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Abstract
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analysis.
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Background: Reverse Transcription quantitative polymerase chain reaction (RT-qPCR) is a sensitive and reliable

method for mRNA quantification and rapid analysis of gene expression from a large number of starting templates.
It is based on the statistical significance of the beginning of exponential phase in real-time PCR kinetics, reflecting
quantitative cycle of the initial target quantity and the efficiency of the PCR reaction (the fold increase of product

Results: We used the large clinical biomarker dataset and 94-replicates-4-dilutions set which was published
previously as research tools, then proposed a new gPCR curve analysis method——CqMAN, to determine the
position of quantitative cycle as well as the efficiency of the PCR reaction and applied in the calculations. To verify
algorithm performance, 20 genes from biomarker and partial data with concentration gradients from 94-replicates-
4-dilutions set of MYCN gene were used to compare our method with various publicly available methods and

Conclusions: The results show that C;qMAN method is comparable to other methods and can be a feasible method
which applied to our self-developed gPCR data processing and analysis software, providing a simple tool for gPCR

Keywords: Reverse transcription quantitative polymerase chain reaction, Curve analysis method, CqMAN,

Background

The working principle of the qPCR is to add fluorophore
into the qPCR system, and use the fluorescence signal
accumulation to detect the whole qPCR process [1]. The
accumulated amount of DNA reaction products after
fluorescent labeling is used as amplification data
(expressed as amplification curves) can be used to
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determine the initial target quantity (called Ny at the
concentration level and called F, at the fluorescence
level). An amplification reaction is generally displayed by
an amplification curve, while the y-axis represents the
fluorescence signal accumulation and the x-axis repre-
sents the number of cycles. During the process, the
product fluorescence can not rise above the background
at the beginning and almost tending to a straight line; as
the reaction progresses, the fluorescence accumulates
until the product is consumed and the fluorescence
ceases to increase [2, 3]. The reason for this process is
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that, initially, the product quantity is very small, caused
a weak fluorescence signal to be detected at baseline
phase. The exponential increase of the product starts in
cycle 1. It becomes visible when its associated fluores-
cence can be observed above baseline noise. During the
transitional phase products continue to accumulate, but
reagents become limiting and the reaction efficiency be-
gins to fall. Until the product is no longer produced, so
the reaction reaches to plateau phase [4]. Therefore, the
baseline phase, exponential phase, transitional phase,
and plateau phase of the amplification curve are gener-
ated based on the quantitative relationship between the
fluorescence signal accumulation and cycles in Fig. 1A.
In Fig. 1A, the initial fluorescence of the reaction is at
the background level with high noise, almost no fluores-
cence signal can be detected, then the product fluores-
cence rises above the background in the exponential
phase within a few cycles and begins to saturate in the
approach to the final plateau phase. Figure 1B shows the
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locations of relevant parameters determined by C{MAN
method.

For the relevant parameters of the amplification curve,
the amplification process determines a quantitative
threshold (called F, in most methods) indicates a detect-
able fluorescent signal produced by the accumulation of
sufficient amplification products which is generally set in
the exponential phase. The x-axis of this quantitative
threshold corresponds to a cycle called Cq in most
methods, which is called C(MAN in our method.

The amplification efficiency(E) is another important par-
ameter for checking qPCR data analysis. Under ideal condi-
tions, the number of DNA sequences will double in each
cycle, the percentage of E-1 is 100% (at this time E is 2) [5].
However, due to factors such as reaction inhibitors, en-
zyme, primer and probes differences, PCR efficiency rarely
reaches 100%. Therefore, E is any number between 1 and 2
[6]. Previously published studies have been suggested that
PCR efficiencies mostly range between 65 and 90% [7].
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Fig. 1 Amplification process and determination of parameter in CqMAN method. (OriginPro 2020b https://www.originlab.com/)
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After determining the quantitative cycle, the quantita-
tive threshold, and estimating the amplification effi-
ciency, the kinetics of qPCR exponential phase are
described by eq. (1) to indicate the initial target quantity
of the reaction.

N, =Ny x E" (1)

in which Ny and N,,, are the initial target amount of
DNA and the DNA target amount after n cycles, re-
spectively. F,, the fluorescent signal after n cycles and
Fy, the fluorescence signal represents starting amount of
the target DNA are the performance of N,, and Ny at the
fluorescence level [2]. Therefore, eq. (1) can be described
as eq. (2)

F, = Fox E" (2)

using the relevant parameters estimated by the curve
analysis algorithm method can be expressed as eq. (3)

F, = Fy x E“ (3)
then the observed initial
calculated.

In the past two decades, the rapid development of
qPCR technology has led to the production of multiple
protocols, reagents, analytical methods and reporting
formats. The original standard-C, method [8, 9] fits a
standard curve by preparing multiple sets of replicable
experiments of the samples of known concentration, and
estimates the concentration of unknown samples from
the standard curve. This approach assumes that all
standard samples have the same efficiency and is only ef-
fective if thresholds are measured from the exponential
phase of the PCR reaction, some authors have reported
that this assumption may be questionable [10]. Later, an
approach proposed by Liu and Saint [11] assumes an ef-
ficiency can be obtained by fitting PCR amplification
curve with a sigmoid function without preparing stand-
ard samples. Since then, the pioneering methods of esti-
mating the target quantity of the initial reaction by
calculating the reaction efficiency from the dynamics of
a single PCR reaction has been widely used for improve-
ment, and these methods differ in determining the fluor-
escence baseline, exponential phase, F;, Cg E to
estimate initial target quantities. Baseline estimation is
considered a constant baseline in some methods, includ-
ing the observed minimum fluorescence, the mean value
of the three lowest observations, the mean value of a set
of fixed cycles [8, 12—14], and the baseline may also be
determined by means of a set of dynamically determined
baseline phase periods [15, 16] and taking-difference lin-
ear regression method [17]. However, the true value of
background fluorescence is unknown, and errors in
baseline estimation can lead to significant distortion of

target quantity(Fo) is

Page 3 of 12

the results [8, 18, 19]. The difference defined by the ex-
ponential phase can easily lead to different results [20].
The residual algorithm estimation with the maximum
value of the second derivative as the end point is com-
monly used [11, 21], or three periods are selected within
the midpoint of the fluorescence signal [22]. Estimation
of efficiency includes fitting the entire exponential cycle
[21, 23], calculating the slope of the points within a cer-
tain defined range after linear regression [22, 24], and
obtaining the ratio of the threshold fluorescence to the
fluorescence value of the previous cycle [25]. Fq is gener-
ally defined in the exponential phase and then the value
of Cq is determined, but in some methods, Fq and Cq are
not involved [15, 26, 27]. And the definition process of
all parameters may be combined with the fitting of the
amplification curve to better obtain [23, 25, 26].

In order to provide reference for further developing
and evaluating the qPCR curve analysis method and pro-
moting the research of quantitative fluorescence PCR in
gene expression, the new curve analysis method and
other methods were evaluated on the biomarker dataset
and 94-replicates-4-dilutions set in this paper from the
aspects of expression level and statistical significance.
The goal of this paper is to make our new method a
comparison of other methods, at the same time provide
users with an alternative curve analysis scheme. In order
to evaluate the new method, some evaluation perform-
ance indicators were proposed.

Methods

qPCR dataset

Biomarker dataset

Data comes from a previously published study [28] that
developed and validated the expression profile of a 59-
mRNA gene to improve prognosis in children with
neuroblastoma. This dataset measured 59 biomarkers
and 5 reference genes in a sample maximization experi-
mental design, using the LightCycler480 SYBR Green
Master (Roche) in a 384-well plate with 8 ul reaction.
These genes have been reported in at least two inde-
pendent studies as prognostic genes for neuroblastoma.
Three hundred sixty-six ¢cDNA samples from the pri-
mary tumor biopsy and a 5-point 10-fold serial dilution
series based on an external oligonucleotide standards
(from 150,000 to 15 copies, # = 3), and no template con-
trol (NTC, n=3) are included in each plate [28, 29].
This dataset will be referred to as ‘biomarker dataset’ in
this study. Since there was no obvious specificity of 63
genes in this dataset, 20 of them (AHCY,AKR1-
C1,ARHGEF7,BIRC5,CAMTA1,CAMT
A2,CD44,CDCA5,CDH5,CDKN3,CLST
N1,CPSG3,DDC,ECEL1,ELAVL4,EPB41L3,E-
PHAS5,EPN2,FYN,HIVEP2) were randomly selected and
then 300 (5x3x20) amplification curve data of 20
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genes with concentration of 150,000, 15,000, 1500, 150,
15(3 replicated experiments for each group) were used
for subsequent analysis.

94-replicates-4-dilutions set

This data set created a dilution series consisting of four
10-fold serial dilution points from 15,000 to 15 mole-
cules, using 10ng / pl yeast tRNA as a carrier (Roche)
and created NTC samples of the same dilution. qPCR
was done on a CFX 384 instrument (Bio-Rad). QPCR
was performed on a CFX 384 instrument (Bio-Rad)
using a 96-well pipetting robot (Tecan Freedom Evo
150). Amplification reactions were performed in 8 ul
samples containing 0.4 pl forward and 0.4 pl reverse pri-
mer (5uM each), 0.2l nuclease-free water, 4ul iQ
SYBR Green Supermix (Bio-Rad) and 3 ul of standard
oligonucleotide. In 384-well plates (Hard-Shell 384-well
microplate and Microseal B clear using an adhesive seal
(Bio-Rad)), for each of the 4 dilution points, a total of 94
replicate reactions were distributed. In addition, the
NTC reaction was repeated 8 times [28]. This dataset
will be referred to as ‘94-replicates-4-dilutions set’. And
44 (4 x 11) amplification curves of the MYCN gene with
a diluted concentration of 15, 150, 1500,15,000(11 repli-
cated experiments for each group) were used for subse-
quent analysis.

gPCR curve analysis method

Previously published curve analysis method

We provide general descriptions of the 7 methods previ-
ously published. In this study, these methods will be re-
ferred to with their preferred abbreviations LinRegPCR,
DART, FPLM, FPK-PCR, 5PSM, PCR-Miner and Cy0.
The LinRegPCR program [16] starts with import of raw
fluorescence data. A constant baseline fluorescence is
determined per reaction with an iterative algorithm that
aims at the longest set of data points on a straight line
going down from the second derivative maximum cycle.
After subtraction of the baseline fluorescence, Lin-
RegPCR sets a window-of-linearity (W-o-L) that in-
cludes 4 points in the exponential phase of each sample
and calculates the individual PCR efficiency from the
slope of the regression line through these points. For
each amplicon group, a quantification threshold F is set
at 1 cycle below the top border of the W-o-L and the Cg
is determined for each reaction. DART [22] constructs a
model based on the maximum fluorescence value (R,.y)
and the baseline fluorescence noise (Rygise) to determine
a central point M, and fits the cycle within a 10-fold
range around M to estimate E, Fq, C, obtain by 10-fold
the standard deviation of 1-10cycles. FPLM [21] uses
four-parameter logistic model to fit the fluorescence
curve and estimate the exponential phase, and the same
as DART in determining Fy, Cq. The bilinear model and
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the six-parameter logistic model are used in the FPK-
PCR [26] to estimate the E and initial target quantity
without determining fluorescence threshold.5PSM [25]
uses the ratio of the fluorescence value at the second de-
rivative maximum (SDM) after fitting the curve with the
five-parameter model to the fluorescence value of the
previous cycle as the amplification efficiency and the
cycle of SDM is used as the Cq. The principle of PCR-
Miner [30] is based on the four-parameter logistic model
to fit the raw fluorescence data as a function of PCR cy-
cles to identify the exponential phase of the reaction.
The method chooses the first positive second derivative
maximum from the logistic model to calculate the dy-
namic fluorescence threshold and corresponding C,. A
three-parameter simple exponent model is fitted to this
exponential phase using an iterative non-linear regres-
sion algorithm to compute the individual efficiency. Cy0
[31] obtains the intersection point (Cy0) between the ab-
scissa axis of the curve inflection point and the tangent
line based on the nonlinear regression of the Richards
equation to the fluorescence value. The efficiency is esti-
mated by the parameters in the post-fitting equation,
and then the initial target quantity is obtained.

C4MAN method

C4qMAN (Cq; Management And Analysis System) is an
adaptive analysis system that summarizes the methods
and experiences of previous methods and provides a ro-
bust, objective, and noise-resistant method for quantifi-
cation of qPCR results. Since researches have shown that
smoothing can at best lead to erroneous accuracy of re-
sults, and usually also bias the results [32], the improved
adaptive Savitzky-Golay filter in the C;MAN system is
only used for visual display of data. The detailed process is
shown in Additional file 1. The C(MAN method has been
implemented in the system. We provide the URL of the
system  (http://122.193.29.190:9913/xMAN/en-us/index),
and readers can reproduce our experimental results by
combining with Additional files 1 and 2.

C;MAN method relies on the modified gompertz
model, is fitted to the raw fluorescence data by means of
a non-linear fitting routine the Levenberg-Marquardt al-
gorithm that minimizes the residual sum-of-squares to
obtain parameters baseline fluorescence (yo) and max-
imum fluorescence (Vmax), €xp. is the natural logarithm
base, Ln is the natural logarithm, x is the actual cycle
number, b and x, determine the shape of each model.

Y=Y+ (ymax_yO)A'_ e )t (4)
Foom = bLn(((\/g—B)AXTO) /2) (5)

The maximum value of the second derivative are ob-
tained by fitting the second derivative of the gompertz
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curve to estimate the end of the exponential phase (eq.
(5)). xspwm is the cycle at the maximum of the second de-
rivative (SDM) which is applied as the end point of the
exponential phase and the fluorescence value corre-
sponding to this cycle is Fspy in CQMAN method. Take
the intermediate value of yo and Fspy; as the “midpoint”
Eq (eq. (6)), then substitute this value into eq. (4) to ob-
tain the quantitative cycle (C;MAN) (see Fig. 2B).

Fq= (9 + Fspum)/2 (6)

For efficiency estimation, a three-parameter simple ex-
ponent model is fitted to this exponential phase (from
CqMAN to xgpy) using an non-linear regression algo-
rithm to estimate the single reaction’s individual effi-
ciency in eq. (7). The individual efficiency of multiple
reactions of the same gene is averaged, then the ob-
served target quantity (Fy) can be calculated by eq. (8).

F,=F,+axE" (7)
FO - I/EmeaanMAN (8)

The logistic model used in Cy0, PCR Miner are gener-
ally susceptible to the influence of the number of ampli-
fied data in the plateau phase, resulting in inaccurate
fitting [33]. At the same time, 5PSM adds a parameter to
the logistic model to maintain the symmetry of the s-
shaped curve structure, which will affect the calculation
of parameters such as the maximum of the second de-
rivative, resulting in larger errors. The gompertz model
in CQMAN is not easily affected by the data in the plat-
eau phase, and it fits well in all the phase. At the same
time, this method can ensure that the C;MAN value is
within the exponential phase without judging the start-
ing point of the phase (in the first 2-3 cycles of the cycle
where the SDM is located). It does not rely on baseline
estimation of the noise larger phase of the fluorescence
signal, and avoids the problem of deviation caused by
the assumption in the DART and FPLM method that a
constant baseline can be determined from the baseline
phase. By using nonlinear regression fitting to estimate
the average efficiency of all reactions of each gene,
CqMAN method further averaged the amplification reac-
tion noise between each gene, more effectively resisting
the noise while reducing the estimation error [31]. How-
ever, the shortcoming is that this method is prone to
error under the influence of dynamic outliers (inhib-
ition), in which aspect FPK-PCR performs better.

Results

Performance indicators

To eliminate the different measurement scales used by
the analytical method based on concentration levels and
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fluorescence levels [34], we divided the data of all con-
centrations by the highest concentration data and all
fluorescence data by the average value of the maximum
observed target quantity (Fo), so that the average value
of the maximum concentration and the maximum ob-
served target quantity is 1. This process is called
normalization. Then data sets were used to establish 6
performance indicators to measure the degree of compli-
ance between the observed initial target quantity (F)
calculated by the algorithm and the true value from dif-
ferent angles. Among them, the bias and relative error
are used to compare the difference between the observed
initial target quantity and the true value; coefficient of
variation and precision are used to compare the differ-
ence between the observed initial target quantity (Fo) of
the same group. The smaller the difference, the more re-
liable the method. Performance indicators as follows.

(1) Bias. The ratio between the average of the observed
initial target quantity F, corresponding to the highest
and lowest concentrations is calculated. In biomarker,
the expected value of this ratio is 10,000 (because the ra-
tio of the concentration of 150,000 and 15 is 10,000),
and in 94-replicates-4-dilutions set, the expected value
of this ratio is 0.001 (because the ratio of the diluted
concentration of 15 and 15,000 is 0.001) and any value
deviating from 10,000 or 0.001 is expressed as a bias.
The log-transformed (base 10) between the true value
and the initial target quantity Fy. After the data is nor-
malized, the linear regression analysis makes the log (F)
and log (NC) (NC, normalized concentration) slopes of
the unbiased method 1 and any slope deviates from the
value of 1 also expressed as a bias.

(2) Relative error (RE).

Fo-NC
RE = 9
NC ©)

RE is the deviation after F, and NC are normalized to
the same measurement scale.
(3) Coefficient of variation (CV).

SDgrou
CV =82 « 100%

10
Mgroup ( )

CV represents the ratio of the standard deviation (SD)
to the average value(p) of the same group (replicated ex-
periments) of observed initial target quantity (F).

(4) Precision. Precision represents the within-triplicate
variance of the observed initial target quantity (F,) in the
same group.

(5) Resolution. A linear regression analysis of log (true)
on log(F,) was performed and the 95% CI around the re-
gression line was constructed. The width of this interval
was converted into a fold deviation from the regression
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line and the geometric mean for the 5 groups was calcu-
lated as a measure of resolution.

Indicator evaluation

In the supplementary information, the original amplifi-
cation experiment data of the two data sets used in this
study were obtained from Reference [28] after being
processed into the readable format of the C(MAN sys-
tem. We imported the data of these two data setsinto
the CQMAN system to obtain the Fy, Cg, and E calcu-
lated by the C;MAN, integrated the results with the
three parameter values of the other 7 methods provided
in reference [28] (see biomarker_performance _indica-
tors and 94_replicates_4_dilutions_set_results). In the
bias_and_deviat_from_regres of biomarker_ perform-
ance_indicators, the process of C;MAN calculating 4
performance indicators is shown and it is the same as
the calculation process of other 7 methods. Therefore,
the calculation process of the other 7 methods is no lon-
ger provided. The performance indicators’ calculation
results of the 8 methods are provided in biomarker_ana-
lysis_dilutoin_series in and 94_replicates_4_dilutions_
set_results.

Except that the efficiency analysis results of the other
7 methods (see Fig. 3) directly used the data provided in
reference [28] in the subsequent performance indicator
analysis, the analysis results of other performance indica-
tors are all reanalysis results.
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Biomarker dataset analysis

The performance indicator values determined from the
concentration series included in the measurement of the
20 genes are summarized in box-and-whisker plots. The
boxes range from the 25th to the 75th percentile and are
divided by the median; the whiskers are set at the 5th
and 95th percentile (A) Bias in the slope level, which is
based on the degree of deviation from 1.(B) The box-
and-whisker plot of relative errors shows the difference
between the observed initial target quantity and the true
value.(C) Coefficient of variation is an objective indicator
of the effects of measurement scales and dimensions that
eliminate fluorescence levels and concentration
levels.(D) Precision is determined as the within-triplicate
variance and should have the same, low, value in all
methods.(E) Resolution defined as the fold-chance that
would result in the detection of a difference at a 5% sig-
nificance level.

The mean value of the efficiencies of each gene per
method.

(1) Bias. We expect the ratio between the observed ini-
tial target quantity and the true value to be 10,000 or
0.001 in two different datasets. After the data is normal-
ized, the linear regression analysis makes the log (F)
and log (SQ) slopes of the unbiased method 1, which
will be unbiased. Cy0 has an advantage in the deviation
index because the method calculate the efficiency value
based on the slope of the relationship between Cy0 and
log (input), and then use this efficiency value and the
Cy0 value to calculate Fy. Therefore, Cy0 is unbiased
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and are the result of circular reasoning, but this also en-
sures that the observed initial target quantity F, is more
accurate. Other methods are positively or negatively
biased, and the observed values deviate significantly from
the true values in Fig. 2A. Among them, C;MAN per-
forms better in the bias, with an average deviation of
2469.0003(for 10,000) and 0.0182(for 0.001).

(2) Relative error. The relative error was originally
used to compare the difference between the measured
value and the true value, and the degree of confidence in
the response measurement. Here we can use the relative
error response to calculate the difference between the
observed value and the true value, reflecting the credibil-
ity of the algorithm. More intuitive response measure-
ment accuracy than absolute error. We use relative error
as one of the indicators to determine the difference be-
tween the observed initial target quantity F, and the true
value. Cy0 performed best, average relative error was
0.1050. The average relative error of the rank after the
second PCR-Miner was 0.2287, C;JMAN was 0.2416, and
the highest 5PSM was as high as 0.6939 in Table 1 and
Fig. 2B.

(3) Coefficient of variation. The coefficient of variation
reflects the degree of dispersion of the data, and at the
same time overcomes the effects of large differences in
measurement scales or different data sizes. We use the
coefficient of variation coefficient to calculate the degree
of dispersion of the observed initial target quantities of
the three groups at each concentration, and average the
five groups of coefficients of variation. The smaller the
coefficient of variation, the lower the degree of disper-
sion. Result showed that CZMAN showed the best per-
formance of 7.20%, Cy0, LinRegPCR, PCR-Miner also
stabilized at about 9.60%, and FPK-PCR’s coefficient of
variation was as high as 25.12% in Table 1 and Fig. 2C.

(4) Precision. The five concentration sequences were
measured three times and the fluorescence data were an-
alyzed. Therefore, the variance of each set of 3 measure-
ments should be small, reflecting only random changes
in laboratory procedures and fluorescence measure-
ments, and such changes should always be the same.
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The resulting three internal variances can be considered
as a measure of the accuracy of the analytical method.
C4MAN, 5PSM, Cy0, LinRegPCR have lower variability
in Fig. 2D.

(5) Resolution. Data points outside the 95% CI of the
regression line fitted to the concentration sequence after
linear regression will be judged to be significantly differ-
ent from the true value and expressed in resolution. Lin-
RegPCR has the lowest resolution; lower is better. Cy0,
PCR-Miner and C;MAN also perform well in Fig. 2E.
With these 4 methods, the observed 2-fold difference is
significant for approximately 85% of genes. For 5PSM,
DART, FPLM, the resolution lies between the 2 and 3-
fold-difference. In FPK-PCR, 40% of genes are over 5-
fold-difference.

(6) Efficiency. The range of differences in efficiency
values for each method indicates that this variability is
the sum of the difference in efficiency between genes
and the difference in estimation methods. Therefore, the
difference between the methods cannot be explained.
Except that DART and FPLM share a method of finding
E, other methods get different median values of E. FPK-
PCR and PCR-Miner have a large number of efficiency
values above 2, which is obviously too high and the me-
dian value of C;MAN, Cy0, LinRegPCR, 5PSM is be-
tween 1.7 and 1.9. We calculated the standard deviation
of the amplification efficiency of the 20 genes, in which
LinRegPCR, DART, FPLM calculated E value is relatively
stable in Fig. 3.

94-replicates-4-dilutions set analysis
The highest dilute concentration is set to 1, the y-axis is
set to log (dilution) (base 10).

(1) Target quantity. For data with dilute concentra-
tions of 15,000, 1500, 150, and 15, respectively, the ob-
served target quantity should be as close as possible to
the expected value -3, -2, -1, 0 obtained after calculat-
ing the log (Fo) (base 10) in Fig. 4. The systematic nega-
tive or positive deviation of each analysis method is
shown by the deviation of the average F, from the ex-
pected value (Fig. 4: horizontal line). C;MAN, Cy0,

Table 1 Analysis of the average of 20 genes in 4 indicators per method

Methods Bias(10000) Bias(1) Relative error Coefficient of variation Precision Resolution
C4MAN 2469.0003 0.0182 02416 7.20% 0.0020 1.9222
Cy0 2594.5631 0.0000 0.1050 9.62% 0.0064 1.9213
LinRegPCR 38913018 0.0523 03117 9.64% 0.0064 1.9051
PCR Miner 6167.5939 0.0561 0.2287 9.63% 0.0062 19156
5PSM 6041.4519 0.0999 0.6939 12.89% 0.0096 3.0166
DART 5233.9256 0.0840 05727 17.98% 0.0140 2.8630
FPLM 48143920 0.0745 0.5357 21.34% 0.0182 3.1956
FPK-PCR 8536.6094 0.0669 0.3592 25.12% 0.0339 5.8404
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Fig. 4 Mean observed F, value per concentration and method. (OriginPro 2020b https://www.originlab.com/)
Table 2 Analysis of MYCN gene in 4 indicators and the mean of PCR efficiency per method
Methods Bias(0.001) Bias(1) Relative error Coefficient of variation Precision Resolution “E
C4MAN 0.0000 0.0000 0.0873 10.86% 0.0025 20132 1.8300
Cy0 0.0000 0.0000 0.0935 10.42% 0.0027 2.1344 NA
LinRegPCR 0.0008 0.0869 04126 11.32% 0.0039 15326 1.8690
PCR-Miner 0.0001 0.0054 0.1434 12.39% 0.0057 20524 1.9905
5PSM 0.0057 0.2633 25536 41.40% 0.0409 7.0584 1.7462
DART 0.0022 0.1723 1.0169 39.86% 0.0308 71726 1.9047
FPLM 0.0008 00617 06724 50.71% 0.0609 74493 1.9844
FPK-PCR 0.0007 0.1672 05012 29.55% 0.0236 7.8181 23011
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PCR-Miner and LinRegPCR have the least bias. DART
and FPLM show a higher bias, 5PSM displays a strong
overestimation whereas FPK-PCR shows a strong under-
estimation of F values.

(2) Bias, RE, CV, precision, resolution and E. C(MAN
and Cy0O keep lower variance in bias. C(MAN perform
best in RE, CV and precision. CqMAN, Cy0, LinRegPCR
and PCR-Miner does not vary much between the values
in CV and precision. LinRegPCR has the lowest reso-
lution, the average resolution of Cy0, PCR-Miner and
CqMAN is around 2-fold. Table 2 clearly illustrate the
differences in 6 indicators of 8 methods and the average
PCR efficiency of these methods is provided. The effi-
ciency of Cy0 was not provided in the previously pub-
lished data analysis.

Discussions

For each of the evaluation indexes of the concentra-
tion sequence analysis of each gene, the rank synthe-
sis method was wused, and the Friedman test
determined that these methods were not significantly
different and comparable. Table 3 shows the results
of each gene and method. The lower average rank in-
dicates that the method which estimates the initial
target quantity is closer to the true value in the per-
formance evaluation of the four indicators we
selected.

In the average rank sorting of 20 genes in the bio-
marker data set, the lowest rank average of C;(MAN and
Cy0 are 2.08. The rank averages of the 5PSM, DART,
FPLM, and FPK-PCR are all above 6, and the overall
performance of F, estimation is lower in Table 3. For
the 94-replicates-4-dilutions set, the performance of
CqMAN is 1.58, the average rank of Cy0 is 1.92, and the
performance of LinRegPCR and PCR-Miner are also
good; the rank average of 5PSM, DART, FPLM, and
FPK-PCR is much higher.
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Conclusions

Based on PCR kinetics and exponential model simula-
tions, this study combines the real-time quantitative
PCR curve analysis method proposed by the predeces-
sors, and proposes a reliable gene expression level quan-
tification method, C;,MAN. To prove the reliability of
the method, two data sets from different instruments,
different PCR mixtures, and a testable hypothesis were
used to evaluate the performance of multiple qPCR
curve analysis methods. The fluorescence data of the
other 7 methods in the performance analysis process
were taken from a previously published research by Ruij-
ter et al. in 2013 [28]. Since the supplemental informa-
tion from this research provided an excel template for
calculating bias and precision, we can directly import
the amplification curve data from two data sets analyzed
by the CqMAN system into the excel template to obtain
the calculated values of the two indicators. The relative
error and coefficient of variation are the two statistical
indicators proposed by the author of this study for
evaluation and analysis. Therefore, due to the difference
in indicator settings and the difference in data sets selec-
tion, our analysis results are different from the results
previously published by Ruijter et.al.

The limitation of this study is that two datasets have
limited evaluation of the general applicability of the
C4qMAN method, so future researches should include
more instances and more verification indicators to better
verify the robustness and representativeness of the
method. However, it is undeniable that the analysis tem-
plates, datasets, and analysis results (see supporting in-
formation) in this research will definitely help further
evaluation of research and make the results comparable
with our results.

The aim of this study is not to promote a particular
curve analysis method with the best overall performance,
because the choice of methods by the experimenters
may depend on the different research goals of

Table 3 Analysis of performance parameters per method in biomarker dataset (left) and 94-replicates-4-dilutions set (right). For each
method, the mean rank is given for each of the performance indicators bias, RE, CV, precision and resolution. The methods are

sorted based on the average of these ranks

Methods Bias(10,000/0.001) Bias(1) Relative error Coefficient of variation Precision Resolution rank

C4MAN 2/2 11 3/1 1/2 11 4/2 2.08/1.58
Cy0 11 11 1/2 2/1 4/2 3/ 2.08/1.92
LinRegPCR 3/6 2/4 4/4 4/3 3/3 1/4 3.00/3.67
PCR-Miner 7/3 3/2 2/3 3/4 2/4 2/3 333/333
5PSM 6/8 7/7 8/8 5/7 5/7 6/5 6.33/7.67
DART 5/7 6/6 7/7 6/6 6/6 5/6 6.00/6.67
FPLM 4/5 5/3 6/6 7/8 7/8 7/7 6.17/6.17
FPK-PCR 8/4 4/5 5/5 8/5 8/5 8/8 7.00/5.00
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experimental instruments, reagents, protocols, etc. It is
our intention to help users choose the ideal method for
their own studies and developers to modify and improve
their methods [35].

Abbreviations
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