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Abstract

The dimensionality of the spatially distributed channels and the temporal resolution of

electroencephalogram (EEG) based brain-computer interfaces (BCI) undermine emotion

recognition models. Thus, prior to modeling such data, as the final stage of the learning pipe-

line, adequate preprocessing, transforming, and extracting temporal (i.e., time-series sig-

nals) and spatial (i.e., electrode channels) features are essential phases to recognize

underlying human emotions. Conventionally, inter-subject variations are dealt with by avoid-

ing the sources of variation (e.g., outliers) or turning the problem into a subject-deponent.

We address this issue by preserving and learning from individual particularities in response

to affective stimuli. This paper investigates and proposes a subject-independent emotion

recognition framework that mitigates the subject-to-subject variability in such systems.

Using an unsupervised feature selection algorithm, we reduce the feature space that is

extracted from time-series signals. For the spatial features, we propose a subject-specific

unsupervised learning algorithm that learns from inter-channel co-activation online. We

tested this framework on real EEG benchmarks, namely DEAP, MAHNOB-HCI, and

DREAMER. We train and test the selection outcomes using nested cross-validation and a

support vector machine (SVM). We compared our results with the state-of-the-art subject-

independent algorithms. Our results show an enhanced performance by accurately classify-

ing human affection (i.e., based on valence and arousal) by 16%–27% compared to other

studies. This work not only outperforms other subject-independent studies reported in the lit-

erature but also proposes an online analysis solution to affection recognition.

1 Introduction

A lack of understanding of neurophysiological signals has resulted in numerous unanswered

questions about human beings, their health, and their cognitive and social development, as

well as human-to-human and human-to-machine interaction. Traditionally, communica-

tion can be categorized into active (direct) or passive (indirect) communication. Active
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communication is contextual and can be interpreted, while passive communication involves

uncertainty, and interpreting it is difficult. All means of communication (e.g., written, ver-

bal, body language) result from neural activation in the brain. Human affection, one of the

most complicated areas of investigation in cognitive and behavioral psychology, whether

it occurs intrinsically (e.g., only neural activation) or extrinsically (e.g., via any ordinal

method of communication), is hard to predict, communicate, and interpret. The urge to

understand human brain and emotions has advanced technologies and emerging interdisci-

plinary fields (e.g., affective computing [1]) to recognize, interpret, and process human

affects.

Emotion is a multifaceted phenomenon that can be hard to quantify for many reasons,

namely, 1) individuality and event-dependence (e.g., two different people might react differ-

ently to a similar situation); 2) the existence of a broad, overlapping spectrum of emotional

states; and 3) the fleeting property of emotions (i.e., emotion is momentary, as opposed to

mood, which lasts longer and can be a personal trait) [2]. Two primary methods for identify-

ing emotions: Darwinian method (i.e., universal basic emotions) and cognition (i.e., dimen-

sional measures of valence and arousal) [3]. Cognition is a quantitative approach in which

two-dimensional (i.e., arousal and valence) continuous scales represent each emotion from

which other emotions can be derived. These affective measures might then correlate with

neural activation in brain regions that can be detected using invasive and non-invasive

techniques.

EEG is a non-invasive technique that utilizes the electrical potential from the firing of mil-

lions of neurons projected on the scalp as spatially distributed electrical potential. Compared

to other non-invasive techniques, EEG has gained the interest of industry and the research

community [4] thanks to 1) effective temporal resolution, measured in milliseconds; 2) reason-

able cost compared to fMRI; and 3) portability and suitability for different experimental set-

ups. However, EEG suffers from low spatial resolution and artifact interference, such as

muscle movement, power frequency, and eye-blinking.

Despite the disagreement in the emotion literature regarding which regional sources are

significant in identifying human emotions, it is believed that identification of positive and neg-

ative emotions occurs in the frontal, temporal, and parietal lobes. Zhang et al. et al. applied a

channel selection procedure based on the ReliefF feature selection algorithm [5], and they con-

cluded the electrode channels, Fp1 and T7, among other channels in the lobes mentioned

above, were important. Channels Fp1 and Fp2 were frequently selected in a subject-specific

sequential forward search proposed by [6]. In [7–9], the authors thoroughly reviewed and

investigated different channel and feature extraction selection methods trained on several clas-

sifiers. Channel selection methods for detecting event-related potential in single-trial studies

are discussed in [10]. Spatiotemporal features, however, exhibit apparent inter-subject varia-

tion, which led researchers to select a subset of subjects with less variation or prefer subject-

dependent modeling instead.

In this article, we address the subject-specific particularities to recognize emotions cross-

subjects. Subject-to-subject variation has been identified as one reason for low performance in

subject-independent emotion recognition studies. However, subjective particularities have not

been actively considered when constructing affective recognition systems. The contribution of

this work includes studying subject-specific brain connectivity for individuals participating in

the experiments, described in the next section, over several epochs; feature and channel (i.e.,

spatiotemporal features) selection using an online unsupervised learning approach; encapsu-

lating these algorithms into the proposed affective recognition framework to recognize emo-

tions based on features that are relevant to the participating individuals and improve the

overall performance of the subject-independent affective recognition.
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2 Materials and background

2.1 Datasets

DEAP is short for the Dataset of Emotional Analysis using Physiological Signals [11]. It involves

32 subjects, each of whom has watched 40 musical video clips that vary in their emotional con-

tent. The dataset consists of a multi-channel multidimensional array of size 32 � 40 � 40 � 8064

(representing subject � video � channel � data/signal). We only used 32 neurological oriented

sensors. We excluded other physiological measures except for electrooculography (EOGs) for

ocular artifacts removal. At the end of the session, subjects rated their affection regarding that

stimulus (60 s). The frequency rate of this experiment is 512 Hz, and all data are available.

MAHNOB-HCI [12] consists of 27 subjects who watched 20 movie excerpts varying in

time between (34.9–117 s) in a frequency of 512 Hz. Subjects reported their valence and

arousal feedback, among other assessment reports. This experiment is similar in technical

setup to DEAP, except that it does not include EOG sensors.

DREAMER dataset [13] does also test human affection through 18 music videos that vary

in time (65–393 s). Twenty-three participants watched and evaluated those stimuli. The experi-

menter used Emotiv EPOC consisting of 14 electrode channels, recording a rate of 128 Hz.

2.2 Subject dependency

Emotion recognition studies can mainly be categorized into two schemes, subject-independent

or subject-dependent. A subject-independent scheme is stimulus-dependent, where different

neurophysiological features from different subjects contribute to the prediction outcomes

based on their affective feedback. In this scheme, each stimulus is a unit, and each subject is a

data point. Each participant provides feedback on their emotional states in response to stimuli

in the environment. Conversely, subject-dependent learning is another scheme of affective

learning implemented extensively in recent affective computing studies. Compared to the

subject-dependent scheme, subject-independent emotion recognition is closer in practice to

real-life applications, and it is generalizable across a population. In the subject-independent

scheme, we aim to verify the validity and effect of the event from different perspectives, not

only from the perspective of a single respondent. One drawback of the subject-independent

scheme is that it ignores the particularities of individuals and generalizes the learning process

despite the subjective differences between participants. In this work, we propose a mechanism

involving personal neurological specificities to enhance the outcomes of the subject-indepen-

dent scheme.

3 Methodology

We propose an extended BCI pipeline for the automatic subject-specific unsupervised feature

and channel selection for a subject-independent scheme of affect modeling and recognition.

Although we mainly contributed to the channel selection, the framework was enhanced in dif-

ferent parts such as the unsupervised feature selection and ranking through epochs. An over-

view of the proposed framework is shown in Fig 1. It consists of the following phases: 1) data

(i.e., EEG and EOG signals) acquisition, 2) epoching the time-series data 3) preprocessing

each epoch, 4) feature extraction, 5) unsupervised channel and feature selection, 6) supervised

learning, 7) evaluation and analysis.

3.1 Time slicing (Epoching)

Event-related sensors’ signals might be underestimated when a global analysis of the given sig-

nals is applied. Therefore, we believe dealing with smaller windows of time would lead to a
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higher temporal resolution; hence, feature extraction will be able to extract more relevant

event-aware features [14].

We define an epoch size, referred to as w, and that is the synchronization point where all

subjects hypothetically need to reach simultaneously for a given stimulus. w’s form individual

units of time in which feature extraction methods are applied. We have set 3 window sizes, 2,

5, 10 seconds. Investigating the window sizes is not in the scope of this work.

3.2 Signal preprocessing

EEG signals are susceptible to external sources of noise (i.e., artifacts). The main external

sources of EEG artifacts are power lines, eye-blinking, and muscle movement. Avoiding

these undesired artifacts is almost impossible; however, post-acquisition processes might be

Fig 1. The proposed framework.

https://doi.org/10.1371/journal.pone.0253383.g001
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beneficial to reduce a fair amount of these inevitable artifacts. In [9], a comprehensive survey

on the EEG-based emotion studies shows that preprocessing techniques were overwhelmingly

considered, which suggests the complexity, yet vitality, of this phase. In this paper, we consider

the following EEG preprocessing procedure as suggested by [15, 16]:

• Notch filter: We removed power line noise at 50 Hz (i.e., the nominal frequency in the Euro-

pean standard of power) using notch filter.

• Band-pass filter: We applied a band-pass filter (0.5 Hz–40 Hz) corresponding to Nyquist

frequency.

• Ocular noise:

• To detect the eye-blinking momenta, we referenced the vertical EOG sensors (i.e. bipolar

reference).

• To exclude ocular artifacts, we applied independent component analysis, or ICA (i.e.,

Fast ICA [19]).

• Down-sampling: We down-sampled to 128 Hz to mitigate the computational and storage

complexities.

This preprocessing procedure was slightly toned for each dataset due to dataset-based

variations such as equipment and setups. For example, when dataset does not include ocular

sources to detect eye-blinks, prefrontal electrodes can alternatively be referenced. ICA used to

be a bottleneck in automating BCI applications because of the need to manual rejection of bad

components. However, several algorithms to automate ICA components rejection have been

developed such as [17, 18].

3.3 Feature extraction

After preprocessing EEG signals, we can extract features from the time-series data. Feature

extraction methods can be in time-domain, frequency-domain or time-frequency. A large

combination of features can be resulted from the multidimensional EEG signals and the many

feature extraction algorithms presented in the EEG literature.

We use a variety of the most common feature extraction methods that have been extensively

applied in BCI and emotion recognition applications [19, 20]. Below, we list the most fre-

quently used methods in both time, frequency and time-frequency domains that we use in this

work. See [19, 21] for more details. We extracted 54 features from each electrode channel (i.e.

1728 features of a 32-channel system) per subject. In parenthesis (.) are the tags we used in the

figures below as a reference for the reader.

• Time-domain

• Moments: Mean (mean), Variance (var), Standard Deviation (std), Skewness (skw), Kur-

tosis (kurts).

• Entropy: Approximate Entropy (entrpA), Sample Entropy (entrpS), Spectral Entropy

(entrpSp).

• Hjorth: Hjorth mobility and complexity (hjorthM, hjorthC).

• Others: Peak to peak (ptp), Higuchi Fractal Dimension (higuchi), Katz Fractal Dimension

(katz), Number of zero-crossings (zcross), Line length (lnlen), Decorrelation time (dec-

orr), Hurst exponent of the data (hurst).
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• Frequency-domain

• Spectral Edge Frequency (spec_frq), Hjorth mobility and complexity of power spectrum

(hjorthMsp, hjorthCsp), loglog scale of the linear regression of power spectral density,

PSD (spc_slp1-spc_slp4)?, Band energy (enrg_bnd1-enrg_bnd5)†, Power Spectrum

(powfreq1-powfreq5)†.

? 1-4 = Spectral slope’s intercept, slope, MSE, and R2; † 1-5 = Frequency bands: delta

(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–

Nyquist frequency Hz).

• Time-frequency-domain

• discrete wavelet transform (DWT) coefficients (wvlet1-wvlet6)�, Teager-Kaiser energy

(tk1-tk14)�.

� 1-6 = levels of decomposition DWT; � 1-14 = (DWT levels of decomposition+1)�2

3.4 Unsupervised feature extraction selection

Feature selection is a dimensional reduction process that aims to represent data in a low-

dimensional space by selecting a subset of its original feature space. It approaches this goal by

eliminating irrelevant and redundant features.

Based on where a feature selection method is designed to occur in the learning pipeline, fea-

ture selection can be generally categorized into four categories, filter, wrapper, embedded, and

hybrid methods [9, 22]. The latter two methods are derived from either filter or wrapper or a

combination of both. Filter methods employ the selection criteria regardless to the outcomes

of the classification algorithm, thus reducing the effect of over-fitting. In contrast, wrapper

methods is highly dependent on the process of learning where the outcome of the learner

decides whether or not certain features are to be eliminated. Unlike filter methods, wrapper

methods involve extensive computation since the majority of the learning pipeline recursively

search for an optimized selection of features.

This framework is to select features in an online unsupervised manner. For this purpose,

several unsupervised algorithms such as Laplacian score and dispersion ratio have been

reported in many reported studies for feature selection. Here, we use Laplacian score feature

selection to rank the time and frequency features for a subject-specific episodic signals gener-

ated from different sources (i.e. channels). Laplacian score algorithm works as follows:

• Construct a k-nearest neighbor graph G.

• Define a similarity matrix S populated as (1):

Sij ¼

(
e�
kxi � xjk

2

t ; i; j 2 Gk

0; otherwise
ð1Þ

• Compute the graph Laplacian for each feature r using L = D − S, where D is the diagonal

matrix.

• Finally, a Laplacian score is calculated for each feature fr,

Lr ¼
P

ijðfri � frjÞ
2Sij

VarðfrÞ
ð2Þ
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and the goal is to minimize the objective function. Features with lower scores are ranked

higher.

3.5 Unsupervised subject-specific channel selection algorithm

Channel selection can contextually be seen as a sub-domain of feature selection. EEG signals

are multi-dimensional where a number of channels detect and record simultaneous signals

from different regions of the brain. Temporal signals are then transformed to more informa-

tional features.

We present a novel algorithm that aims to find a representative subset of the channel space

by learning from inter-channel interactivity while subjects are still in session. Basing this work

on unsupervised similarity-based learning, channel selection known as a time-consuming task

can now be online. The ultimate goals to this phase is to minimize unnecessary redundancy in

the channel space and reduce computational and storage overheads.

3.5.1 Inter-channel connectivity learning. Here, we propose an inter-channel connectiv-

ity-based learning algorithm that learns subject-specific connectivity patterns over epochs.

Notation: In this section, let XC�F
T̂ be a subject-trial-independent data encapsulated in

a tensor form as XC�F
T̂ ¼ fXc�f

t̂ : t̂ ¼ 1; . . . ; T̂ 2 N; c ¼ 1; . . . ;C 2 N; f ¼ 1; . . . ; F 2 Ng
where t̂ refers to epochs (i.e. time-windows) of a given time-series, and c 2 C is a set of elec-

trode channels, each of which has f 2 F feature vector. A similarity matrix S 2 Rn�n is the

pairwise similarity among instances of a given dimension. For instance, a pairwise similarity

among channels is calculated along the electrode channel dimension 8c 2 C. Pairwise rela-

tions are best described as graphs since similarity among these instances can be encoded in

an affinity graph. We define a graph G = (V, E) where V is a set of vertices or nodes (i.e. elec-

trode channels) and E is the edge-set of G. G is an undirected symmetric graph where an

edge euv is the similarity measure (i.e. correlation) between two nodes (i.e. electrode chan-

nels) hu, vi.
Algorithm: Given XC�F

T̂ , we aim to find a subset of electrode channels Ĉ � C without

adversely compromising the representability compared to when we use the whole channel

space C. In the following, we provide a narrative explanation of the algorithm. An illustrative

diagram is shown in Fig 2.

Prior to investigating inter-channel functional connectivity, we first construct a neighbor-

ing matrix that encodes EEG electrode channels’ spatial distribution. The neighboring matrix

is denoted as δ 2 Rc
�c, and each entry is populated by a distance measure between every two

channels in the channel space, as given by (3).

dðp; qÞ ¼

(
k; p 6¼ q& k � kmax

0; otherwise
ð3Þ

In (3), δ is a topological distance function that calculates the shortest path of how far node p is

from node q. κ is the unweighted edge distance between any two nodes of the function δ such

that it does not exceed a preset maximum value κmax.
Independent of the spatial distribution, we assess how similar (i.e., correlated) electrode

channels among each other are in respect to functional neural co-activation among different

electrode channels. For that, we measure inter-channel similarities given their feature spaces.

Using an efficient similarity measure is greatly vital. Euclidean distance, correlation, and
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mutual information are reportedly used on such data [23]. Here, we use Pearson’s correlation

(4).

Sðci; cjÞ ¼
COVðXci�f

t ;Xcj�f
t Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXci�f
t ÞVarðX

ci�f
t Þ

q ð4Þ

where i and j are any two electrode channels c 2 Rf, where f is the feature space, and i 6¼ j.
Now we cluster electrode channels that synchronously co-activate based on how similar

inter-channel attributes are in a given window of time. Electrode channels assigned to different

clusters are less similar in terms of their time and frequency attributes. The time-variant chan-

nel synchrony increases the complexity of detecting co-activation between different regions of

the brain. Therefore, a clustering method that discovers co-activations in all regions without

extra presumptions such as a predefined number of clusters or a high dependency on random

initialization is favorable. Hence, we apply affinity propagation that iteratively yields data sam-

ples to exchange messages in order to conclude, upon convergence, either a data sample is a

cluster exemplar or one associated with another data sample identified as an exemplar-based

on a similarity matrix Sij. In order to identify exemplars and cluster other data points accord-

ingly, AP defines two matrices [24]: responsibility ρ and availability α as shown in Eqs (5) and

(6), respectively.

rik ¼ Sik � max
k0 6¼k
ðSik0 þ aik0 Þ ð5Þ

aik ¼

min½0; rkk þ
P

j=2fi;kgmaxð0;rjkÞ�; i 6¼ k
P

j6¼kmaxð0; rjkÞ; i ¼ k

8
<

:
ð6Þ

where i and k are any data sample and potential exemplar, respectively. Eq (6) updates the on-

and off-diagonal of α. Ultimately, each data sample will be assigned to an exemplar that seems

most similar to it and also selected by other samples. Exemplars and their associated data sam-

ples form the final clusters. The final co-activation functional clusters resulted from the set of

Fig 2. A general diagram of the proposed channel selection algorithm. The dotted box corresponds to a specific window of time (e.g., t = 2).

https://doi.org/10.1371/journal.pone.0253383.g002
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exemplars K in {αkk + ρkk> 0} and the assignment process 8i 6¼ k 2 n are depicted as labeling

matrix, L as shown in (7).

Lij ¼

(
1; i; j 2 k 2 K & i 6¼ j

0; otherwise
ð7Þ

With the knowledge of the functional clusters, presented in Eq (7), as well as spatial distri-

bution of channels, we construct a graph G that represents concurrent activation among nodes

(i.e. electrode channels). Spatially close electrode channels often read similar signals due to

projection of underlying neurons, so we assign lesser weights on their corresponding edges

according to their spatial closeness, Eq (3).

This algorithm select different sets of channels in subsequent epochs. Hence, to decide what

subject-specific channels should be eventually involved, we evaluate outcomes of subsequent

epochs and limit the selection to epochs that exhibit consistency in the way channels co-acti-

vate. This reduces the random electric potential that is caused by remaining artifacts and/or

non-event related neural activities. Finally, we rank electrode channels based on their consis-

tency through epochs as well as their functional over spatial correlation.

3.6 Best-k subject-independent channel and feature selection via mutual

information estimation

In an unsupervised fashion, we designed the above pipeline to extract features and select chan-

nels and their associated features based on individuals’ reception of stimuli presented in the

three experiments. The proposed channel selection and the feature selection algorithms rank

subjective channels and features based on neurological connectivity across epochs of a stimu-

lus. It is practical to infer the importance of channels and features in real-time to achieve

online emotion recognition. Since labeling is not available until the end of an experiment, we

count on unsupervised learning to infer the underlying features and channel importance.

Once subjective labeling is available, deciding top k channels and features is more feasible. A

subset of inter-subject channel space and its extracted features are then selected to train the

affect recognition model.

Estimating mutual information (MIE) between individual features and the target variable

depicts how two random variables (x, y) are relevant. Given a multivariate data X 2 Rx where x
represents a feature vector and a target variable y, we estimate MI(x, y) for each feature vector

as:

MIðx; yÞ ¼ HðxÞ þHðyÞ � Hðx; yÞ ð8Þ

where H(.) is the marginal entropy and H(., .) is the joint entropy; both can be derived to:

MIðx; yÞ ¼
X

x;y

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ ð9Þ

where p(.) is the probability distribution function.

Features that are strictly irrelevant to the target variable will weigh zero, hence, eliminated.

The higher the mutual information estimation value is, the more relevant the feature is to the

target.

3.7 Learning and cross-validation

To classify emotions, we use a support vector machine (SVM) to make comparisons with

other works fair and to show the merit of the proposed framework. Using grid search, the
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regularizing parameter C is set in (.025,.5,1,10,100) for both linear and radial basis function

(RBF) kernels (RBF’s kernel scale = [0.001, 2, 10,50,100]). Since it is not the focus of this

work, we do not intensively parametrize or emphasize the parametric outcomes of these

kernels.

We used nested cross-validation to eliminate data leakage from the MI-based feature selec-

tion to the testing set. The inner cross-validation is for mutual information estimation to select

the inter-subject temporal and spatial features ranked in a previous step based on individual

subjects. That is an all-but-one training set and a novel subject assigned into the testing set of

the outer cross-validation. MIE or minimum redundancy maximum relevance (mRMR) are

usually used to search through all combinations of channels and features exhaustively in previ-

ous works. Here, since we minimize the spatial and temporal feature spaces earlier in this

framework, MIE is now left with a smaller set of features to measure how relevant they are to

the target emotion.

4 Results and discussion

Here, we present the performance of our proposed framework applied to 3 real data bench-

marks, namely DEAP, MAHNOB-HCI, and DREAMER. The early phases of the pipeline are

epoching, preprocessing, and feature extraction. We used different feature extraction methods

in the time, frequency, and time-frequency domains. Then we applied feature and channel

selection algorithms to extract the most reliable and relevant features and their sources (i.e.,

electrode channels). We used Laplacian scoring for temporal features and a proposed algo-

rithm for a subject-specific channel selection. We encapsulated these algorithms in the sub-

ject-independent emotion recognition framework, where we learn features in an unsupervised

manner until target variables (i.e., subjective labeling) are available. We estimated the rele-

vance of ranked features to two target emotions, valence and arousal, and built a nested cross-

validated model for emotion recognition.

4.1 Temporal and spectral feature selection

Although there was some variation in features selected using the Laplacian score, mutual infor-

mation estimation of features against the subjective labels minimized this variation across sub-

jects. Fig 3 shows features selected more frequently in each stimulus. Only a third of the pool

of features were selected in the benchmarks we used in this work.

Features that explain the spectral properties of the power spectrum like the average power

of theta, alpha, and beta are of great importance to recognize emotions, see Figs 3 and 4.

Additionally, temporal features that infer information directly from the signal in the time-

domain were selected, such as statistical moments (i.e., mean and skewness), Hjorth parame-

ters, and methods that measure regulatory and wave unpredictability in time-series (e.g.,

entropy).

Similar features have been reported in the literature on emotion recognition. The average

power of the frequency bands theta, alpha, and beta, and the mean and skewness of the time-

series signal were selected in [25] using Fisher Criterion Score (FCS). Authors of [22] reported

their analysis of selecting features based on Chi-square, mutual information, ANOVA F-value,

and recursive feature elimination (RFE). They showed that beta and gamma bands are more

correlated to the dependent emotion variable. Most of the recent literature on channel and fea-

ture selection relied heavily on supervised techniques that would not advance online emotion

recognition. Temporal and spatial feature selection algorithms we used and proposed in this

PLOS ONE Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI

PLOS ONE | https://doi.org/10.1371/journal.pone.0253383 August 26, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0253383


Fig 3. Frequently selected features based on the proposed framework in DEAP and MAHNOB-HCI (DREAMER’s was

excluded for better resolution). The colors of the inner circle represent groups of feature extraction methods (statistical,

entropy, Hjorth, power spectrum band and energy, Wavelet coefficients and Teager-Kaiser energy). Columns represent how

many times a specific feature was selected in an experiment. Below the dashed line is the feature selection frequency across

stimuli (i.e. intensity of grey indicates that feature is highly favorable).

https://doi.org/10.1371/journal.pone.0253383.g003
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work are independent of the subjective feedback except for measuring the relevance between

the few ranked channels and features with the target emotion.

4.2 Channel selection

We used the channel selection algorithm proposed in this work to rank electrode channels to

reduce redundancy and exhibit consistent regional co-activation during the stimulus session.

In Figs 5 and 6, we can see that a number of channels between 4-10 are sufficiently competitive

based on the results we got here in this study and compared to other studies. We noticed the

smaller the epoch size is, the more accurate we can classify emotions. This can be justified by

the detailed coverage of features when extracted based on smaller windows of time.

According to the emotion literature, the brain’s frontal lobe mainly projects human emo-

tions through neural activation. Most of the studies on public datasets included frontal lobe

electrodes such as F3 and F4. Using the feature selection methods mentioned in the previous

section, electrode channels and their temporal signals are usually reduced with less consid-

eration to the spatial distribution of channels. Electrode channels and their temporal signals

are conventionally transformed to a feature vector before a feature selection is applied.

Here, we address the spatial distribution of the multidimensional feature space. We show

that our unsupervised results align with the literature in DEAP, MAHNOB, and DREAMER

datasets, see Fig 7. Frontal, temporal, and occipital lobes are frequently selected as shown in

Fig 7.

4.3 Performance comparison

We compare our results with works that studied emotion recognition using a subject-indepen-

dent scheme, which is considerably more challenging than subject-dependent.

Fig 4. The effect of epoch (window) size on feature selection. We compare window sizes of w = 10s (left) and 2s (right).

https://doi.org/10.1371/journal.pone.0253383.g004
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We used a SVM classifier to predict the emotional state of a novel subject given their EEG

data. We used dual cross-validation and grid search to optimize the SVM kernels and their

parameters mentioned in 3.7. We found that the regularization parameter of one (i.e., C = 1)

generally gives higher accuracy across datasets. Linear SVM are more stable; hence, the results

are based on a linear SVM.

Our results outperformed the existing subject-independent emotion recognition by an

improvement of about 16%–27%. We achieved a performance in classifying human affection

in an online fashion in different datasets as follows: DEAP (0.88, 0.86), MAHNOB-HCI (0.87,

0.82), and DREAMER (0.89, 0.85) for (valence and arousal). Performance was measured using

F1 score due to the imbalanced classes. All studies we compare with but [26] reported their

results as aggregated values (e.g., grand mean); hence, detailed statistical analyses for all studies

Fig 5. Valence: F1 scores for various ranked electrode channels selections (10%,20%,. . .,100%) on the x-axis, and F1 score on the y-axis. We show datasets

vertically, and epoch sizes (10s, 5s, and 2s) horizontally. Each box plot depicts f1 scores across trials.

https://doi.org/10.1371/journal.pone.0253383.g005
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are hard to conduct. We used a one-sided Wilcoxon signed-rank test to test our results against

that of [26] given their leave-one-subject-out results of DEAP. It validated that our results are

comparatively statistically significant (p<.05) based on the valence results of all stimuli mean

of 68 ± 34% compared to that reported here of 88 ± 7%. We show our results compared to the

recently published works in Table 1.

5 Conclusion

We propose a subject-independent framework to recognize human affects by learning individ-

ual particularities in an unsupervised manner. That is, the most stimulus-subject-relevant EEG

features and channels are selected to identify regions of the brain that activate due to a given

stimulus. We then applied mutual information estimation to select features that are more

Fig 6. Arousal: F1 scores for various ranked electrode channels selections (10%,20%,. . .,100%) on the x-axis, and F1 score on the y-axis. We show datasets

vertically, and epoch sizes (10s, 5s, and 2s) horizontally. Each box plot depicts f1 scores across trials.

https://doi.org/10.1371/journal.pone.0253383.g006
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relevant to the target emotion to level out inter-subject variation. Using nested cross-validation

and an SVM classifier, we tested the proposed framework on real EEG data, namely DEAP,

MAHNOB-HCI, and DREAMER. We were able to classify human affection in real-time as

accurate as 0.88, 0.87, and 0.89 for valence; and 0.86, 0.82, and 0.85 for arousal in DEAP,

MAHNOB-HCI DREAMER, respectively. This framework also proposes an online analysis

solution for affect recognition. Our work achieves a performance increase of 16–27% for

Fig 7. Cross-session channel selection of A) DEAP, B) MAHNOB-HCI, and C) DREAMER. Color intensity represent the

frequency of selecting a channel. Top-left is the 10-20 system for EEG electrode placement system.

https://doi.org/10.1371/journal.pone.0253383.g007
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valence and arousal compared to the recently published results of emotion recognition using

the subject-independent scheme, which is considerably more challenging than subject-depen-

dent schemes.
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Table 1. Comparison between our study and similar studies in the emotion literature.

Year Eval Metric Classifier Score

Valence Arousal

DEAP Dataset

Chen J. et al. [25] 2017 Acc SVM 0.78� -

F1 - -

Soheil R. et al. [27] 2018 Acc RF 0.59 0.56

F1 0.50 0.57

Xiang Li et al. [28] 2018 Acc SVM 0.59 -

F1 - -

Pallavi P. et al. [29] 2019 Acc DNN 0.63 0.64

F1 - -

Miguel A-H. et al. [30] 2019 Acc SVM 0.58 0.56

F1 - -

Yucel C. et al. [26] 2020 Acc SVM 0.73 -

F1 - -

Our Work 2020 Acc SVM 0.88 0.86

F1 0.88 0.86

MAHNOB Dataset

Haiyan X. et al. [31] 2015 Acc SVM 0.63 0.65

F1 - -

Ferdinando H. et al. [32] 2018 Acc kNN 0.75 0.78

F1 - -

Our Work 2020 Acc SVM 0.87 0.82

F1 0.87 0.82

DREAMER Dataset

Miguel A-H. et al. [30] 2019 Acc SVM 0.59 0.58

F1 - -

Hector G. et al. [33] 2019 Acc CNN 0.70 0.72

F1 - -

Our Work 2020 Acc SVM 0.89 0.85

F1 0.89 0.85

� combined target (Valence/Arousal)

https://doi.org/10.1371/journal.pone.0253383.t001
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