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Abstract 
Many animals use color to signal their quality and/or behavioral motivations. Colorful signals have been well studied in the contexts of competi-
tion and mate choice; however, the role of these signals in nonsexual, affiliative relationships is not as well understood. Here, we used wild social 
groups of the cichlid fish Neolamprologus pulcher to investigate whether the size of a brightly colored facial patch was related to 1) individual 
quality, 2) social dominance, and/or 3) affiliative relationships. Individuals with larger patches spent more time foraging and tended to perform 
more aggressive acts against conspecific territory intruders. We did not find any evidence that the size of these yellow patches was related to 
social rank or body size, but dominant males tended to have larger patches than dominant females. Additionally, patch size had a rank-specific 
relationship with the number of affiliative interactions that individuals engaged in. Dominant males with large patches received fewer affiliative 
acts from their groupmates compared to dominant males with small patches. However, subordinates with large patches tended to receive more 
affiliative acts from their groupmates while performing fewer affiliative acts themselves. Taken together, our results suggest that patch size 
reflects interindividual variation in foraging effort in this cichlid fish and offer some of the first evidence that colorful signals may shape affiliative 
relationships within wild social groups.
Key words: affiliation, foraging, Lake Tanganyika, Neolamprologus pulcher, visual signals.

Critical building blocks for the evolution of complex animal 
societies include the ability to differentiate between social 
partners and recall the nature of previous interactions with 
known associates (Sheehan and Tibbetts 2011; Wascher et 
al. 2018; Ward et al. 2020). Visual cues, markings, and/or 
colorful signals can aid in these efforts by providing infor-
mation about the identity, quality, or behavioral motivation 
of a partner (Whitfield 1987; Hill 1991; O’Connor et al. 
1999; Tibbetts 2002; Stapley and Whiting 2006; Kohda et al. 
2015). However, while the success of animal societies hinges 
on several different types of exchanges between social part-
ners (e.g., affiliative, agonistic, cooperative, and sexual), pre-
vious studies investigating the role of colorful signals during 
social interactions have overwhelmingly focused on agonistic 
and sexual behaviors (Blount and McGraw 2008; Svensson 
and Wong 2011; Weaver et al. 2017). The role(s) that colorful 
visual signals may play in the selection and maintenance of 
affiliative and/or cooperative relationships remains unclear.

The African cichlid fish Neolamprologus pulcher lives in 
permanent social groups consisting of a dominant male–female 

breeding pair and 1–20 mixed-sex subordinates that help to 
maintain and defend the territory (Balshine et al. 2001; Heg et 
al. 2004). In the wild, N. pulcher routinely interact and main-
tain relationships with dozens of conspecifics including both 
groupmates and neighbors (Balshine et al. 2001; Bergmüller 
et al. 2005; Heg et al. 2005). Visual signals likely aid in the 
maintenance of these relationships by providing information 
regarding the identity, quality, and/or behavioral state of con-
specifics. These fish have complex, multicomponent color 
patterns with high contrast patterns that include black, blue, 
ultraviolet, and yellow markings, which are particularly con-
centrated on the head and around the eyes (Figure 1). Previous 
studies have shown that during agonistic interactions, N. 
pulcher are attentive to both the melanic (Bachmann et al. 
2017; Balzarini et al. 2017; Culbert and Balshine 2019) and 
the ultraviolet markings around the head (Sabol et al. 2017) 
on conspecifics, but the role(s) of the conspicuous yellow col-
oration located on the face and body remains elusive. Bright 
colorful signals (such as these yellow patches) are often related 
to the amount of high-quality, carotenoid-rich food that 
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individuals consume (Blount and McGraw 2008). Colorful 
signals are, therefore, generally larger and/or brighter on indi-
viduals that acquire lots of high-quality food either because 
they manage to spend more time foraging or forage more 
effectively and/or selectively than others (Grether et al. 1999; 
Senar and Escobar 2002; Walker et al. 2014). Several studies 
have reported that N. pulcher exhibit a preference for yellow 
items in nonsocial contexts (Culbert et al. 2020; Fischer et 
al. 2021; Reyes-Contreras and Taborsky 2022); however, the 
potential relevance of this color preference under social con-
texts is less clear. Jungwirth et al. (2019) found that fish which 
received artificial yellow markings along their body were 
less likely to be accepted into a new social group compared 
to fish with no markings or markings of other colors, and 
Culbert et al. (2020) reported that fish with experimentally 
enlarged yellow facial patches were not preferred as social 
partners. But both experiments were conducted using labora-
tory-reared fish that experienced simplified social settings and 
were regularly provided high-quality food. It is likely that the 
heightened complexity observed in the natural environment 
of N. pulcher—where food acquisition (mostly zooplankton; 
Gashagaza and Nagoshi 1986) is more challenging, group 
membership is more dynamic (Dierkes et al. 2005; Stiver 
et al. 2006; Fitzpatrick et al. 2008; Jordan et al. 2010) and 
individuals routinely interact with groupmates, neighbors, 
and heterospecifics (Bergmüller et al. 2005; Desjardins et al. 
2008b; Jungwirth et al. 2015a, 2015b)—forces individuals to 
pay greater attention to all forms of social signals, including 
color-based signals.

In the present study, we evaluated 3 nonexclusive hypoth-
eses regarding the potential social function(s) of conspic-
uous yellow facial patches in wild N. pulcher, calling these 
hypotheses 1) the individual assessment hypothesis, 2) the 
social dominance hypothesis, and 3) the affiliation hypothe-
sis. To test these 3 hypotheses, we recorded the social behav-
ior of wild N. pulcher social groups in Lake Tanganyika 

using SCUBA and then measured the size of the yellow facial 
patches on dominant males, dominant females, and mixed-
sex subordinates.

We first tested the individual assessment hypothesis, which 
posits that facial patch size functions as an honest indicator 
and allows conspecifics to quickly assess various metrics of an 
individual’s quality (Zahavi 1974, 1977; Penn and Számadó 
2020). We predicted that larger patches would be found on 
individuals that were in better physical condition, consumed 
more food, and/or were more active contributors to the group 
(i.e., performed more territory defense and brood care). 
Additionally, because dominant males often “own” more 
than 1 territory but dominant females never do (Desjardins 
et al. 2008a; Wong et al. 2012; Jungwirth et al. 2016), males 
are likely to experience more reproductive competition com-
pared to females and thus may be under stronger selection 
to advertise their individual quality (as has been observed in 
many species [Dixson et al. 2005; Dunn et al. 2015; Grueter 
et al. 2015; McQueen et al. 2019]). We, therefore, predicted 
that male N. pulcher would have larger color patches than 
females.

Our second hypothesis, the social dominance hypothesis, 
was that patch size is related to how dominant an individ-
ual is (reviewed by Senar 2006; Svensson and Wong 2011). 
We predicted that dominant individuals would have larger 
patches than subordinates (potentially owing to differences 
in food intake; see individual assessment hypothesis) and that 
individuals who performed the highest levels of dominance 
behaviors would have the largest patches.

Our final hypothesis was the affiliation hypothesis. If patch 
size is indeed related to individual quality, then individuals 
with larger patches might receive more affiliative acts from 
their groupmates (see Zahavi 1995; Henrich and Gil-White 
2001). Group members might gain benefits from having 
strong bonds with high-quality groupmates and affiliative 
acts could be used to strengthen these bonds since affiliation 
is thought to promote prosociality and cohesion in N. pulcher 
(Schürch et al. 2010; Bruintjes et al. 2016; Anderson et al. 
2020; Culbert et al. 2021a; Stettler et al. 2021). Alternatively, 
strong affiliative relationships with groupmates might be 
required for individuals to be able to spend the extra time/
energy required to attain the resources necessary to develop 
and/or maintain large patches. Subordinates, in particular, 
benefit from having strong affiliative relationships with their 
groupmates because a well-connected subordinate is less likely 
to be in conflict with other group members and will have a 
relatively low risk of being exiled and losing the protection 
of the social group (Taborsky 1984, 2016). Moreover, sub-
ordinates that are well connected can benefit further because 
dominants may be more likely to allow them to reproduce 
(Heg and Hamilton 2008; Heg et al. 2009; Bruintjes et al. 
2011) and may also be more likely to eventually assume the 
dominant position in their group (Dierkes et al. 2005; Stiver 
et al. 2006; Fitzpatrick et al. 2008). We, therefore, predicted 
that individuals with larger patches would receive more affil-
iative acts from their groupmates, and more specifically, that 
this relationship would be strongest among subordinates.

Materials and Methods
Field site and animals
This study was conducted off the shore of Mutondwe 
Island, Lake Tanganyika, Zambia (8°42’45”S, 31°7’27”E) in 

Figure 1 Image of Neolamprologus pulcher displaying the conspicuous 
yellow coloration on its face, as well as a diagram depicting how the size 
of these color patches was determined.
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December of 2019. Neolamprologus pulcher are abundant 
in this region and are listed as “Least Concern” on the IUCN 
Red List of Threatened Species. Turbidity is generally low and 
visibility is high (>5 m) in this region of the lake (Langenberg 
et al. 2003; Plisnier et al. 2018) providing the opportunity for 
the color signals of N. pulcher to be highly salient and used 
effectively as a form of communication between conspecif-
ics. Using SCUBA, 28 social groups were located between 
6 and 8 m depth for this study (see Freudiger et al. 2021, 
for a detailed description of the study site). Groups con-
tained an average (mean ± SEM) of 7.6  ±  0.5 individuals. 
We performed a series of behavioral observations and then 
collected focal individuals for morphological measurements 
and assessment of color patch size. To minimize our impact 
on individual groups, we collected dominant females from 
half of the social groups (N = 14), and dominant males and 
subordinate helpers from the other half of groups (N = 14). 
Additionally, all fish used in this study were collected as part 
of several other studies evaluating the physiological conse-
quences of group living and the neuroendocrine regulation 
of social rank (Culbert et al. 2021b, 2022; Balshine et al., 
unpublished data).

Behavioral observations
The behavior of 14 dominant males, 14 dominant females, 
and 14 large subordinate helpers was observed over two 
10-min observation periods conducted on separate days 
(mean of 31 h between observation periods). Before record-
ing behaviors, we allowed a 2-min period for fish to accli-
mate to the presence of the underwater observer, and then 
we scored all aggressive (chases, bites, rams, opercular flares, 
head-down postures, and lateral displays), submissive (sub-
missive postures, tail quivers, j-hooks, and flees), and affilia-
tive behaviors (follows, parallel swims, and soft touches) for 
10 min (see Sopinka et al. 2009, for further species-specific 
behavioral details). Additionally, we counted the number of 
times that each fish visited the brood chamber (as a proxy 
for brood care effort) and how much each fish contributed 
to territory defense (the number of aggressive acts performed 
toward intruding conspecifics [nongroup members] and 
heterospecifics).

We calculated a dominance index for each focal fish by 
subtracting the combined number of aggressive acts received 
and submissive acts given from the total number of aggres-
sive acts given and submissive acts received (Dom Index = 
[AggGiven + SubRec] – [AggRec + SubGiven]; Aubin-Horth et al. 
2007; Fitzpatrick et al. 2008). We also measured the amount 
of time that focal fish spent foraging in the water column. 
We controlled for the variable amount of time that individu-
als spent on versus off their group’s territory by scaling. For 
example, if a fish was on its territory for 5 min of the 10-min 
focal watch and performed 2 aggressive acts, we then scaled 
the aggressive acts to 4 acts over 10 min.

Fish collection and measurement
Within 72 h of the second observation period, all focal fish 
(N = 42) were captured using fence nets and hand nets. Fish 
were identified based on individual differences in body size, 
unique markings, behavior, and discrete home ranges within 
each group’s territory (Werner et al. 2003). Once caught, fish 
were brought to the water surface using a custom floatation 
apparatus that allowed fish to ascend at a controlled and 
steady speed. We subsequently returned to each territory to 

confirm both that the correct individual had been captured 
and that all other group members remained on the territory. 
On the surface, fish were immediately euthanized via terminal 
anesthesia (0.5 g L−1 ethyl-p-aminobenzoate; Sigma-Aldrich) 
to facilitate other studies investigating physiological/neuroen-
docrine endpoints (see Culbert et al. 2021b, 2022; Balshine 
et al., unpublished data). Following euthanasia, we measured 
each fish’s standard length to the nearest millimeter using 
Vernier calipers (dominant males: 71  ±  1  mm, dominant 
females: 63 ± 1 mm, subordinates: 54 ± 1 mm), weighed them 
to the nearest milligram using an electronic balance (OHAUS 
Scout Pro), and identified their sex via visual examination of 
their genital papilla. As a general indicator of an individual’s 
health/physiological condition, we calculated condition fac-
tor (Fulton’s K; Ricker 1975) as (K = W/L3), where W is the 
weight in grams and L is the length in centimeters.

Analysis of facial patch size
To minimize reflection and help maintain consistent envi-
ronmental conditions across images, fish were gently patted 
with a damp microfiber cloth to remove water droplets from 
their body surface prior to imaging. Pictures were taken at 
a constant distance (~20 cm above each fish) under diffuse 
lighting conditions using an Olympus TG-820 digital camera 
(manual setting; ISO = high; white balance = cloudy; color 
= normal; exposure correction = −1.3). Using ImageJ v1.53e 
(Schneider et al. 2012), we measured the area of the yellow 
patch below the eye in each photo (see Figure 1). We divided 
the area of the yellow patches by the total area of each fish’s 
head to control for individual differences in body size (head 
area was strongly correlated with body length; linear model 
[LM]: R2 = 0.79, F1,38 = 143.11, P < 0.001). To define the 
area of the head, we drew a line from the beginning of the 
first spine of the dorsal fin down to the attachment site of 
the pectoral fin which served as the posterior margins of 
the head (see Figure 1). The upper and lower jaws were not 
included in our measurements of head size to avoid biases 
resulting from differences in the position of the mouth at 
the time of imaging. We focused on the size of these yellow 
patches because conditions in the field precluded our abil-
ity to reliably assess other qualities of these colored patches 
(e.g., intensity). After controlling for individual differences 
in head size, we found no evidence that larger fish had larger 
patches (LM: R2 = 0.02, F1,38 = 0.85, P = 0.36). Due to techni-
cal issues during imaging, we were unable to evaluate patch 
size for 2 dominant males. Thus, we were left with a final 
sample size of 12 dominant males, 14 dominant females, and 
14 large subordinate helpers (11 females and 3 males) for our 
measurements of patch size.

Statistical analyses
Statistical analyses were conducted using R (version 4.2.0; 
R Core Team 2022) and a significance level (α) of 0.05 
was used for all tests. We performed a series of LMs to 
evaluate the relationship between patch size and our meas-
ures of behavior and morphology. All models were fit using 
the lm function and model assumptions were evaluated 
visually using the “performance” package (Lüdecke et al. 
2021). Preliminary analyses that included Group ID as a 
random effect did not improve the fit of the overall mod-
els and caused singularity issues. Therefore, we did not 
include Group ID as a random effect in our final models 
to avoid issues with overparameterization (see Bolker et al. 
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2009). For all behavioral analyses, we initially included the 
interaction term between the behavior and social rank to 
determine whether the relationship between patch size and 
behavior differed depending on social rank. If this interac-
tion term was significant (see Supplementary Table 1), anal-
yses were then conducted separately for each social rank 
to further tease apart patterns. If the interaction term was 
not significant, then it was dropped from the model and the 
analyses included fish of all social ranks in a single model. 
Overall differences were evaluated using the Anova function 
in the “car” package (Fox and Weisberg 2011) and effect 
sizes were estimated by calculating R2 values using the “per-
formance” package (Lüdecke et al. 2021). To reduce our 
false discovery rate (FDR), Benjamini–Hochberg corrections 
(Benjamini and Hochberg 1995) were applied to control for 
multiple tests within each hypothesis.

We first evaluated the evidence for the individual assess-
ment hypothesis using LMs to assess the relationship 
between the size of yellow facial patches and measures 
of physical quality (foraging time or condition factor) 
or behavioral workload contributions (number of brood 
chamber visits or acts of territory defense performed). 
As well, we examined whether facial patch size differed 
between males and females to assess whether patches might 
be under sexual selection in males of this polygynous fish. 
Note that this analysis of patch size between sexes was 
restricted to dominant fish as very few subordinate males 
(N = 3) were captured. To evaluate the social dominance 
hypothesis, we used LMs to assess whether the size of yel-
low facial patches was related to social rank (dominant 
or subordinate; note that this analysis was restricted to 
females because only N = 3 subordinate males were cap-
tured) or dominance index scores. Finally, we evaluated the 
affiliation hypothesis using LMs to explore the relationship 
between yellow facial patch size and affiliative behaviors 
(number of affiliative acts performed or received).

Results
Individual assessment hypothesis: Patch size 
increased with foraging durations
Fish that spent more time foraging in the water column had 
larger patches (Figure 2A; Table 1). Fish with larger patches 
also tended to perform greater amounts of territory defense 
against intruding conspecifics (Figure 2B; Table 1); however, 
this result was not significant following FDR corrections. 
Similarly, dominant males had 20% larger color patches than 
dominant females (Figure 2C; Table 1), but this result was 
also not significant following FDR correction. Patch size was 
not related to individual body condition, nor was it related 
to how much defense that fish performed toward intruding 
heterospecifics or the amount of brood care that fish provided 
(Table 1).

Social dominance hypothesis: Patch size was not 
related to dominance
Patch size did not differ between dominant and subordi-
nate females (Figure 2C; Table 1). Additionally, while a 
significant relationship between patch size and the interac-
tion term of dominance index scores and social rank was 
detected (Supplementary Table 1), subsequent analyses did 
not reveal any significant relationships between patch size 
and dominance index scores within any individual social 
rank (Table 1).

Figure 2 Relative patch size increased as individuals spent more time 
feeding (A) and fish that contributed more toward territory defense 
against intruding conspecifics tended to have larger patches (B). 
Additionally, relative patch size was ~20% greater on dominant males 
than dominant females but did not differ between dominant females 
and subordinate females (C). A linear regression was fitted in Panels 
A and B, with the shaded areas showing the 95% confidence interval 
around the regression. Values in Panel C are presented as boxplots 
where the horizontal lines through the boxes represent the median and 
the limits of the box represent the 1st and 3rd quartiles. Filled and open 
circles represent individual values. Bolded P-values indicate significance 
following false discovery corrections and italicized P-values indicate 
differences that were only significant prior to false discovery corrections 
(see text for detailed statistical results).

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac100#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac100#supplementary-data
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Affiliation hypothesis: Affiliative relationships 
varied with patch size in a rank-specific manner
Patch size was related to affiliative behavior in a rank-spe-
cific manner (Supplementary Table 1). Dominant males 
with larger patches received fewer affiliative acts from 
their groupmates compared to dominant males with 
smaller patches (Figure 3A; Table 1). In contrast, sub-
ordinates with larger patches tended to receive more 
affiliative acts from their groupmates compared to subor-
dinates with small patches (Figure 3B; Table 1); however, 
this result was not significant following FDR corrections. 
Additionally, subordinates with larger patches performed 
fewer affiliative acts toward their groupmates (Figure 3C; 
Table 1). Patch size was not related to the number of 
affiliative acts performed by dominant males or dominant 
females, or how many affiliative acts dominant females 
received (Table 1).

Discussion
We found that the conspicuous yellow patches located on the 
face of N. pulcher serve as a cue related to foraging efforts 
in the wild. Specifically, patch size was positively related to 
how much time an individual spent feeding in the water col-
umn indicating that developing/maintaining large patches 
might at least partly be related to the amount of food that an 
individual consumes. In addition, the size of an individual’s 
patch was related to affiliative relationships with groupmates 
in a rank-specific way. Dominant males, but not dominant 
females, with large patches received fewer affiliative acts from 
other group members. In contrast, subordinates with larger 
patches performed fewer affiliative acts while tending to 
receive a greater number of affiliative acts from their group-
mates. In combination, these data suggest that patch size may 
have important signaling functions that are associated with 
social relationships within wild groups of this highly social 
cichlid fish.

Individuals that consume large amounts of high-quality 
food are expected to have larger and brighter color patches 
(Blount and McGraw 2008; Svensson and Wong 2011; Sefc 
et al. 2014). However, while many laboratory-based studies 
have shown that diets that are rich in certain nutrients (e.g., 
carotenoids) can increase the size and/or brightness of color-
ful patches in birds, fishes, amphibians, and reptiles (reviewed 
by Blount and McGraw 2008; Svensson and Wong 2011), far 
fewer studies have reported such a relationship between feed-
ing and color patches in the wild (Grether et al. 1999; Hill et 
al. 2002; Walker et al. 2014). Here, we found that N. pulcher 
which spent a greater amount of time foraging in the water 
column had larger facial patches. These fish predominantly 
feed on zooplankton located in the water column (Taborsky 
and Limberger 1981; Gashagaza and Nagoshi 1986; Konings 
2019), which can contain high amounts of carotenoids and 
other nutrients (Kurki et al. 1999; O’Reilly 2001). Even 
though fish with larger patches spent more time feeding in 
the water column, fish with larger patches did not have a 
higher condition factor—a measure that is often used as a 
proxy for the size of energy reserves in fishes (Ricker 1975; 
Herbinger and Friars 1991; Chellappa et al. 1995). Instead, 
it is possible that individuals with large patches were using 
the energy acquired from increased feeding to fuel energeti-
cally costly activities because fish with larger patches tended 
to contribute more toward aggressively defending the group’s 
territory from intruding conspecifics. Agonistic interactions 
(such as territory defense) are energetically costly (Grantner 
and Taborsky 1998; Taborsky and Grantner 1998; Ros et al. 
2006) and greatly increase an individual’s risk of injury or 
death (Peake and McGregor 2004). Therefore, patch size may 
not signal individual quality in terms of energy reserves but 
instead might reflect how much an individual can afford to 
contribute toward energetically costly acts that benefit the 
group.

Affiliative acts are thought to promote social cohesion and 
maintain prosocial relationships between group members 

Table 1 Statistical results used to evaluate the 3 proposed hypotheses for facial patch size in Neolamprologus pulcher

 Variable Group analyzed R2 F(DF) P 

Individual assessment hypothesis Feeding (s) All individuals 0.17 7.84(1,38) < 0.01

Acts of territory defense (conspecifics) All individuals 0.10 4.42(1,38) 0.04

Sex Dominants only 0.16 4.58(1,24) 0.04

Condition factor (K) All individuals 0.01 0.05(1,38) 0.83

Acts of territory defense (heterospecifics) All individuals 0.01 0.22(1,38) 0.64

Brood care visits All individuals 0.01 0.31(1,38) 0.58

Dominance hypothesis Social rank Females only 0.10 2.83(1,24) 0.11

Dominance index score Dominant males 0.07 0.79(1,10) 0.40

Dominant females 0.14 2.03(1,12) 0.18

Subordinates 0.19 3.08(1,12) 0.11

Social integration hypothesis Affiliative acts received Dominant males 0.40 7.36(1,10) 0.02

Dominant females 0.12 1.83(1,12) 0.20

Subordinates 0.32 6.12(1,12) 0.03

Affiliative acts performed Dominant males 0.03 0.29(1,10) 0.60

Dominant females 0.05 0.72(1,12) 0.41

Subordinates 0.37 7.55(1,12) 0.02

Relationships that remained significant following false discovery corrections are indicated in bold and differences that were only significant prior to false 
discovery corrections are indicated in italics (see main text for details of analyses).

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac100#supplementary-data
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across many species (Fraser et al. 2008; Radford 2008; 
Burkett et al. 2016), including in N. pulcher (Bruintjes et al. 
2016; Anderson et al. 2020; Culbert et al. 2021a). We found 
that subordinates (both sexes combined) with large patches 
tended to receive more affiliative acts, even though these 
same individuals performed fewer affiliative acts themselves. 
Since individuals with large patches tend to contribute more 
toward territory defense, it is likely that groupmates of indi-
viduals with large patches have lightened workloads (e.g., 
they are not required to contribute as much towards terri-
tory defense). Because of the energy savings associated with 
load lightening (Grantner and Taborsky 1998; Taborsky and 
Grantner 1998), it is likely beneficial for group members to 
maintain strong affiliative relationships with individuals that 
have larger patches. Curiously, dominant males with large 
patches received fewer affiliative acts compared to dominant 
males with small patches. This difference between subordi-
nate and dominant males might reflect a shift in social strat-
egies that group members use to maintain relationships with 
dominant males versus subordinates. Dominant males typ-
ically display high levels of aggression toward other group 
members and group members rely on submissive displays 
to help appease dominant males to reduce the amount of 
aggression that they receive (Ruberto et al. 2020; Reddon 
et al. 2019, 2021). Therefore, it is possible that submissive 
acts are more important than affiliative acts for maintaining 
prosocial relationships with dominant males; although, we 
did not find any relationship between patch size and dom-
inance index scores (or any individual component of these 
scores) for any social rank. Schürch et al. (2010) reported 
that the amount of prosocial behaviors (affiliation and sub-
mission combined) received by dominants was more affected 
by their body size and personality compared to subordi-
nates. While we did not have the statistical power to con-
trol for these traits in our analyses, it is possible that these 
factors might help to explain the rank-based differences that 
we observed. Regardless, further experiments are clearly 
required to evaluate the underlying cause(s) of the observed 
relationships between patch size and affiliative behavior 
across social ranks, including assessing how manipulations 
of patch size affect individual social relationships and overall 
group dynamics in the field.

Colorful signals are often favored/driven by sexual selection 
(Grether et al. 2004; Schaefer and Ruxton 2015). Dominant male 
N. pulcher often have multiple breeding partners (Desjardins 
et al. 2008a; Wong et al. 2012), and it is possible that male N. 
pulcher use their colorful facial patches to advertise their high 
quality to potential breeding partners. Indeed, dominant males 
tended to have larger patches than dominant females in the cur-
rent study, raising the possibility that sexual selection may influ-
ence the size of color patches in this otherwise relatively drab, 
sexually monomorphic cichlid. However, the difference in patch 
size between dominant males and dominant females was rather 
small (~20%). Additionally, we were unable to conduct a full 
factorial analysis of patch sizes across sexes and social ranks 
because so few subordinate males were caught; and therefore, 
it is difficult to fully interpret this result. Consequently, future 
experiments should include dominant and subordinate individu-
als of both sexes, as well as different size classes of subordinates 
since subordinate N. pulcher exhibit size-dependent task spe-
cialization (which could influence relationships between patch 
size and behavior [Bruintjes and Taborsky 2011; Groenewoud 
et al. 2016]). Finally, since all but one dominant male that was 

Figure 3 Dominant males with larger facial patches received fewer 
affiliative acts from their groupmates (A), while subordinates (both sexes 
combined) with larger facial patches tended to receive more affiliative 
acts from their groupmates (B). Subordinates with larger patches also 
performed fewer affiliative acts toward their groupmates (C). Linear 
regressions were fitted in all panels, and the shaded area shows the 
95% confidence interval of the regression line. Bolded P-values indicate 
significance following false discovery corrections and italicized P-values 
indicate differences that were only significant prior to false discovery 
corrections (see text for detailed statistical results).
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included in our study were polygynous, future studies should 
also assess whether patch size differs between monogamous and 
polygynous males.

Overall, our findings suggest that the size of bright color-
ful facial patches is primarily driven by foraging rates in this 
model cichlid species from Lake Tanganyika. Additionally, 
these data offer some of the first evidence that colorful visual 
signals are associated with affiliative relationships between 
nonsexual partners in wild social groups. Collectively, our 
results indicate that colorful signals might have an important 
modulatory role on the development and/or maintenance 
of affiliative/cooperative relationships in complex animal 
societies.
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