEg. The “low-temperature” case b >
1 (T< 1) corresponds to increased selection (e.g., higher an-
tibiotic concentration, or directed evolution), in the limit b
!1 (T ! 0) only the best possible amino acid in position i

FIG. 2. Experimental and predicted mutational effects in TEM-1: panel (A) shows the results of the deep-mutational scanning experiment of
(Firnberg et al. 2014), as compared with the computational predictions using the epistatic Potts model (B) and the nonepistatic profile model (C).
Panels (A) and (B) have a Spearman rank correlation of �0.77, showing that low energies correspond to high fitness. Panels (A) and (C) have a
reduced Spearman correlation of �0.6 due to the absence of epistatic couplings in the profile model.
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is accepted. The “high-temperature” case b < 1 (T> 1) cor-
responds to decreased selection (e.g., lower antibiotic concen-
tration); the limit b! 0 (T !1) describes the case of
mutation-accumulation experiments without selection.

This idea is implemented in the following three steps,
which are iterated, compare with Materials and Methods
for details:

(1) We randomly select a site i 2 f1; . . . ; Lg to be mutated,
corresponding to the codon ni ¼ ðni1; ni2; ni3Þ and the
amino acid ai.

(2) One of the accessible amino acids b 2 AaccðniÞ is se-
lected to substitute ai with a probability Pðbja1; . . . ;
ai�1; a iþ 1; . . . ; aLÞ / exp f�bDEðai ! bÞg. Due
to the epistatic couplings in (equation 2), this probabil-
ity depends explicitly on the sequence context
ða1; . . . ; ai�1; aiþ1; . . . ; aLÞ.

(3) One out of the possible codons for amino acid b, which
differs from ni in at most a single nucleotide, is selected
uniformly at random.

The resulting nucleotide and amino acid sequences remain
thus mutually consistent.

The proposed dynamics can be efficiently implemented,
and very large sequence libraries can be simulated over long
times. To make these data comparable with the libraries gen-
erated by experimental evolution, we need to adapt the sim-
ulation parameters: first, the number of mutational steps in
our simulation is not directly related to the number of exper-
imental generations (because error-prone PCR may introduce
multiple mutations each round); we choose it to reach the
same average number of substituted amino acids in the sim-
ulated and experimental libraries. In this sense, different ex-
perimental mutation rates can be parametrized by the
number of steps needed by our dynamics to reach the
same number of mutations. Second, the selection strength b
¼ 1=T has no evident relation to the antibiotic concentra-
tion used in the experiment. We therefore tune the value of
b ¼ 1=T such that the statistical energy Eða1; . . . ; aLÞ of the
simulated and the experimental sequences have the same
linear slope as a function of the number of substitutions.
For the case of PSE-1, shown in figure 3, we find that
T¼ 1.4 is a good value, compare figure 3A for the experimen-
tal data from (Stiffler et al. 2020), and figure 3B for simulated
data. This corresponds to low selection strength
b ¼ 1=T < 1. Even if we adjust only average distance and
slope, we find that also the overall distribution is well repro-
duced. Similar observations for TEM-1 and AAC6 are shown
in supplementary figures S2 and S3, Supplementary Material
online.

Figure 3C shows that for strong selection T¼ 0.05
(b ¼ 20) the sequence energy decreases with the number
of substitutions, corresponding to an increasing fitness as
expected in a directed-evolution scenario. Weak selection,
shown in figure 3D for T¼ 20 (b ¼ 0:05), corresponds to a
sharp increase in statistical energy, and thus a loss in fitness, as
expected from the accumulation of predominantly deleteri-
ous random mutations.

Figures show global measures comparing experimental
and simulated sequences: the Hamming distance is the num-
ber of substitutions along the entire amino acid sequence, the
energy also depends on the entire sequence. To increase our
confidence in the quantitative character of our evolutionary
model, we compare in figure 4 the site- and amino acid-
specific mutational frequencies between experimental and
simulated sequence data. To this end, we extract the quan-
tities fiðaÞ describing the fraction of sequences in an MSA
having amino acid a in position i. Interestingly, also this re-
fined measure of sequence diversity is very similar for simu-
lated and experimental sequences; we observe a high
correlation of 86%, compare with supplementary figure S4,
Supplementary Material online. These plots highlight the im-
portance of working only with amino acid substitutions ac-
cessible via single-nucleotide mutations: many amino acids
show zero frequency in both plots due to inaccessibility. The
mutational spectrum predicted without considering the ac-
cessibility of amino acids is shown in supplementary figure S4,
Supplementary Material online: we see that the mutational
frequencies are more homogeneously distributed, close-to-
zero frequency mutations become very rare as compared
with the experimental sequences. The correlation goes
down to 65% between simulated and experimental data in
this case.

Based on these observations, we conclude that our evolu-
tionary model, which combines mutations at the nucleotide
level with selection at the amino acid level, is able to repro-
duce well the statistical features of the experimental sequen-
ces. This conclusion is also confirmed, when using TEM-1 and
AAC6 as initial wildtype sequences, compare with supple-
mentary figures S5 and S6, Supplementary Material online.

In Silico Sequence-Space Exploration, and the
Emergence of Epistatic Signals
Having developed a quantitative model to simulate experi-
mental evolution, we are now able to explore evolutionary
scenarios going well beyond those realized in the experiments.
We can systematically analyze the influence of the sequence
divergence from wildtype, of the sequenced library depth, and
of the selection strength on the accuracy of coevolution-
based contact prediction. Each setting of these parameters
would require long experiments and would sometimes be
inaccessible due to the high number of experimental rounds
or the depth of the sequenced library.

Computationally this becomes straightforward although
intensive: we have performed many runs of evolutionary sim-
ulations, each producing an MSA with specific parameters,
simulating the possible outcome of an evolutionary experi-
ment, as represented in figure 5. Each square in these plots
corresponds to the average over five simulation runs.
Depicted is the positive predictive value (PPV), which meas-
ures the fraction of true positive contact predictions within
the first 100 contact predictions, compare with Materials and
Methods for details. Due to the large number of contact
predictions to be performed, we used GaussDCA (Baldassi
et al. 2014), a very fast, even if not the most accurate contact
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predictor. Figure 5A shows the plot for the selection strength
used in the experiments for PSE-1. The red zone corresponds
to inaccurate contact predictions, being sometimes hardly
better than random (PPV � 0.13). It is found consistently
for small sequence libraries, and for sequence libraries of low
divergence from wildtype. It becomes evident that we need to
go to a sufficient number of simultaneous mutations to be
able to detect at least a weak epistatic signal between muta-
tions, which can be used for contact prediction. However, this
signal remains weak: we need much larger sequence libraries
of at least about 50,000 sequences to reach a reasonable
contact prediction. However, even for the largest and most
diverged library we have studied, a PPV of only 0.7–0.8 is
reached, which remains below the contact prediction reached
by using the MSA of natural homologs, which was used before
for the inference of our sequence landscape. The latter
reaches a PPV of 0.98 using GaussDCA. Figure 5B shows
the same observables for experiments starting with the
TEM-1 sequence, the overall results are very similar to PSE-
1, even if some quantitative details depend on the initial
wildtype sequence.

It might be speculated that better contact-prediction algo-
rithms may shift the region of nontrivial predictions down to
lower Hamming distances from wildtype, or to lower se-
quence numbers. Although the computational cost of
plmDCA is too high to reproduce the full analysis of figure 5,
we have reanalyzed two columns at average Hamming dis-
tance 41 and 65. As is shown in supplementary figure S7,
Supplementary Material online, for low sequence numbers
GaussDCA and plmDCA give very similar low prediction ac-
curacies, whereas the improved accuracy of plmDCA over
GaussDCA becomes visible only at sufficiently high sequence
numbers. At the resolution of our analysis, no shift in the
boundary is observable.

The conditions of the experiments for PSE-1 and TEM-1
are highlighted, in the two panels of figure 5. For PSE-1, 20
rounds of evolution led to an average sequence distance of 27
amino acid substitutions from wildtype, and a sequenced
library of 165,000 distinct sequences (Stiffler et al. 2020).
Interestingly, this point is located slightly beyond the bound-
ary of emergence of coevolutionary signal. The predicted av-
erage PPV of 0.58 is comparable with the 0.65 obtained using

FIG. 3. Statistical energy in dependence of sequence distance from wildtype: panel (A) shows the statistical energies of the sequences from
generation 20 in Stiffler et al., as a function of the Hamming distance (number of substituted amino acids) from the wildtype PSE-1. Panel (B) shows
the same quantities for the in silico simulated sequences, where selection strength T and the number of simulated evolutionary steps are adjusted
to reproduce the average distance and the slope from panel (A). Panel (C) shows an example of strong selection (T � 1) leading to optimized
sequences having lower statistical energies/higher fitness. Panel (D) shows the case of very weak selection (T � 1) resulting in random, mostly
deleterious substitutions strongly increasing statistical energy.
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the experimental MSA, compare with Materials and Methods
section.

This is in contrast to the TEM-1 experiment of (Fantini
et al. 2020), compare with figure 5B: the experiment was
performed for fewer rounds, leading to less divergence

from TEM-1, and the sequence library was less deeply
sequenced. The resulting library, with an average
Hamming distance of 18 from TEM-1 and with 34,431
unique sequences, is located slightly below the line of
emergence of coevolution signal. This observation provides

FIG. 4. Position-specific amino acid frequencies for experimental and simulated sequence libraries: panel (A) shows the frequencies fiðaÞ of usage of
amino acid a in site i in round 20 of experimental PSE-1 evolution, panel (B) shows the same quantity for simulated evolution. The Spearman rank
correlation between the two frequency spectra is 86%.

FIG. 5. Accuracy of contact prediction as a function of sequence number and sequence divergence: panel (A) shows the accuracy of contact
prediction as a function of the average sequence divergence from wildtype PSE-1 and the depth of the sequenced library. The accuracy is measured
via the PPV, that is, the fraction of true positive contact predictions in the first 100 DCA-predicted contacts, compare with Materials and Methods
for details. The selection strength T¼ 1.4 corresponds to the experimental condition in (Stiffler et al. 2020). The highlighted square indicates an
average Hamming distance of about 27 and a sequence library of 165,000, as realized in (Stiffler et al. 2020). Panel (B) shows the same quantities for
wildtype TEM-1, and for the experimental conditions used in (Fantini et al. 2020).
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a potential explanation for the observed reduced perfor-
mance in contact prediction.

The AAC6 results show that reduced sequence diver-
gence can, at least partly, be compensated by a strong
increase in the number of sequences in the evolved
MSA, compare with supplementary figure S8,
Supplementary Material online, which confirms original
findings of (Stiffler et al. 2020). Even if having only an
average Hamming distance of about 8 substitutions, the
large library of more than 106 sequences allows for the
detection of a weak contact-related signal.

The results depend substantially on the strength of selec-
tion. Supplementary figure S9, Supplementary Material on-
line, shows the extreme cases of very strong and very weak
selection discussed before. Both show inaccurate prediction.
An important difference becomes visible when looking at the
horizontal axes: all use the same number of simulated evolu-
tionary steps. In the case of strong selection, sequences stay
closer to the wildtype, since most mutations are deleterious
and selected against, and they stay close to each other. So
while being all functional, they do not accumulate sufficient
sequence variability to provide a reliable epistatic signal. In the
case of extremely weak selection, almost all mutations are
acceptable. Sequences are found to diverge strongly from
the initial PSE-1 sequence, but the absence of selection causes
also an absence of coevolution.

Discussion
The aim of this work was to showcase the potential of evo-
lutionary models in data-driven sequence landscapes. Recent
progress in landscape modeling has led to advances in using

sequence alignment to predict protein structure, mutational
effects, and even to design non-natural but biologically func-
tional sequences. Here we show that, equipped with a simple
stochastic dynamics capturing the interplay between muta-
tion and selection, these landscapes lead to models which are
able to describe in a quantitatively accurate way the results of
evolution experiments. This is not only restricted to proteins,
as studied in this work, but similar evolution experiments
have been performed for RNA (Zhou et al. 2018) and could
therefore be analyzed in an analogous way starting from se-
quence landscapes for RNA families (Kalvari et al. 2021).

The applications for experimental evolution are evident:
we can use our modeling to optimize experimental evolution
protocols, for example, when we search for fully functional
sequences but at some minimum number of mutations from
a starting sequence, or when we want to explore sequence
space optimally for contact prediction. In this case, we could,
for example, optimize the selection strength. In the case of the
beta-lactamases studied in this article, figure 6 shows that a
slightly lower selection pressure (i.e., higher selection temper-
ature) would have led to even better contact predictions.
However, this potential increase is weak as compared with
the one reachable by more diverged sequences.

A possible obstacle in such applications is the fact that the
selection temperature T, which we use to model selective pres-
sure, has to be fitted from experimental data via the slope of the
statistical energies of the evolved sequences vs. their distance
from wildtype. To understand the minimal sequence require-
ments for reaching robust and accurate slope estimates, we
have subsampled the experimental sequence libraries of PSE-1
for rounds 10 and 20. As is shown in supplementary figure S10,
Supplementary Material online, we observe: 1) that the slope

FIG. 6. Dependence of the contact-prediction accuracy on selection strength: we show the PPV (100 predicted contacts) of simulated MSAs at
variable selection strength T (panel A for PSE-1, panel B for TEM-1), and for different sequence distances from the wildtype protein. We predict
that, for the distances observed in the evolution experiments (27 for PSE-1, 18 for TEM-1), both experiments would have benefited from slightly
lower antibiotic concentrations.
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can be estimated accurately already from about 200–300
sequences, whereas the estimation error becomes large when
using less than 100 sequences, and 2) that the estimates are
almost equal for round 10 and round 20. We conclude that the
selection temperature T can be reliably determined with mod-
erate experimental effort (low number of sequences, few exper-
imental rounds). Once estimated, the parameters can be used in
simulations, which may guide more massive experiments evolv-
ing large sequence libraries over many rounds.

We see our current model as a starting point for more
detailed evolutionary models. There is space for a substantial
gain in accuracy: we can introduce biases in the mutations
introduced by error-prone PCR directly into the model
(Moore and Maranas 2000; Pritchard et al. 2005), the latter
can be derived from data by analyzing synonymous muta-
tions. Furthermore, we can introduce codon bias, the differ-
ence between transitions and transversions, the fact that
error-prone PCR may introduce simultaneously several muta-
tions before selection, or the emergence of phylogeny in
cycles of mutation and selection.

The modeling can also benefit from experimental feed-
back. If sequence libraries would also be sequenced before
and after the selection step, we could establish a better cor-
respondence between statistical energies and selection, up to
a gauge of statistical energies vs. antibiotic concentrations.

However, the potential of such evolutionary models in
data-driven landscapes goes far beyond the application to
experimental evolution. As is shown by SEEC (de la Paz
et al. 2020), already the simplest nontrivial evolutionary
model allows for illuminating important consequences of
epistasis in evolution, like the site- and time-dependence of
substitution rates. We anticipate that the proposed modeling
framework may capture many of these effects in a highly
quantitative way. The relatively simple modeling framework
proposed in our paper might also be a starting point for more
theoretical–mathematical analyses about, for example, the
emergence of epistatic signals in sequence libraries. In this
context, it might also be interesting to see in how far more
distributed signatures of epistatic signal, possibly related to
protein function rather than contacts, become visible in ex-
perimentally evolved sequence libraries, compare with
(Rivoire et al. 2016), (Shimagaki and Weigt 2019), and
(Tubiana et al. 2019).

Materials and Methods

Sequence Data
Sequences from Experimental Evolution
We include in our analysis the sequence data coming from
the experiments of in vitro evolution by (Fantini et al. 2020)
on TEM-1 and by (Stiffler et al. 2020) on PSE-1 and AAC6.

The aligned amino acid sequences from (Fantini et al. 2020)
were kindly provided by the authors prior to publication, and
can also be found at http://laboratoriobiologia.sns.it/supplemen-
tary-mbe-2019/ (last accessed November 17, 2021). The raw
sequencing reads are available at the National Centre for

Biotechnology Information Sequence Read Archive (SRA)
with accession code PRJNA528665 (http://www.ncbi.nlm.nih.
gov/sra/PRJNA528665, last accessed November 17, 2021).
Amino acid sequences with more than six gaps were discarded
as a quality control to remove sequences with lower quality.

Stiffler et al. (2020) ran two experiments using the PSE-1
beta-lactamase and the AAC6 acetyltransferase as starting
wildtypes. Aligned sequencing reads from the last round of
the two experiments (translated into amino acid sequences)
can be found at https://github.com/sanderlab/3Dseq (last
accessed November 17, 2021). The raw sequencing reads
are available at the National Centre for Biotechnology
Information Sequence Read Archive (SRA) with accession
code PRJNA578762 (http://www.ncbi.nlm.nih.gov/sra/
PRJNA578762, last accessed November 17, 2021).

Our models are built for the Pfam-annotated positions
using the corresponding Pfam domains PF13354 (Beta-lacta-
mase2) and PF00583 (Acetyltransf1). We realigned the wild-
type sequence using the hmmalign command from the
HMMer software suite (Eddy 2011) and profile Hidden
Markov Models downloaded from Pfam (Mistry et al.
2021). We then removed from the experimental MSAs all
columns corresponding to nonmatched states of the
wildtype sequence.

The resulting MSAs of experimentally evolved sequences
have 202 sites and 165,855 sequences for PSE-1 (round 20),
and 34,431 sequences for TEM-1 (generation 12). For AAC6,
we find 117 sites and 1,260,048 sequences (round 8).

Natural Homologous Sequences and Preprocessing of the

Training Set
The MSAs of natural homologous sequences of the two consid-
ered protein families PF13354 (Beta-lactamase2) and PF00583
(Acetyltransf1) were generated running the hmmsearch com-
mand from the HMMer software suite (Eddy 2011) on the
UniProt database (The UniProt Consortium 2021). Insertions
were removed, and sequences with more than 10% gaps and
duplicated sequences were excluded to improve the quality of
the alignment. Any sequence closer than 80% to the wildtypes
TEM-1, PSE-1, or AAC6 was excluded from the alignments to
avoid the introduction of biases toward these sequences in the
bmDCA learning. The resulting MSAs included 18,333 (43,576)
homologous and nonidentical aligned sequences of length 202
(117) for PF13354 (PF00583).

Note that some residues, which are present in the N- and
C-terminal regions of the experimental sequences, are not
covered by the Pfam domains, and therefore excluded from
our analyses. Extending the MSA beyond the borders of the
Pfam domains would lead to the inclusion of evolutionarily
less conserved positions, and thus to the inclusion of highly
gapped columns into the MSA of natural data. Such columns
have been previously found to compromise the accuracy of
DCA landscapes (Figliuzzi et al. 2016) and are therefore left
out in this study.
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The natural MSA were used to train two Potts models
using bmDCA (Figliuzzi et al. 2018) in the implementation
of Barrat-Charlaix et al. (2021), which provides the currently
most accurate DCA models.

Evolutionary Model
As already discussed in Results section, our evolutionary
model combines mutations at the nucleotide level with
selection at the level of aligned amino acid sequences.
We therefore need to specify both the nucleotide sequence
n ¼ ðn11; n12; n13; . . . ; ni1; ni2; ni3; . . . ; nL1; nL2; nL3Þ and
the resulting amino acid sequence a ¼ ða1; . . . ; aLÞ, which
is translated from n using the standard genetic code. Since we
consider full-length aligned sequences of Pfam domains, stop
codons are not allowed in n. Furthermore, we have to ac-
commodate alignment gaps possibly existing in a: a gap in a is
represented by a triplet of gaps in n. Gaps are not changed
during our simulations, our model does consider only single-
nucleotide substitutions, but no insertions and no deletions.
Note that the gray columns in figure 4 and supplementary
figures S5 and S6, Supplementary Material online, correspond
to gaps in the wildtype sequence, which are conserved both
in the experiment and in the model.

As mentioned before, for each codon
ðn1; n2; n3Þ 2 fA; C;G; Tg3, we consider the set of amino
acids Aaccðn1; n2; n3Þ � fA; . . . ; Yg, which are accessible
from ðn1; n2; n3Þ by at most a single nucleotide mutation.

Our simulation of sequence evolution proceeds by iterat-
ing the following three steps defining a Markov chain (MC) in
the space of nucleotide sequences (note that, due to the
degeneracy of the genetic code, the process is “not” an MC
in amino acid sequence space):

(1) A position i 2 f1; . . . ; Lg is chosen uniformly at ran-
dom along the amino acid sequence, corresponding to
the codon ni ¼ ðni1; ni2; ni3Þ and the amino acid ai.
Although ai ¼ }–}, that is, a gap is chosen, we repeat
the selection of the position i.

(2) Out of all accessible amino acids b 2 AaccðniÞ, we se-
lected one using the conditional probability Pbðbja�iÞ,
which couples the amino acid b explicitly to the se-
quence context a�i ¼ ða1; . . . ; ai�1; aiþ1; . . . ; aLÞ:

Pbðbja�iÞ ¼
exp fbhiðbÞ þ b

P
jð6¼iÞ Jijðb; ajÞg

ziða�iÞ
; (3)

with

ziða�iÞ ¼
X

b2AaccðniÞ
exp fbhiðbÞ þ b

X

jð6¼iÞ
Jijðb; ajÞg (4)

being a normalization constant. In difference to Z in equa-
tion (1), it can be calculated efficiently by summing over the
less than 20 accessible amino acids.

(3) One out of the possible codons for amino acid b, which
differs from ni in at most a single nucleotide, is selected
uniformly at random.

The new amino acid b substitutes ai in a, and the new
codon ni in n. We thereby conserve the coherence between
nucleotide and amino acid sequence.

To simulate an entire MSA of M sequences, the process is
initiated M times in the wildtype reference sequence, and M
independent runs of the MC are performed. The number of
steps in these MCs is chosen such that the average Hamming
distance of the generated amino acid sequences reaches a
target number. Note that the Hamming distances may vary
from MC to MC, since AaccðniÞ contains the case b¼ai ac-
cessible via any synonymous mutations. The Hamming dis-
tance can therefore assume any value between zero and the
number of performed mutational steps.

Simulated Sequence Data for Contact Prediction
Our evolutionary algorithm has three input parameters add-
ing to the wildtype sequence and the statistical-energy model:
the number of sequences M, the number NMC of steps of our
evolutionary MC model, and the selection temperature T.
Given this triplet of numbers it outputs an MSA obtained
simulating evolution for NMC iterations starting from the
wildtype sequence, repeating the sampling independently
M times at temperature T ¼ 1=b.

For each wildtype sequence, we simulated the outcome of
different protein evolution experiments by scanning these
three input parameters within a range of interest. For MSA
generated starting from TEM-1 or PSE-1 (AAC6), we varied M
in the range 100� 165; 000 (500� 1; 250; 000), NMC in the
range 5–255 (4–120), and T in the range 0.05–20.

To save resources and time, given the computational cost
of sampling, we opted for a scheme that would allow us to
reduce the number of independent MC chains needed to
simulate evolution. For each temperature T, we run 165,000
(1,250,000) independent MCs for TEM-1 and PSE-1 (AAC6)
and printed MSAs at the desired number of MC steps until
255 (120) MC steps. The MSAs with less sequences were
obtained by randomly subsampling without replacement
from the MSA with 165,000 (1,250,000) sequences. To pro-
duce more statistics, we ran the same simulations five times.

Contact Prediction
Contact prediction was performed using GaussDCA (Baldassi
et al. 2014) for all MSAs, included, for coherence, the exper-
imental ones. GaussDCA is the computationally most effi-
cient implementation of DCA. Its accuracy of contact
prediction is slightly inferior to plmDCA or bmDCA.
However, we use it: in our analysis, we had to predict contacts
for a large number of partially deep simulated MSAs (cf., fig. 5)
to explore multiple combinations of sampling time, sample
size, and selection strengths.

The reweighting parameter was set to 0 for contact pre-
diction of in silico MSAs, as this reduces computational time
and is coherent with the independence of the simulated MCs.
On the other hand, contact prediction of experimental MSAs
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was performed using the default option “:auto” of GaussDCA
for reweighting. These different treatments of simulated and
experimental sequences are based on the fact, that simula-
tions generate statistically independent sequences (condi-
tioned to wildtype initialization), whereas the experiments
may generate sequence ensembles having nontrivial phyloge-
netic effects. The pseudocount was set to 0.6 (0.5) for PSE-1
and TEM-1 (AAC6) empirically, as we found it to be a good
intermediate value for MSAs with very different statistics.

Intrachain atomic distances for both families were
obtained by running the single-protein mode of the code
provided by Pfam Interactions (https://doi.org/10.5281/zen-
odo.4080947, last accessed November 17, 2021), we used the
shortest distance between heavy atoms of the two amino
acids among all structures of the Protein Data Bank (PDB)
(Burley et al. 2021) listed in Pfam. Following standards in
coevolutionary contact prediction, all pairs with distance be-
low 8 Å and a minimum separation of 5 positions along the
sequence are kept as contacts for the calculation of the PPV.
For AAC6, we used a more stringent cutoff of 5.5 Å, since the
structural variability across the protein family is already well
represented in the PDB.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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