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Background: Changes in gene expression are associated with malignancy. Analysis of gene expression data 
could be used to reveal cancer subtypes, key molecular drivers, and prognostic characteristics and to predict 
cancer susceptibility, treatment response, and mortality. It has been reported that inflammation plays an 
important role in the occurrence and development of tumors. Our aim was to establish a risk signature model 
of breast cancer with inflammation-related genes (IRGs) to evaluate their survival prognosis.
Methods: We downloaded 200 IRGs from the Molecular Signatures Database (MSigDB). The data of 
breast cancer were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). 
Differential gene expression analysis, the least absolute shrinkage and selection operator (LASSO), Cox 
regression analysis, and overall survival (OS) analysis were used to construct a multiple-IRG risk signature. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were 
carried out to annotate functions of the differentially expressed IRGs (DEIRGs) The predictive accuracy 
of the prognostic model was evaluated by time-dependent receiver operating characteristic (ROC) curves. 
Subsequently, nomograms were constructed to guide clinical application according to the univariate 
and multivariate Cox proportional hazards regression analyses. Eventually, we applied gene set variation 
analysis (GSVA), mutation analysis, immune infiltration analysis, and drug response analysis to compare the 
differences between high- and low-risk patients.
Results: Totally, 65 DEIRGs were obtained after comparing 1,092 breast cancer tissues with  
113 paracancerous tissues in TCGA. Among them, 11 IRGs (IL18, IL12B, RASGRP1, HPN, CLEC5A, 
SCARF1, TACR3, VIP, CCL2, CALCRL, ABCA1) were screened with nonzero coefficient by LASSO 
regression analysis to construct the prognostic model, which was validated in GSE96058.The 11-gene IRGs 
risk signature model stratified patients into high- or low-risk groups, with those in the low-risk group having 
longer survival time and less deaths. Multivariate Cox analysis manifested that risk score, age, and stage were 
the three independent prognostic factors for breast cancer patients. There were 12 pathways with higher 
activities and 24 pathways with lower activities in the high-risk group compared with the low-risk group, yet 
no difference of gene mutation load was observed between the two groups. In immune infiltration analysis, 
we noted that the proportion of T cells showed a decreased trend according to the increase of risk score and 
most of the immune cells were enriched in the low-risk group. Inversely, macrophages M2 were more highly 
distributed in the high-risk group. We identified 67 approved drugs that showed a different effect between 
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Introduction

Breast cancer has replaced lung cancer as the most 
commonly diagnosed cancer (1). With over 2.3 million new 
cases and 685,000 deaths occurring in 2020, by 2040, it is 
predicted that there will be over 3 million new cases and  
1 million deaths due to breast cancer every year (1,2). 
Despite the availability of multiple therapies, including 
surgery, radiotherapy, chemotherapy, endocrine therapy, 
and immunotherapy, the median survival of patients with 
locally advanced or metastatic breast cancer is approximately 
2–4 years. Currently, about 30–50% of patients who are 
diagnosed at earlier stages will progress to metastatic breast 
cancer (3,4). Therefore, breast cancer, as a genetic and 
molecular heterogeneous disease, is a serious global threat 
to women’s health. One of the hallmarks of malignant 

tumors is the change of gene expression (4,5). Genetic, 
epigenetic, or transcriptomic alterations are associated 
with the genesis and progression of breast cancer (6). 
Gene expression data has been analyzed to reveal distinct 
cancer subtypes, critical molecular drivers, and prognostic 
signatures (7), and to predict cancer vulnerability, therapy 
response, and mortality (8,9).

In 1863, the connections between inflammation and 
cancer were firstly recognized (10,11). On the one hand, 
inf﻿lammation causes DNA damage that leads to mutations, 
and in course of time accumulated mutations result in 
the occurrence of cancers (12). On the other hand, DNA 
damage contributes to inflammation, where tumors create 
their own local inflammation microenvironment to recruit 
various immune cells such as T lymphocytes, B cells, 
dendritic cells, macrophages, neutrophils, monocytes, and 
natural killer (NK) cells, thus promoting the growth of 
the tumors (10,13,14). The effects of cancer-associated 
inflammation not only comprise beneficial effects but 
also detrimental systemic effects (15). T-cell-mediated 
cytotoxicity leads to tumor suppression (16). The so-called 
B symptoms such as fevers, sweats, and weight loss as well 
as cachexia and a series of other paraneoplastic symptoms 
constitute the negative systemic reaction to malignancy 
(15,17,18).

As previously mentioned, the tumor microenvironment 
infiltrated by inflammatory cells is an indispensable 
participant in breast cancer development, progression, 
survival, and migration (13,19). Interleukin (IL)-6, as a pro-
inflammatory cytokine, facilitates the survival of cancer 
cells through promoting endothelial cell migration and 
proliferation (20,21). Furthermore, the over-expression 
of the IL-6 family cytokines combining with vascular 
endothelial growth factor (VEGF) A leads to significantly 
worse survival in human epidermal growth factor 
receptor 2 (HER2)-negative breast cancer (22). The over-
expression of IL-1β causes higher breast cancer stage and 
poorer prognosis (23,24). In triple-negative breast cancer 

Highlight box

Key findings
•	 The 11-inflammation-related genes (IRGs) risk signature model 

can predict the survival of breast cancer patients. The proportion 
of T cells showed a decreased trend according to the increase of 
risk score, whereas macrophages M2 were more highly distributed 
in the high-risk group. The expressions of IL12B and SCARF1 may 
serve as potential targets for therapy of breast cancer.

What is known and what is new?
•	 Changes in gene expression and inflammation are associated with 

the occurrence and development of tumors.
•	 Our study was the first to involve a more comprehensive predictive 

model for breast cancer of genetic variation, genetic mutation, 
inflammatory cell infiltration, and drug sensitivity analysis.

What is the implication, and what should change now?
•	 IL12B and SCARF1 may serve as potential markers to predict 

therapeutic efficacy in breast cancer and the mechanisms associated 
with them need to be further explored. The nomogram we 
established can guide clinical evaluation of survival time and 
treatment response of breast cancer patients.

the high- and low-risk patients and the top 2 gene-drug pairs were IL12B-sunitinib and SCARF1-ruxolitinib.
Conclusions: The 11-IRG risk signature model is a promising tool to predict the survival of breast cancer 
patients and the expressions of IL12B and SCARF1 may serve as potential targets for therapy of breast cancer.

Keywords: Inflammation; prognosis; survival; breast cancer

Submitted Feb 03, 2024. Accepted for publication May 24, 2024. Published online Jul 05, 2024. 

doi: 10.21037/tcr-24-215

View this article at: https://dx.doi.org/10.21037/tcr-24-215



Hu et al. IRGs and breast cancer3654

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3652-3667 | https://dx.doi.org/10.21037/tcr-24-215

(TNBC), A20/TNFAIP3 is up-regulated and its expression 
level is highly linked to a poor prognosis of metastasis-
free patients (25,26). Recently, several predictive models 
based on inflammation-related genes (IRGs) have been 
developed and validated to evaluate prognosis as well as 
predicting survival probability in breast cancer patients. In 
2019, Zhao et al. developed a 3-messenger RNA (mRNA) 
(TBX21, TGIF2, and CYCS) model of breast cancer by 
collecting clinical materials and mRNA data from The 
Cancer Genome Atlas (TCGA), a research team (Cat. 
#BR1504a, Alenabio Company, Shanxi, China), and Gene 
Expression Omnibus (GEO) (27). Zang et al. developed an 
inflammatory risk model to indicate prognosis and reflect 
the immune microenvironment in breast cancer using the 
databases from TCGA, GEO, and Molecular Signatures 
Database (MSigDB) (28). In 2022, a tumor immune-
inflammation signature for breast cancer was explored 
by Liu et al. by extracting the datasets from The Cancer 
Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA), 
Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC), and MSigDB (29). Although 
the models in the first and second studies lacked validations 
in vitro cell experiments, the second study identified 
expression levels of the 5-gene signature by quantitative 
real time polymerase chain reaction (qRT-PCR) in breast 
tissue samples. In present study, we systematically and 
comprehensively analyzed the expression levels of IRGs in 
breast cancer patients through the datasets from TCGA 
and GEO. We explored the links between expression of 
genes and sensitivity of drugs to screen possible potential 
biomarkers guiding the clinical application of targeted 
therapy for breast cancer. We constructed an IRG risk 
signature for patients with breast cancer by conducting 
least absolute shrinkage and selection operator (LASSO). 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-215/rc).

Methods

Data acquisition

We downloaded a list of 200 IRGs from the MSigDB 
database (http://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). RNA-sequence (RNA-seq) data, the simple nucleotide 
variation data from the “Masked Somatic Mutation” 
category, and the corresponding clinical information of 
1,092 female breast cancer patients were obtained from 

TCGA (https://portal.gdc.cancer.gov). The dataset of 
GSE96058 was downloaded from GEO (https://www.ncbi.
nlm.nih.gov/geo/). 

Identification of differentially expressed IRGs (DEIRGs)

DESeq2 (R package version 1.34) in the R software (version 
4.1.1; R Foundation for Statistical Computing, Vienna, 
Austria) was used to normalize raw read count of RNA-seq 
from TCGA and calculate differentially expressed genes 
(DEGs). DEGs were identified as genes with log2(fold 
change) ≥1.0 and adjusted P value <0.05 (tumor tissues vs. 
normal tissues). Subsequently, the DEIRGs were identified 
from the DEGs. The heatmap was drawn by pheatmap 
package (R package version 1.0.12).

Functional enrichment analysis of DEIRGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were carried out to annotate the 
functions of the DEIRGs with clusterProfiler (R package 
version 4.0.5). A P value adjusted with Benjamini and 
Hochberg method less than 0.05 was considered statistically 
significant. To clarify the connections between genes 
and enriched GO terms, a network was constructed with 
Cytoscape (version 3.9.0; https://cytoscape.org/). 

Construction and validation of multiple-IRG risk signature

We used LASSO regression analysis to construct the 
prognostic model while using the TCGA cohort as training 
dataset with “glmnet” package (R package version 4.1–7). 
The RNA-seq data was standardized by log2(normalized 
read counts +1) transformation. With the addition of 
λ, LASSO tends to shrink the regression coefficients to 
zero. For 10-fold cross-validation, we chose a λ value 
that produced the minimum cross-validation error as our 
optimal λ value. We calculated a risk score of each sample 
as follows: risk score = sum of coefficients from the LASSO 
regression × normalized read counts. The median value of 
the risk score was used to divide the patients into high-risk 
or low-risk groups. We used the log-rank test with survival 
package (R package version 3.5-5) to analyze the overall 
survival (OS) of the patients. We drew time-dependent 
receiver operating characteristic (ROC) curves to calculate 
the area under the ROC curves (AUCs) to measure the 
predictive accuracy of the prognostic model using ROCR 
package (R package version 1.0-11). GSE96058 was used as 
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test dataset to validate the multiple-IRG risk signature. 

Construction and validation of nomogram

The univariate and multivariate Cox proportional hazards 
regression analyses were used to identify key factors 
associated with OS of breast cancer patients from risk score 
and other clinical factors. We used rms package (R package 
version 6.7-1) to draw a nomogram with the key factors as 
well as calibration curves. The calibration curves were used 
to assess whether the actual outcomes of 3-, 5-, and 10-year 
OS were similar to the predicted outcomes (30).

Gene set variation analysis (GSVA)

We obtained 50 hallmark pathways with msigdbr package 
(R package version 7.5.1) and removed the genes involved 
in two or more pathways (31). Then, GSVA was performed 
to assign pathway activity estimates to individual patients 
using GSVA package (R package version 1.40.1). Finally, we 
compared the pathway activity estimates between high- and 
low-risk patients with limma package (R package version 
3.50.3).

Mutation analysis

We used maftools package (R package version 2.8.05) to 
compare mutation load between high- and low-risk patients.

Cell type estimation

Cell type estimation was performed using Estimation of 
Stromal and Immune cells in Malignant Tumor tissues 
(ESTIMATE) with TCGA dataset. We compared cell 
enrichments between high- and low-risk groups. The 
correlations between risk score and the enrichments of 
immune cells were analyzed by using Spearman’s correlation.

Drug response analysis 

We used Cancer Therapeutics Response Portal (CTRP) (32) 
as a training dataset to predict imputed sensitivity score for 
TCGA dataset with oncoPredict (33) (R package version 0.2). 
The difference in drug response between high and low risk 
groups were assessed using Wilcoxon test. The correlations 
between expression levels of genes and imputed sensitivity 
scores were assessed using Spearman’s correlation. In the 
drug response analysis, we only included the approved  

drugs.
The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013).

Results

DEGs associated with inflammation

We obtained 65 DEIRGs after comparing 1,092 breast cancer 
tissues with 113 paracancerous tissues in TCGA (Figure 1A). 
Figure 1B displays the dissimilarity of expression levels of the 
65 IRGs in breast cancer tissues and paracancerous tissues.

Enrichment analysis of the DEIRGs

We applied GO and KEGG enrichment analysis to annotate 
the functions in all DEIRGs. The genes were annotated 
into three ontologies in GO annotation, including cellular 
component, molecular function, and biological process. As 
shown in Figure 2A, the DEIRGs were mainly distributed 
in endocytic vesicle, external side of plasma membrane, and 
endoplasmic reticulum lumen. The top 3 terms enriched 
molecular function were the activity of signaling receptor 
activator and cytokine as well as cytokine receptor binding. 
Cell chemotaxis, response to molecule of bacterial origin, 
and myeloid leukocyte migration were the top 3 terms 
enriched in biological process. 

In the KEGG pathway analysis, the DEIRGs were mainly 
enriched in viral protein interaction with cytokine and 
cytokine receptor, cytokine-cytokine receptor interaction, 
tumor necrosis factor (TNF) signaling pathway, and 
chemokine signaling pathway (Figure 2B).

Construction and validation of the 11-IRGs risk signature

LASSO Cox regression analysis was performed to screen 
crucial IRGs from the 65 DEIRGs. Ultimately, 11 IRGs were 
obtained to construct the prognostic model (Figure 3A,3B). 
The 11 IRGs and their corresponding regression coefficients 
are shown in Figure 3C. We calculated risk scores for all 
patients, and separated the patients into low- or high-risk score 
groups. Survival analysis indicated that the low-risk group 
had fewer deaths and longer survival time (Figure 3D-3G). 
The median survival days of the low- and high-risk groups 
were 6,593 and 3,462, respectively [Figure 3G, hazard ratio 
(HR) =1.926, 95% confidence interval (CI): 1.382–2.684, 
P<0.001]. ROC curve analysis indicated that the AUCs for 
3-, 5-, and 10-year survival were 0.638, 0.633, and 0.617, 
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Figure 1 Identification of differences in 65 expressed IRGs. (A) Heatmap of 65 differentially expressed IRGs between breast cancer tissues 
and adjacent normal tissues. (B) Differential expressions of 65 IRGs were compared between breast cancer tissues and adjacent normal 
tissues. IRGs, inflammation-related genes.
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of 11-gene signature. In (D) and (E) dotted line stands for the median risk score. IRGs, inflammation-related genes; LASSO, least absolute 
shrinkage and selection operator; DEIRGs, differentially expressed inflammation-related genes; ROC, receiver operating characteristic. 
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Figure 4 Validation of 11-IRGs risk signature in GSE96058. (A) The dispersion of 11-gene signature risk score in GSE96058. (B) Patients’ 
survival time and status in low- and high-risk groups in GSE96058. (C) Expression patterns of the 11-gene signature in GSE96058. (D) 
Relation between low- or high-risk groups and survival possibility of breast cancer patients in GSE96058. (E) Time-dependent ROC curve 
of 11-gene signature in GSE96058. In (A) and (B) dotted line stands for the median risk score. IRGs, inflammation-related genes; ROC, 
receiver operating characteristic.

respectively (Figure 3H). These results manifested that the 
model could distinguish high-risk patients from low-risk 
patients.

The GSE96058 cohort was used to evaluate the 
performance of the 11-IRGs risk signature. We calculated 
risk score for each patient and then stratified them into 
high- and low-risk groups. Patients with low-risk scores 
had longer survival time and less deaths (Figure 4A-4C). 
The low-risk group had longer survival time than high-
risk group (Figure 4D; HR =1.253, 95% CI: 1.016–1.545, 
P=0.03). In ROC curve analysis, the AUCs were 0.563, 
0.530, and 0.528 for 3-, 5-, and 10-year survival (Figure 4E). 
We also investigated the basal characteristics of patients 
in the different risk groups. In the TCGA cohort, only 

estrogen receptor (ER) showed a significant difference 
between the low- and high-risk group (Table 1). In the 
GSE96058 cohort, the difference existed in age and grade 
(Table 1).

Construction and validation of nomogram

In the univariate Cox analysis, six risk factors were 
significantly relevant with survival of breast cancer patients, 
including risk score, age, stage, tumor (T), node (N), and 
metastasis (M) (Figure 5A). Then, we carried out multivariate 
Cox analysis with the 6 factors, and found that risk score, 
age, and stage were the three independent prognostic factors 
(Figure 5B). Thereby, we used the three factors to develop 
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a nomogram to predict the survival time of breast cancer 
patients (Figure 5C). As shown in Figure 5D-5F, calibration 
curves revealed that the nomogram model owned high 
accuracy in predicting 3-, 5-, and 10-year OS. 

GSVA between high- and low-risk groups

Figure S1 shows the pathways significantly enriched in 
the high- and low-risk groups. Among the 50 pathways,  
12 pathways had higher activities and 24 pathways had 
lower activities in the high-risk group compared with the 
low-risk group. 

Correlation between gene mutation and risk score

Mutations in genes have been shown to play key roles in 
both the development of tumors and their response to 
therapy (34), thus we compared mutation load between 
high- and low-risk patients. However, no difference was 
observed between the two groups (Figure S2).

Status of immune infiltration

We predicted the composition of infiltrating immune cells 
in breast cancer tissues with TCGA cohort. We noted 
that the proportion of T cells showed a decreased trend 

Table 1 Baseline characteristics of the patients in different risk groups

Characteristics
TCGA cohort GSE96058 cohort

High risk Low risk P value High risk Low risk P value

Age 0.71 0.006

<60 years 282 288 603 681

≥60 years 246 240 1,101 1,024

Stage 0.11 –

I 86 95 – –

II 288 309 – –

III 130 107 – –

IV 13 6 – –

Grade

G1 – – 317 188 <0.001

G2 – – 822 771

G3 – – 535 711

ER <0.001 0.36

Positive 418 356 1,474 1,461

Negative 89 146 120 134

PR 0.058 0.47

Positive 352 321 1,307 1,337

Negative 153 180 209 198

HER2 0.30 0.90

Positive 87 69 219 219

Negative 278 266 1,413 1,430

All patients from the two datasets were included, including those with triple-negative breast cancer. TCGA, The Cancer Genome 
Atlas; GSE, National Center of Biotechnology Information Gene Expression Omnibus series; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth receptor 2.

https://cdn.amegroups.cn/static/public/TCR-24-215-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-215-Supplementary.pdf


Translational Cancer Research, Vol 13, No 7 July 2024 3661

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3652-3667 | https://dx.doi.org/10.21037/tcr-24-215

Figure 5 Survival feasibility of risk scores integrating clinical risk factors in breast cancer patients. (A) Univariate Cox analysis of TCGA. 
(B) Multivariate Cox analysis of TCGA. (C) Nomogram of predicting survival probability for 3, 5, and 10 years. (D) Calibration plot for the 
3-year OS nomogram model. (E) Calibration plot for the 5-year OS nomogram model. (F) Calibration plot for the 10-year OS nomogram 
model. T, tumor; N, node; M, metastasis; HR, hazard ratio; CI, confidence interval; ER, estrogen receptor; PR, progesterone receptor; 
HER2, human epidermal growth factor receptor 2; OS, overall survival; TCGA, The Cancer Genome Atlas.

according to the increase of risk score (Figure 6A). The 
differences between low- and high-risk groups in cell 
composition were observed in 15 types of immune cells 
(Figure 6B). Most of the immune cells in Figure 6B were 
enriched in the low-risk group, including T cells CD4 

memory activated, T cells CD8, T cells follicular helper, 
and T cells regulatory Treg, and several cells showed an 
opposite trend, such as macrophages M2, which were also 
confirmed in the following Pearson correlation analysis 
(Figure 6C-6G). 
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The difference in drug response between high- and  
low-risk patients

We identified 67 approved drugs that showed a different 
effect between high- and low-risk patients (Figure 7A). 
Then, the correlations between expression levels of the 11 
genes in the signature and imputed sensitivity scores were 
assessed using Spearman’s correlation. Totally, 72 gene-drug 
pairs with P<0.05 and absolute value of Pearson correlation 
coefficient >0.25 were identified (Figure 7B). The top 2 
gene-drug pairs are shown in Figure 7C,7D.

Discussion

Inflammation occurs when the body’s immune system 
responds to injury or infection to maintain homeostasis (35). 
Studies have shown that inflammation is involved in the 
initiation, growth, progression, and metastasis of tumors (36).  
Perhaps the most striking case is that ulcerative colitis, a 
type of inflammatory disease, increases the risk of bowel 
cancer (37). Analogously, hepatitis B and chronic gastritis 
with Helicobacter pylori increase the risks of liver and stomach 
cancer (38). It is noteworthy that chronic inflammation is 
remarkably associated with breast cancer recurrence (39) 
and uncontrolled inflammation kills more than a third of 
breast cancer patients (40).

In our study, we firstly obtained 65 DEIRGs from 
TCGA dataset. Then an 11-IRGs risk signature model was 
established to calculate risk score of breast cancer patients. 
We further constructed a nomogram to predict 3-, 5-, or 
10-year survival of breast cancer patients. By now, several 
models of inflammation-related breast cancer prognosis 
have been published. In the 3-mRNA model constructed 
by Zhao et al., only 5-year survival was predicted for breast 
cancer patients (27). In the 5-inflammatory-gene signature 
developed by Zang et al., two validation sets were used 
to test the predictive feasibility of the model (28). They 
only analyzed risk score for differences in gene variation 
and signaling pathways. In our study, we explored the 
differences between high- and low-risk groups in genetic 
variation, genetic mutation, inflammatory cell infiltration, 
and drug sensitivity analysis. 

Tumor microenvironment is a complex cellular 
ecosystem, in which inflammatory cells infiltration could 
interact with tumor cells, thus affecting tumor progression 
and therapeutic efficacy (41). The inflammatory cells 
recruited to the tumor site exhibited dual natures: some 
inhibited tumor growth, such as T cells and NK cells, 

whereas some promoted tumor progression (42). As a 
key immune cell in the tumor microenvironment, the 
abundance of macrophages correlates with adverse clinical 
outcomes, especially type M2 macrophages. Macrophage 
M2 have been shown to promote angiogenesis, invasion, 
movement, and infiltration at site of metastasis to stimulate 
the extravasation and continuous growth of tumor cells (43). 
Increased macrophage M2 infiltration has been associated 
with metastasis and poor prognosis in osteosarcoma (44). 
Macrophage M2 also accelerated lymphoma progression 
and deteriorates the patient’s prognosis (45). In addition, 
CD8+ T and CD4+ T cells have been shown to have possible 
anti-tumor effects on breast cancer (42). Herein, more 
macrophage cells infiltrated in the high-risk group indicated 
a worse prognosis. Our analysis of the correlation between 
risk scores and immune-infiltrating cells confirmed the 
above findings. 

In drug sensitivity analysis between high- and low-risk 
patients, IL12B, of which high expression was negatively 
correlated with risk core, was associated with increased 
sensitivity to sunitinib. High expression of SCARF1 was 
negatively correlated with sensitivity of ruxolitinib. IL-12 is a 
multipotent cytokine encoded by IL12B that has been shown 
to be effective in anti-tumor therapy (46). Previous studies 
have shown that anti-tumor therapies combined with IL-12 
gene therapy potentiated the efficacy of experimental cancer 
therapy. Co-injection of IL-12 in adenovirus vector and 
paclitaxel enhanced the therapeutic effect of melanoma (47). In 
mammary tumors, animals injected intratumorally with IL-2 
and IL-12 had a higher rate of tumor regression (48). Sunitinib 
is a tyrosine kinase inhibitor (49) which has become the 
optimum first-line treatment for advanced renal cell carcinoma 
when united with immune checkpoint inhibitors (50).  
Together, they have the ability to antagonize vascular 
endothelial growth factor receptors (50). Another study 
elucidated that immune checkpoint inhibition in combination 
significantly prolonged OS compared with sunitinib alone 
in metastatic renal cell carcinoma (51). SCARF1 expresses 
in several cells, such as dendritic cells, epithelial cells, 
and macrophages (51). As a member of the scavenger 
receptor protein superfamily (52), it not only promotes the 
specific recruitment of pro-inflammatory CD4+ T cells 
to hepatocarcinoma tissues (53), but also binds and clears 
apoptotic cells (52). Moreover, high expression of SCARF1 
was found to be associated with lung adenocarcinoma (54). 
Li et al. validated that ERβ2 promoted TNBC metastasis 
by binding SCARF1 (55). Ruxolitinib is a JAK inhibitor that 
has been shown to work by inhibiting Janus kinase, which 
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in turn inhibits cytokine receptor signaling pathways (56). 
It has anti-inflammatory as well as immunosuppressive 
effects (57). During the treatment of myelofibrosis and high-
risk polycythemia vera, ruxolitinib has been shown to affect 
immune function and increase the risk of infection (58). 
Therefore, the expressions of IL12B and SCARF1 may serve as 
potential targets for therapy of breast cancer, but the specific 
mechanism needs further investigation. 

In this study, we provided a comprehensive tool to 
predict the prognosis of breast cancer. However, the 
research involved deficiencies, as follows. First, the 
prediction model was based on public databases and was 
not evaluated in a prospective cohort. Second, the model 
was only tested in one validation set, and the sample size 
was not large enough to validate the feasibility of the 
model. Third, the molecular mechanisms underlying 
IL12B and SCARF1 as prognostic biomarkers in breast 
cancer were unclear. Taken together, the roles of the 
IL12B and SCARF1 genes in breast cancer warrant further 
investigation.

Conclusions

We have provided a comprehensive prognostic tool for 
predicting breast cancer survival. Drug sensitivity analyses 
further hinted at the possibility that we use IL12B and 
SCARF1 as potential markers to predict therapeutic efficacy 
in breast cancer, although the mechanisms associated with 
them need to be further explored.
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