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Abstract

Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they

provide thenoveltynecessary foradaptation toachangingenvironment, suchas living inmultiplehosts.Herewepresent thedenovo

sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis

to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the

Opisthorchiata suborder to approximately 237.4 Ma (6120.4 Myr). We then addressed the question of which expanded gene

families and gained genes are potentially involved inadaptation to parasitism. To do this, we usedhierarchical orthologous groups to

reconstruct threeancestral genomeson thephylogeny leading toA. winterbourni andperformeda GO (GeneOntology) enrichment

analysisof thegenecompositionofeachancestral genome,allowingus tocharacterize the subsequentgenomic changes.Outof the

11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of

A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene

families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions

potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen

presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource

Significance

Transition to parasitism has been associated with gene duplication and gain of novel genes for host exploitation,

invasion, and escape from host immunity. In our study, we trace gene duplications and gains across a phylogeny from

an ancestral trematode genome to our focal species, the newly sequenced trematode Atriophallophorus winterbourni.

We characterize gene duplications and gains in three ancestral genomes leading to A. winterbourni and outline

candidate gene families that have recently undergone duplication and are potentially involved in parasitism.
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for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in

antagonistic host–parasite adaptation.

Key words: comparative genomics, evolution, phylogeny, selection.

Introduction

The adoption of a parasitic lifestyle represents a major niche

shift that has occurred multiple times across the tree of life

(Poulin and Randhawa 2015; Weinstein and Kuris 2016). The

similar selective pressures involved in exploiting hosts have

resulted in convergent macroevolutionary features, such as

a tendency for morphological simplification (O’Malley et al.

2016) and the associated genome compaction, reduction,

and streamlining across many parasite lineages (Peyretaillade

et al. 2011; Chang et al. 2015; Lu et al. 2019; Slyusarev et al.

2020). At the same time, parts of the parasite genome in-

volved in, for example, host exploitation and life-cycle com-

plexity may have experienced expansions. Comparative

genomic analyses have implied that gene duplications can

drive innovation in gene function during radiations of parasitic

lineages (Zarowiecki and Berriman 2015).

Novel gene functions involved in the response to host im-

munity may be particularly important for the evolution of par-

asitism. For example, mucins, a family of heavily glycosylated

surface epithelial proteins, have undergone multiple rounds of

duplication in the blood fluke, Schistosoma mansoni. Mucins

frequently recombine, generating antigenic variation through

splice variants (Roger et al. 2008). Increased life-cycle com-

plexity, especially within the parasitic flatworms (Poulin and

Randhawa 2015), may have also driven the evolution of func-

tional novelty involved in host exploitation strategies. For in-

stance in S. mansoni, multiple duplication events in the gene

superfamily SCP/TAPS (sperm-coating protein/TPx/antigen 5/

pathogenesis-related protein 1) have led to an array of pro-

teins that are now associated with an active role in penetra-

tion of the snail host tissues (Cantacessi and Gasser 2012).

Duplicated genes, which evolve beyond sequence recogni-

tion, can also give rise to lineage-specific genes (“gained”

genes), which can confer specific, novel traits, important in

adaptation of that lineage to its particular niche (David et al.

2008; Takeuchi et al. 2016).

With the whole genome sequences of over 30 nematodes

(roundworms) and 25 platyhelminth (flatworms, including

trematodes) species, it has been possible to characterize the

births and expansions of new gene families arising by dupli-

cation at key taxonomic levels (Rödelsperger 2018).

Nematodes and platyhelminths are two invertebrate animal

phyla consisting of parasitic and free-living organisms with the

parasitic ones causing major animal, crop, and human dis-

eases, as well as being a major economic burden (Disease

and Injury Incidence and Prevalence Collaborators, GBD

2016; International Helminth Genomes Consortium 2019).

The microphallid Atriophallophorus winterbourni (syn.

Microphallus sp. or Microphallus livelyi) is a digenean trema-

tode parasite native to the lakes of New Zealand (Blasco-Costa

et al. 2020). It alternates between two hosts in its life cycle;

the intermediate host is Potamopyrgus antipodarum, a pros-

obranch dioecious mud snail (Warwick 1952; Winterbourn

1970) and the final hosts are waterfowl, mainly dabbling

ducks (Lively and McKenzie 1991). Multihost life cycle is a

general characteristic of all digenean trematodes, and always

includes a molluscan species as an intermediate host and a

vertebrate as the final host (Galaktionov and Dobrovolskij

2003) (supplementary box S1, Supplementary Material on-

line). The metacercarial asexual stage of A. winterbourni

develops in the gonad of the snail, which is consequently

castrated. The adult worm stage occurs in the gut of water-

fowl, where the worms reproduce sexually, producing eggs

released with the waterfowl feces (Lively and McKenzie

1991). Atriophallophorus winterbourni notably lacks several

life cycle stages known to occur in other digenean tremato-

des, including sporocyst, redia, cercaria, and possibly miracidia

stages (fig. 1). Unlike some other well-studied digenean trem-

atodes (see fig. 1 and supplementary box S1, Supplementary

Material online), A. winterbourni is not known to infect

humans and has low virulence in its final bird host. The

Potamopyrgus–Atriophallophorus system has been studied in-

tensively because the parasite seems to be in a tight coevolu-

tionary relationship with its host in natural populations (Lively

et al. 2004). The host–parasite interaction has been used to

test alternative explanations for the maintenance of sex in

Potamopyrgus snails (Lively 1987, 1989). Previous field and

laboratory studies suggest that A. winterbourni adaptation to

local host populations is genotype specific to a degree that the

parasite population can adapt to specifically infect the most

common host genotypes, which creates negative frequency-

dependent dynamics between the two (Dybdahl and Lively

1996; Lively et al. 2004; Jokela et al. 2009). Additionally, re-

cent experimental evidence has indicated that the parasite

alters the behavior of the snail, causing it to migrate to the

shallow parts of the lake where the final host resides (Feijen F.,

Buser C., Klappert K., Kopp K., Lively C., Zajac N., Jokela J., in

preparation).

In this study, we assembled de novo the A. winterbourni

reference genome, annotated protein-coding genes, and

assigned putative functions using Gene Ontology (GO).

With the knowledge from previous studies of pathways and

gene families potentially important in trematode adaptation

to parasitism, we used comparative genomics to contrast

A. winterbourni with other trematodes. We studied the
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evolution of homologous gene families across the phylogeny

of platyhelminths using hierarchical orthologous groups

(HOGs), or sets of orthologs/paralogs which all originate

from a single gene in the last common ancestor of a clade

of interest (Altenhoff et al. 2013). By tracing HOGs along the

species tree, it is possible to infer the evolutionary history of

gene loss, gain, and duplications since the ancestral gene.

Using HOGs, we reconstructed the ancestral digenean trem-

atode genome, the Plagiorchiida ancestral genome, and the

ancestral genome before the split of Xiphidiata and

Opisthorchiata suborders. Using these ancestral genomes,

we identified the evolutionary events (duplications, gains,

and retention of 1:1 orthologs) that shaped each gene family

in the lineage leading to A. winterbourni. We characterized

the duplicated, gained, and 1:1 orthologs (i.e., conserved/

retained) genes shared between all trematodes, as well as

those specific to A. winterbourni. We discuss the relevance

and function of these gene families in A. winterbourni and

search for signatures of positive selection in two of the

largest gene families. We use the inferred changes in the

gene content to better understand the genetic novelty nec-

essary for adaptation to parasitic lifestyles in the lineage

leading to A. winterbourni. Through outlining candidate

genes for parasitism, we provide a basis for future studies

on the genomics of parasite–host coevolution and we

broaden the knowledge on trematode evolutionary history.

Materials and Methods

Parasite Collection and DNA Extraction

Potamopyrgus antipodarum snails infected with

A. winterbourni were collected from Lake Alexandrina (New

Zealand, South Island) in January 2017 from several shallow

localities (<1.5 m) by pushing a kicknet through the vegeta-

tion. The snails were transported to the Swiss Federal Institute

of Aquatic Science (Eawag, Dübendorf, Switzerland) within 2

weeks of collections and were kept in boxes of 500 snails in a

flow-through system that filtered the water every 12 h. Snails

were fed spirulina ad libitum (Arthospira platensis, Spirulina

California, Earthrise) once a day.

Infected snails were individually dissected and 200–1,000

A. winterbourni metacercariae were isolated under 10�–20�
magnification. The metacercariae were hatched into adult

worms (see supplementary methods S1, Supplementary

Material online for details). Obtaining adult worms was nec-

essary to separate the parasite from the double-walled meta-

cercarial cyst that contained both the parasite and the snail

DNA (Galaktionov and Dobrovolskij 2003). The worms were

lysed using a CTAB buffer and Proteinase K (2 mg/ml) with

overnight incubation at 55 �C (Yap and Thompson 1987).

DNA was isolated using a chloroform: isoamyl alcohol solution

(24:1) and precipitated with sodium acetate (3 M). The result-

ing pellet was washed twice with 70% ethanol. DNA was

FIG. 1.—A summary table showing several shared life cycle characteristics of the trematodes used in the study. The first seven columns indicate the

presence (blue) or absence (gray) of developmental stages in each parasite’s life cycle. “Host number” indicates the number of hosts in a parasite’s life cycle,

“Type of adult worm” indicates whether the adult worms in the final host are hermaphroditic or dioecious (both males and females present). Species within

the genera Schistosoma and Opisthorchis are grouped due to identical characteristics. The photographs below represent the metacercaria and adult stage of

A. winterbourni and the intermediate host of A. winterbourni (P. antipodarum snail) (photographs taken by N. Zajac and K. Sepp€al€a).
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stored in RNase/DNase-free water (Sigma-Aldrich, MO) at

�20 �C until sequencing library preparation.

Estimation of Genome Size

To guide the de novo genome assembly, genome size was

estimated using flow cytometry with Propidium Iodide stain-

ing (CyFlow Space, Sysmex). Atriophallophorus winterbourni

worms were hatched according to the above-described pro-

tocol. A pool of 15 worms was stained for 1 h with Propidium

Iodide (according to the Partec protocol of CyStain PI Absolute

T kit) and treated with DNase-free RNase. Three batches of 15

worms were measured, each taken from a different snail host.

The DNA content of 2C nuclei was calculated using heads of

isoline Drosophila melanogaster males and a laboratory clone

of Daphnia galeata as two independent standards. For the

haploid DNA content of Drosophila melanogaster, a value

of 175 Mb (Bennett et al. 2003) was used and for Daphnia

galeata a value of 158 Mb (S. Dennis, personal communica-

tion, December 12, 2019). Each standard was run separately

with each batch of worms.

Sequencing

The DNA of A. winterbourni was sequenced using Illumina

and Pacific Biosciences Technologies (Ambardar et al. 2016).

For Illumina sequencing, two infected snails were selected

from a shallow water habitat from one site sampled at Lake

Alexandrina. A total of 200 ng DNA was extracted from ap-

proximately 800–1,000 worms and was sent to the Functional

Genomics Center Zurich (University of Zurich, Zurich) for li-

brary preparation and paired end sequencing using the

Illumina HiSeq4000 sequencing platform. A single TruSeq li-

brary was constructed from the DNA using the TruSeq Nano

DNA library prep kit according to Illumina protocols, obtaining

an average of 500 bp insert size. The library was sequenced

without indexing on a single Illumina lane. For Pacific

Biosciences sequencing, we selected 33 infected snails from

two different sites from a shallow water habitat with a high

infection prevalence within Lake Alexandrina. We assumed

no distinct or significant population structure for the parasite

from different sites within the same habitat zone, as previ-

ously shown for the snail host (Paczesniak et al. 2013).

Genomic material was isolated from a pool of approximately

13,000–30,000 worms. The high-molecular weight DNA with

an average length of 45,000 bp (assessed with a Bioanalyser)

was sent for sequencing to the Functional Genomics Center

Zurich (University of Zurich, Zurich), where it was sequenced

with the Pacific Biosciences RSII sequencing platform. A 10-kb

SMRT-bell library was constructed from a total of 10mg of

DNA. The library was sequenced using three SMRT cells using

P6/C4 chemistry. Primary filtering was performed by

Functional Genomics using the SMRT Link software from

Pacific Biosciences. We performed secondary filtering, choos-

ing only reads of at least 1,000 bp in length and with read

quality >80%. No error correction was performed on the

PacBio data at this stage, as it was corrected later with the

Illumina data during the hybrid assembly.

Illumina Data Correction

A quality trimming step was performed with Trimmomatic

0.35 on the raw Illumina HiSeq data before proceeding

with the assembly. Adapter sequences were removed and

bases with a phred quality score below 5 were removed

from the start and the end of the reads. Reads were scanned

with a sliding window of 4 and were clipped if the average

quality per base dropped below 15. Reads shorter than 50 bp

were discarded. The reads were then submitted to PRINSEQ

(Schmieder and Edwards 2011) for filtering for ambiguous

bases (Ns), characters different than A, C, G, T or N, and for

removal of exact duplicates. For assessment of contamination,

we used taxonomic interrogation of the paired reads with

Kraken v2, standard database (Wood and Salzberg 2014).

Hybrid Assembly and Annotation

Paired reads from Illumina were used together with long reads

from Pacific Biosciences for a hybrid assembly with the

MaSuRCA 3.2.3 assembler using default parameters (Zimin

et al. 2013). Redundans 0.13c (Pryszcz and Gabald�on 2016)

and AGOUTI (Zhang et al. 2016) were used for improve-

ments. Redundans improves the quality of the assembly by

reduction, scaffolding, and gap closing (Pryszcz and Gabald�on

2016). The reduction steps consist of identification and re-

moval of heterozygous contigs, based on pairwise sequence

similarity searches. Heterozygous contigs are expected to

have high sequence identity (Pryszcz and Gabald�on 2016).

The quality was assessed using the N50 statistic, BUSCO

3.0.2 (Benchmarking Universal Single Copy Orthologs)

(Waterhouse et al. 2018), and Blobtools 0.9.19.5 (Laetsch

and Blaxter 2017). BUSCO 3.0.2 assesses the completeness

of single copy orthologs based on evolutionary-informed

expectations about gene content using the lineage data set

metazoa_odb9. Blobtools 0.9.19.5 was used for taxonomic

partitioning of the assembly. All scaffolds >50,000 bp (2,718

scaffolds) plus a random sample of scaffolds <50,000 bp

from the assembly (2,661 scaffolds) were submitted to

BLAST 2.3.0 using the NCBI nr database for taxonomic anno-

tation. Taxonomic assessment of those scaffolds was used as

input for Blobtools. The paired and filtered Illumina reads and

PacBio reads of at least 1,000 bp in length and with read

quality >80% were mapped back to the final assembly

with BWA-MEM 0.7.17, yielding an average of 143� cover-

age per base (125� from the Illumina reads and 18� from the

PacBio reads).

Genome annotation was performed using the Maker

2.31.9 annotation pipeline (for details see supplementary

methods S2, Supplementary Material online) (Cantarel et al.

2008). The completeness and quality of the annotation was
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assessed with BUSCO and with full-length transcript analysis

using BLASTþ (see supplementary methods S3,

Supplementary Material online). GO annotation of the coding

sequences was performed with Pannzer2 (Törönen et al.

2018), EggNOG (Diamond mapping mode) (Huerta-Cepas

et al. 2016) and OMA (“Orthologous MAtrix”) (Altenhoff

et al. 2018) web browsers with each data set used separately

for GO enrichment analyses (http://ekhidna2.biocenter.hel-

sinki.fi/sanspanz/ [last accessed: October 2019], http://egg-

nogdb.embl.de/#/app/home [last accessed: January 2020],

https://omabrowser.org/oma/functions/ [last accessed:

December 2019]). We also assessed the percentage of all

GO terms annotated in A. winterbourni with experimental

evidence in nematode or trematode (supplementary methods

S4, Supplementary Material online).

Comparative Genomics and Ancestral Genome
Reconstruction

We selected 20 species of platyhelminthes and nematodes for

comparative genomic analysis. The choice of both nematodes

and trematodes was based on their comparisons in other hel-

minth genomic analyses (Zarowiecki and Berriman 2015;

International Helminth Genomes Consortium 2019) and will

allow for future comparison of trematodes to model species

of nematodes. The species consisted of 14 digenean tremat-

odes (including our focal species), 3 species of parasitic cest-

odes, 1 species of parasitic monogeneans, and 2 species of

free-living nematodes (see supplementary box S1,

Supplementary Material online, fig. 2). We chose these spe-

cies on the basis of close relatedness to A. winterbourni and

quality of the genome assembly and annotation (species also

used in International Helminth Genomes Consortium [2019]).

The proteomic, genomic, and transcriptomic sequences for

analysis were obtained from the NCBI database of inverte-

brate genomes (ftp.ncbi.nlm.nih.gov) and from the EBI data-

base (ftp://ftp.ebi.ac.uk/). For the analysis, we used the most

recent genomes from those databases with available tran-

scriptomic data (CDS_genomic) and protein annotation (see

supplementary table S1, Supplementary Material online).

The OMA standalone (Orthologous Matrix) software was

used for inference of HOGs of genes shared between species

(Altenhoff et al. 2019). This software conducts an all-against-

all comparison to identify the evolutionary relationships be-

tween all pairs of proteins included in the custom-made data-

base of the 20 genomes. The program was run with default

parameters and with the “bottom-up” algorithm for infer-

ence of HOGs. Caeorhabditis elegans and P. pacificus were

specified as outgroup species. After obtaining the phyloge-

netic species tree (see next section), OMA was rerun with the

precise species tree specified.

The data obtained from OMA was then analyzed with the

python library pyHam (Train et al. 2019). With pyHam we

reconstructed a model of the ancestral genomes at each stage

of the phylogeny leading to A. winterbourni and carried out

all comparisons between ancestral and extant genomes to

obtain classes of duplicated, gained, retained, or lost genes

(see Jupyter notebook supplementary material S6,

Supplementary Material online). We also used pyHam to vi-

sualize genomic changes along each branch of the phyloge-

netic tree.

Phylogenetic Species Tree

OMA Groups, that is, Orthologous Groups, from the OMA

output were used for phylogenetic tree construction, as they

are stringent groups of orthologs and do not contain paralogs

(Zahn-Zabal, Dessimoz, Glover 2020). The phylogenetic tree

was constructed following the protocol of Dylus et al. (2020).

Briefly, Orthologous Groups containing at least 15 species of

monogeneans, cestodes, and trematodes were extracted us-

ing the custom script filter_groups.py from the git repository:

https://github.com/DessimozLab/f1000_PhylogeneticTree.

Nematodes were excluded from precise phylogenetic and

time tree reconstruction, as they are too evolutionarily distant.

Within each Orthologous Group, sequences were aligned us-

ing MAFFT (mafft 7.273, 1,000 cycles of iterative refinement)

(Katoh et al. 2009). The separate alignments were

concatenated into one supermatrix using a custom script con-

cat_alignment.py from the git repository: https://github.com/

DessimozLab/f1000_PhylogeneticTree. The final size of the

supermatrix was 145,802 sites for all 18 species. No columns

from the supermatrix were excluded. The supermatrix was

used as input for IQ-TREE maximum-likelihood phylogenetic

tree construction (Trifinopoulos et al. 2016; Kalyaanamoorthy

et al. 2017; Hoang et al. 2018) using the ModelFinder Plus

option for finding the best fitting model. Branch support was

calculated with 1,000 Ultrafast bootstrap alignments and

1,000 iterations. The maximum-likelihood tree was confirmed

with ASTRAL III (Zhang et al. 2018) by constructing a species

tree from gene trees of the 238 Orthologous Groups. Each

gene tree was first constructed with IQ-TREE using

ModelFinder Plus for choosing an appropriate model; branch

support was calculated with 1,000 bootstrap alignments and

1,000 iterations. The IQ-TREE tree, together with the super-

matrix, were used in Mega-X 6.06 for time tree reconstruction

using the Maximum-Likelihood RelTime method (Tamura

et al. 2013). We used two pieces of evidence for time calibra-

tion, discussed in the Results.

GO Enrichment Analysis

We performed GO annotation for each species using

Pannzer2, EggNOG (Diamond mapping mode) and OMA

(Huerta-Cepas et al. 2016; Altenhoff et al. 2018; Törönen

et al. 2018). Each extant species genome was functionally

annotated with orthology-informed putative functions using

OMA, Pannzer2, and EggNOG reaching between 26% and

96% of genes annotated for each species (supplementary
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table S2, Supplementary Material online). We then performed

GO enrichment analysis using GOATOOLS (Klopfenstein et al.

2018), which finds statistically over- and under-represented

GO terms in the set of genes of interest compared with all the

GO terms in the background population. For analyses that

were species specific, the background set was all the genes

in the genome. For analyses of ancestral genomes, the back-

ground population was all the ancestral genes, that is, the set

of HOGs at that taxonomic level. To get the GO terms for any

particular ancestral gene/HOG, we took the union of all the

GO terms in the extant “children” species. Fisher’s exact test

was used for computing uncorrected P values. The P values

were then corrected using the Bonferroni method and

retained if the corrected P value was <0.05. Subsequently,

all enriched GO terms were categorized into GO slim catego-

ries using the AGR subset (Alliance of Genome Resources,

http://geneontology.org/docs/download-ontology/, last

accessed: May 7, 2020) and unique genes within each

enriched GO slim category were counted. For each GO

term, the IC (Information Content) score was calculated as:

IC(t) ¼ �log(P(t)) with P(t) being estimated as the empirical

frequency of the term in the UniProt-GOA database (Barrell

et al. 2009). The average IC was calculated for each GO slim

term using the IC values of all enriched GO terms in each

category (Mistry and Pavlidis 2008; Mazandu and Mulder

2014). GO slim terms were used in summarizing the data.

Estimation of dN/dS in Gene Families in Atriophallophorus
winterbourni

HOGs 25969 and 36190 with over 30 A. winterbourni

genes were investigated for signatures of positive

selection. All proteins within the two families were submit-

ted to NCBI BLASTP to find their best hit against the nr

database and obtain putative functions. We then applied

the protocol from Jeffares et al. (2015) to estimate the

nonsynonymous to synonymous substitution rate ratio

within each HOG and to investigate whether selection

models explain the data better than null models (Yang

1997; Kohlhase 2006). Protein sequences were aligned us-

ing Clustal Omega (Madeira et al. 2019), then converted to

codon alignment in Phylip format with PAL2NAL (Suyama

et al. 2006). Positive selection analyses are sensitive to

alignment errors; thus the gap-ridden alignment of HOG

36190 was subjected to a more stringent alignment filter-

ing, guided by the approach proposed by Moretti et al.

(2014) (for details, see supplementary methods S5,

Supplementary Material online). Branch site models in

codeml were used to estimate dN, dS, and x (dN/dS) (mod-

el¼ 2, NSsites¼ 2). The likelihood ratio test (LRT) was used

to determine significance. Gene trees were constructed

with protein sequence alignments using IQ-TREE

(Trifinopoulos et al. 2016; Kalyaanamoorthy et al. 2017;

Hoang et al. 2018). First an initial parsimony tree was cre-

ated by a phylogenetic likelihood library; 168 protein mod-

els were then tested for best fit with the data according to

the Bayesian Information Criterion. Branch support was

calculated with 1,000 bootstrap alignments (ultrafast

bootstrap) and 1,000 iterations. The models chosen were

JTT þ F þ G4 for HOG 25969 (general matrix with empir-

ical amino acid frequencies from the data and discrete

Gamma model with four categories) and WAG þ G4 for

HOG 36190 (general matrix with discrete Gamma model

with four categories).

FIG. 2.—Phylogenetic tree and classification of species used in the analysis. The data used for the tree were all Orthologous Groups from the OMA

analysis with genes from at least 15 species present (238 groups of orthologs). The combined data was used in IQ-TREE to create a robust consensus species

tree. The tree and the combined alignment of 238 groups of orthologs was used in Mega-X 6.06 for reconstruction of the time tree. The scale below

indicates divergence time in million years (Myr). Each node has a divergence time with the confidence interval indicated in brackets in million years and a

bootstrap support indicated after a slash.
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Results and Discussion

Genome of A. winterbourni

The de novo sequenced genome of A. winterbourni resulted

in a final assembly of 601.7 Mb in size, consisting of 26,114

scaffolds with an N50 of 40,108 (see table 1 and supplemen-

tary results S1, Supplementary Material online for details). The

assembly size was similar to the flow cytometry-based ge-

nome size estimate of 550–600 Mb (supplementary fig. S1,

Supplementary Material online). The annotation yielded

11,499 predicted protein-coding loci spanning 163.7 Mb,

with a mean of 5.8 exons and a median of 4 exons per

gene (table 1). The final BUSCO gene set completeness for

the annotation was 72% of complete single copy conserved

orthologs (see supplementary results S3, Supplementary

Material online for protein coding sequence length analysis

using BLASTþ). Relative to other published trematode

genomes, the A. winterbourni genome showed good protein

sequence length distribution and a comparable BUSCO com-

plete single copy conserved orthologs (supplementary fig. S4,

Supplementary Material online, table 1). Functional annota-

tion via GO was successful for 84% of genes using OMA,

Pannzer2, and EggNOG (9,674 genes, see supplementary

fig. S5 and table S2, Supplementary Material online), with

45.3% of the OMA GO terms and 32% of Pannzer2 GO

terms assigned to A. winterbourni having experimental evi-

dence in nematodes or trematodes (see supplementary table

S2, Supplementary Material online and results S2,

Supplementary Material online). In comparison to other

Plagiorchiida genomes, the A. winterbourni assembly was of

similar size and showed similar percentages of noncoding

regions, suggesting that no significant genome reduction

has occurred in this species (table 1). Transposable elements,

interspersed repeats, and low complexity DNA comprised

51.7% of the genome (supplementary table S11,

Supplementary Material online). This elevated level of TE con-

tent in comparison to closely related Opisthorchiata species

(33% C. sinensis, 30.3% O. felineus, 30.9% O. viverrini) (Esch

et al. 2002) might be an indication of increased importance of

transposable elements in A. winterbourni genome evolution.

Species Phylogeny and Molecular Clock

To reconstruct a robust maximum-likelihood phylogenetic

tree, 238 Orthologous Groups (groups containing only ortho-

logs, with a maximum one gene per species) shared between

at least 15 out of 18 species of Platyhelminths were used. The

phylogenetic estimate was well resolved and congruent with

previous publications based on genetic markers or whole

genomes (fig. 2) (Galaktionov and Dobrovolskij 2003; Lee

et al. 2013; International Helminth Genomes Consortium

2019; Blasco-Costa et al. 2020). Atriophallophorus winter-

bourni was placed as sister to the Ophisthorchiata clade

with 100% bootstrap support. The time of speciation of

A. winterbourni from the Opisthorchiata species was esti-

mated to have been 237.4 Ma (6120.4 Myr), that is, during

the Carboniferous through the Cretaceous period (fig. 2). The

divergence time estimates across the phylogeny were inferred

using several independent pieces of evidence, used as calibra-

tion points for Time Tree: the existence time of the proto-

trematode first associated with a molluscan host around

400 Ma, and the origin of Schistosoma species in the

Creataceous period (66–145 Ma) (Gibson 1987; Hausdorf

2000; Blair et al. 2001; Peterson et al. 2004; Parfrey et al.

2011).

Evolutionary Patterns of Gene 1:1 Orthology, Gain, Loss,
and Duplication across Trematoda

The OMA analysis identified 38,144 HOGs among all the spe-

cies included (2 Nematodes and 18 Platyhelminthes).

Specifically, in A. winterbourni 5,815 gene families were

found (comprising 7,828 out of a total of 11,499 genes,

68.1%) with the rest being identified by OMA as singletons

not belonging to any family (3,671 genes, 31.9%).

Comparisons of three ancestral genomes among the trema-

tode phylogeny (the ancestral Trematoda, the ancestral

Plagiorchiida, and the Opisthorchiata/Xiphidiata ancestor)

revealed many duplicated and gained gene families (fig. 3,

supplementary fig. S7, Supplementary Material online). A par-

ticularly high proportion of genomic novelty was inferred dur-

ing the initial speciation of Trematoda from the Trematoda/

Cestoda common ancestor (37.2% of newly acquired genes),

and again during the divergence of A. winterbourni from the

most recent Opisthorchiata/Xiphidiata ancestor (31.9% of

newly acquired genes, fig. 3B). The proportion of duplicated

genes in the A. winterbourni genome was also high (24%)

when compared with the Trematoda/Cestoda split (10.9%)

(fig. 3B). In A. winterbourni, many of the duplicated genes

were found in expanded gene families (503 genes comprising

66 HOGs with a minimum of 5 duplications per HOG) and 13

of these HOGs were massively expanded, with over ten du-

plicated genes since the Opisthorchiata/Xiphidiata speciation

(supplementary table S4, Supplementary Material online).

We found only 660 genes lost in the ancestral

Trematode from the previous ancestor. We observed a pro-

gressive increase in the number of lost genes to the

Opisthorchiata/Xiphidiata ancestor (fig. 3A). The

Plagiorchiida ancestor exhibited comparable gene loss to

gene gain and duplication whereas in the Opisthorchiata/

Xiphidiata ancestor, gene loss exceeded the number of

duplications or gains (fig. 3A).

1:1 Orthologs in Trematodes

Based on previous studies, we assumed that many of the

genes that remain conserved throughout speciation are

housekeeping genes, the building blocks of the organism,

and necessary for life, growth, and reproduction (Wu et al.

Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni GBE
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2006; Duarte et al. 2010). The prediction was confirmed

through the GO annotations associated with the genes

retained at a 1:1 orthologous gene ratio for each of the an-

cestral genomes (supplementary table S5, Supplementary

Material online). The enriched GO terms for retained genes

over all ancestors and A. winterbourni can be summarized as:

RNA processing, the establishment of protein localization, or-

ganelle organization, embryo development, cellular catabo-

lism, developmental process, reproduction, and response to

stress and stimulus. What is more, since the ancestral trema-

tode species 400 Ma, the number of genes retained at a 1:1

ratio remained relatively constant for each of the 14 extant

trematodes, between 2,966 and 5,203 genes (supplementary

table S6, Supplementary Material online).

Additionally, we found 28 single-copy orthologs present in

all species, which have been maintained since the trematode

ancestor. Examination of their functions through the annota-

tions of best studied trematodes (Fasciola hepatica [NCBI 2017],

Schistosoma mansoni [Protasio et al. 2012; Wang et al. 2016])

revealed that the 28 retained gene families shared between

them all were largely involved in cell functioning and growth,

division, and cell-to-cell or protein-to-protein interactions (sup-

plementary results S4, table S7, Supplementary Material online).

Genes Duplicated and Gained in Trematodes

We hypothesized that the duplicated genes are more

likely to be adaptive than the single-copy orthologs due

to the redundant second copy being functionally

FIG. 3.—(A). Number of duplicated, retained (1:1 orthologs) and gained genes resulting after each point of speciation obtained from the analysis of HOG

in pyHam, mapped onto a phylogenetic tree of trematodes (for original, see supplementary fig. S6, Supplementary Material online). The total number of

genes at each point is indicated on the left-hand side of the bar and the total number of retained (pink), duplicated (green), and gained (yellow) genes are

indicated on the right-hand side of the bar. The bars indicate the proportions of genes in each category. The lost genes are indicated only for the three

ancestral genomes: the Trematoda ancestor, the Plagiorchiia ancestor, and the Opisthorchiata/Xiphidiata ancestor. (B) The proportions (on the bars) and the

total numbers (next to the bars) of retained (pink), duplicated (green), and gained (yellow) genes in each reconstructed ancestral genome leading to

A. winterbourni. The oldest ancestral genome is on the left-hand side and the extant A. winterbourni genome on the right-hand side. The total number of

genes per genome is above each bar beneath the name. (C) Heatmaps summarising the GO enrichment analysis of the duplicated and gained genes in the

three reconstructed ancestral genomes and the extant genome of A. winterbourni. All enriched GO terms were categorized into GO slims, listed on the y-axis

of each heatmap. The colors indicate the mean IC value of each GO slim category and the number printed on top is the number of unique genes within that

GO slim category (see Materials and Methods).
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maintained through positive selection to play a new or

same role within the organism (Ohno 2013; Yang et al.

2015). Multiple duplications within gene families would

further suggest an adaptive importance of these key

HOGs. The novel (gained) genes may similarly indicate

areas of genetic innovation that were crucial in adoption

of new hosts, expansion/streamlining of life cycles, and

adaptation to changing environments. The origins of the

gained genes may stem from neofunctionalization or high

divergence of duplicated genes, therefore also potentially

involved in adaptive functions as suggested by the gene

duplication model of Ohno (2013).

Examination of the enriched functions from the trematode

ancestor to the most recent ancestor of A. winterbourni are

presented in figure 3C and appear to indicate a progressive

gain and duplication of potentially adaptive genes. An

“ancestral GO enrichment” analysis of the ancestral genomes

was used to retrieve the putative functions of all gained genes

(shared between at least 70% of the extant species in

Trematoda, 66.7% of Plagiorchiida, or 50% of Xiphidiata/

Opisthorchiata) and duplicated genes (minimum five dupli-

cated genes per family) (supplementary methods S6,

Supplementary Material online). Here, we concentrate on

functional analysis of ancestral genomes because the inferred

gene duplications, gains, and losses are based on evidence

present in all of the extant genomes. For example, a gene is

inferred to be gained at a particular ancestral level if it is pre-

sent in at least two species only in that clade. Therefore, an-

cestral genomes (i.e., internal nodes in the species tree) are

more robust than extant genomes in terms of inferred evolu-

tionary duplications, gains, and losses. Additionally, by only

considering gained genes present in the majority of the extant

species of a given clade, or duplicated genes present with at

least five copies, we have more confidence that we are look-

ing at bona fide gains and duplications. The ancestral genome

annotation was based on combining the GO terms assigned

to the extant genomes. We further categorized the enriched

GO terms into GO slim categories to give a broader overview

of the functions and counted unique genes within each of

those categories (summarized in fig. 3C). Although there was

a similar number of enriched functions for the duplicated and

gained genes in the Trematoda and Plagiorchiida ancestors,

we found more functions enriched in duplicated than in

gained genes in the Xiphidiata/Opisthorchiata ancestor and

in A. winterbourni. Considering only the duplicated genes,

from the trematode ancestral genome to the

A. winterbourni genome, there was a progressive increase

in the number of enriched GO slim functions over time, and

an overall increase in the number of unique genes contribut-

ing to each function. The increase in the number of unique

genes could possibly reflect the increasing importance of this

function over time or increased duplication rate of certain

families.

We present the average IC per GO slim category, which

can be used as a proxy to estimate the specificity of a partic-

ular GO term (see Materials and Methods). The higher the IC,

the more specific a term. For the gained genes, we found a

progressive increase in IC value of the different GO slim cat-

egories but we did not find an increase in the number of

enriched GO slim functions or the number of unique genes

within them (fig. 3C). The increase in average IC values of GO

slim categories enriched for gained genes could suggest an

increase in specificity of functions over time (fig. 3C). These

observations are best illustrated with enriched GO slim func-

tions such as catalytic activity (GO:0003824), including micro-

tubule motor activity, but also cellular component

organization (GO:0005634), including actin bundle filament

organization and response to stimulus. A literature review

relates them to the importance of the microtubule-based

and actin-based cytoskeletal system building the outer body

layering (tegument), through which the parasite interacts with

the host environment. Microtubule associated proteins in the

tegument, including tubulin, paramyosin, actin, dynein light

chains, and various antiporters, participate in absorption and

secretion (e.g., nitrogen utilization), transport of vesicles from

sub-tegumental cells to the tegument cytoplasm, and cell

motility (Githui et al. 2009; Young et al. 2010). Molecular

characterization and immunostaining studies have also shown

dynein light chains to function as tegument associated anti-

gens (Hoffmann and Strand 1997; Yang et al. 1999; Jones

et al. 2004), important in hiding from host immunity. The

tegument has been shown to be an essential structure for

adaptation to the external environment (Kim et al. 2012) in-

cluding the pH of the digestive system of the hosts. Indeed,

our results show dynein light chain, tegument-associated an-

tigen, and a tubulin-beta chain to be the functions of 3 of the

12 HOGs duplicated since the Trematode ancestor and with

at least 3 copies in 75% of the extant species (supplementary

table S8, Supplementary Material online). We also found dy-

nein light chain to be the putative function of one of the most

duplicated HOGs in A. winterbourni (supplementary table S4,

Supplementary Material online, see next section), as well as a

HOG duplicated in all 14 trematode species (supplementary

table S9, Supplementary Material online). Thus, we speculate

the functions related to the tegument to be also of great

importance in our focal species.

The results might indicate acquisition of more complex

and specific adaptations to hosts and environments over

time. More experimentally validated GO annotations in

our species of interest could shed light on this hypothesis

in the future.

Gene Loss in Trematodes

Gene loss is known to be common for intracellular parasites

(Sakharkar et al. 2004; Corradi 2015) and it is much rarer in

parasites with complex life cycles and multiple hosts

Zajac et al. GBE
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(Zarowiecki and Berriman 2015). However, in several hel-

minths there has been a loss of a mitochondrial gene atp8

(Egger et al. 2017) or cytochrome P450 redox enzymes (Tsai

et al. 2013) as well as other functional losses and gene family

contractions (International Helminth Genomes Consortium

2019). Here, we again focused on ancestral genomes because

they are inferred by the accumulation of gene presence and

absence information from the extant genomes, that is, if a

gene is not found in all the extant genomes of a clade, we can

assume it was lost in the last common ancestor of that clade.

Thus, ancestral genome analysis is less prone to being under-

mined by poorer quality genomes (Deutekom et al. 2019). In

our study, the robustness was exhibited by the number of

losses being always much lower in ancestral than extant

genomes (supplementary fig. S7, Supplementary Material on-

line). We also performed a GO enrichment of the lost genes

for A. winterbourni as well as the ancestors leading to it. For

the ancestral genomes, the background population for GO

enrichment was the union of all the GO terms in the extant

children species constituting the previous ancestor to the an-

cestor of interest.

Although there was a progressive increase in the number

of genes lost from Trematoda to Opisthorchiata/Xiphidiata

ancestor, a GO enrichment analysis of lost genes did not re-

veal any functions to be enriched in the Trematoda or

Opisthorchiata/Xiphidiata ancestor. In the Plagiorchiida ances-

tor we found loss of genes related to intrinsic components of

membrane (GO:0016021) and wide pore channel activity

(GO:0022829). We did not find any enrichment of GO terms

for the lost genes in A. winterbourni. Since the functions of

the lost genes appear to not be related to any specific biolog-

ical processes, we speculate that there is a greater importance

of gene gains and duplications in adaptation to parasitism.

Role of Gene Duplication and Gain in Driving Adaptation
of A. winterbourni

The Opisthorchiata species exhibit a high similarity in life cycle

traits and set of hosts. The A. winterbourni genome exhibited

comparable proportions of gained, retained, and duplicated

genes since the Opisthorchiata/Xiphidiata ancestor (31.9%,

44.1%, 24%, respectively) as Opisthorchis viverrini (41%,

50.5%, 8.5%, respectively), that is, in both species the high-

est proportion of genes was retained and the smallest pro-

portion of genes was duplicated. On the other hand,

Opisthorchis felineus exhibited a much higher proportion of

genes originating through duplication since Opisthorchiata/

Xipihidiata ancestor (52.4%) and Clonorchis sinensis had

the most genes originating through gain since the

Opisthorchiata/Xiphidiata ancestor (54.3%). Thus, across the

four species, sometimes gene duplication and sometimes

gene gain seems to play a greater role in gene family evolu-

tion. However, it is important to note that inferences regard-

ing gene duplications, gains, and losses in extant species

rather than ancestral species are impacted to a greater extent

by fragmentation in genome assemblies, likely inflating the

numbers in these categories of genes.

The A. winterbourni genome revealed a massive expansion

of 13 HOGs that occurred after the speciation from

Opisthorchiata/Xiphidiata ancestor (over ten duplicated

genes/HOG, comprising 221 genes, supplementary table S4,

Supplementary Material online). Comparing A. winterbourni

to the Opisthorchiata/Xiphidiata ancestor, two gene families

stood out due to the presence of more than 30

A. winterbourni genes: HOG 25969, with 31 genes in

A. winterbourni out of 56 genes in all trematodes, and

HOG 36190, with 36 genes in A. winterbourni out of 72

genes. In these two families, 29 and 31 genes originated

through duplication since the Opisthorchiata/Xiphidiata an-

cestor for HOG 25969 and HOG 36190, respectively. In any

other trematode, only 1–5 copies were found. These genes

were investigated for being artificially duplicated due to a high

proportion of BUSCO duplicated genes found within the as-

sembly. Genes could be considered artificial duplications due

to being fragmented by breaks between scaffolds (Alkan et al.

2011). We looked at the positions of the duplicated genes of

HOG 25,969 and 36,190 on their scaffolds, and we did not

find this to be the case (supplementary table S10,

Supplementary Material online). We thus concluded our

genes are likely real duplications rather than artificial duplica-

tions due to assembly fragmentation.

Functions of Massively Expanded Gene Families in
A. winterbourni

Examination of GO annotations of the 13 HOGs with over ten

recently duplicated genes (supplementary table S4,

Supplementary Material online) led us to speculate that the

genes are likely involved in host tissue invasion and exploita-

tion (metallohydrolases, Baskaran et al. 2017), escape from

host immunity (serpins, Bao et al. 2018), and host behavioral

manipulation (glutamine synthase, Helluy and Thomas 2010)

(supplementary table S4, Supplementary Material online).

Specifically, we examined the two most highly duplicated

gene families in depth. We determined HOG 36190 (36 genes

in A. winterbourni) to be a gene family of putative glutamine

synthases (supplementary table S4, Supplementary Material

online). Already from the Plagiorchiida ancestor to the

Opisthorchiata/Xiphidiata ancestor there was a significant en-

richment in biological processes and cellular components re-

lated to glutamine family amino acid metabolic processes,

including glutamate ammonia ligase activity (GO:0004356),

positive regulation of synaptic transmission, glutamatergic

(GO:0051968), glutamate binding (GO:0016595), glutamate

catabolic process (GO:0006538), and glial cell projection

(GO:0097386) (supplementary table S5, Supplementary

Material online). The glutamine biosynthesis pathway is a

pathway in which one of the end products is proline, a
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nonessential amino acid. An extremely active proline pathway

has already been observed in most helminths infecting

humans (Fasciola hepatica, Schistosomes), with host derived

arginine used as a substrate (Ertel and Isseroff 1976; Toledo

and Fried 2010; Mehlhorn 2016). These excessive proline lev-

els have been implicated in the pathogenesis of trematode

infections. Proline alters antioxidant defenses, activating sec-

ondary metabolite virulence factors, but also provides an en-

ergy source for a metabolic shift appropriate for adaptation to

the host environment (Ertel and Isseroff 1976; Toledo and

Fried 2010; Mehlhorn 2016). Glutamine synthase has also

been found to be a marker for glial cells, immunity cells of

the central nervous system. A study on Microphallus papillor-

obustus, a trematode parasite of Gammarus crustaceans,

found disruption of the glutamine metabolism in the brain

of the gammarids due to astrocyte-like glia and nitric oxide

production by the parasite metacercariae, resulting in altered

neuromodulation and behavior of the host (Helluy and

Thomas 2010). The gene family is thus especially interesting

and a potential candidate in parasite–host interactions as pre-

vious research has shown A. winterbourni to be affecting the

behavior of its snail host (Feijen et al., in preparation; Levri and

Lively 1996).

The second highest-duplicated gene family in

A. winterbourni was HOG 25969, with 31 genes. It consists

of proteins putatively encoding for O-sialoglycoprotein

endopeptidase, tRNA N6-adenosine threonylcarbamoyltrans-

ferase, metallohydrolase, and/or glycoprotease/Kae1, all re-

lated to DNA repair, protein binding, and metal ion binding

(supplementary table S4, Supplementary Material online). The

GO annotation indicates the family to be potentially involved

in DNA repair, nuclease activity, and nucleic acid phospho-

diester bond hydrolysis. Metalloproteases have been found to

be duplicated and under positive selection in other parasitic

worms (Strongyloides papillosus), showing them to be in-

volved in host tissue penetration at final larval stage

(Baskaran et al. 2017).

Signatures of Selection in Two Expanded Gene Families of

A. winterbourni

We next investigated the two highly duplicated (>30 genes)

HOGs described above for signatures of positive selection.

Signatures of positive selection were detected by comparing

the dN/dS ratio at branches leading to the radiation of

A. winterbourni genes, indicated with a #1 on the gene

tree, with the dN/dS ratio of background branches (fig. 4,

supplementary fig. S9, Supplementary Material online).

Selection is generally considered negative/purifying if x (or

dN/dS) is less than 1, neutral if x is 1, and positive if x is

greater than 1.

FIG. 4.—Gene tree of gene family HOG 25969 created with IQ-TREE. The tree is unrooted. Each name is a species name followed by the original gene

name (protein name). Atriophallophorus winterbourni gene names are shortened version of gene names in supplementary table S10, Supplementary

Material online. The numbers above branches indicate ultrafast bootstrap support, for the #1 branches the bootstrap support is after a backslash. The

branches labelled with #1.X indicate the separation between the foreground branches and the background branches (distinction used in codeml for

investigation of selection). The test for selection compares the dN/dS between the foreground branch and the background branches. The total number of

genes in this HOG per trematode species is given next to each species name.
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HOG 36190 was the most massively expanded HOG and

selection was found to be acting on some but not all genes

within this family. In the dN/dS ratio analysis, the null model

(allowing x� 1) explained the data better than the alternative

model (allowing x> 1) for 2 out of 3 of the investigated

branches, indicating neutral evolution (table 2, supplementary

fig. S9, Supplementary Material online). The signature of se-

lection was detected only on one branch, a long branch lead-

ing to a subset of 13 A. winterbourni genes within this family

(supplementary fig. S9, Supplementary Material online,

branch #1.3). Eleven sites were identified as >50% probabil-

ity to be under positive selection with one having a probability

>90%. From this we conclude that selection might be acting

on some, but not all, genes within this family potentially in-

dicating a certain structure evolving under positive selection.

However, considering we do not find selection on any other

branches in the gene tree, it also has to be taken into account

that genes in this family might be highly proliferating due to

being in genomic locations prone to duplication events. Their

increasing number can be causing redundancy, which can

ultimately be deleterious to the organism (Schiffer et al.

2016).

For the gene family HOG 25969 the alternative model

(allowing x> 1) explained the data better than the null model

Table 2

Results of Studying Positive Selection in Two Majorly Expanded Gene Families in Atriophallophorus winterbourni

HOG Node LRT df P-value Positively Selected Sites (Position in the Alignment, Amino Acid, Probability of

Being under Positive Selection)

36190 #1.1 0.00017 1 0.98 —

36190 #1.2 1.9 1 0.17 —

36190 #1.3 16.9 1 3.9E-05 291 A 0.725 874 L 0.731 1030-0.681

367 E 0.910 875 S 0.800

370 K 0.745 878 Y 0.564

371 K 0.827 879 V 0.518

873 K 0.626 880 P 0.707

25969 #1.1 25.6 1 4.13E-07 603 A 0.767 794 A 0.575 922 I 0.548 998 V 0.504

607 S 0.664 795 K 0.694 932 N 0.516 1038 Q 0.542

638 N 0.707 798 I 0.662 951 K 0.683 1073 S 0.605

649 V 0.935 803 S 0.762 955 H 0.878 1090 S 0.875

675 S 0.669 804 G 0.556 970 T 0.513 1095 Y 0.951*

680 C 0.912 812 R 0.893 976 Q 0.846 1121 S 0.508

701 I 0.684 833 S 0.514 986 N 0.906 1184 R 0.931

705 K 0.541 871 A 0.695 989 F 0.544 1188 I 0.521

716 Y 0.852 879 Q 0.889 994 S 0.624 1198 H 0.700

719 C 0.966* 921 N 0.983* 996 F 0.957*

25969 #1.2 5.5 1 1.80E-02 366 K 0.537

394 W 0.534

464 K 0.661

473 N 0.832

637 T 0.623

657 H 0.830

662 D 0.692

665 S 0.707

25969 #1.3 4.3 1 3.70E-02 402 R 0.867

873 F 0.624

25969 #1.4 26.7 1 2.30E-07 370 T 0.756 831 N 0.534 1004 N 0.974*

394 W 0.559 857 E 0.984* 1029 F 0.676

480 R 0.868 928 S 0.766 1044 D 0.846

482 L 0.590 929 G 0.986* 1080 E 0.767

611 C 0.632 931 N 0.687 1157 N 0.674

710 N 0.697 932 N 0.546 1162 Y 0.635

714 S 0.733 967 H 0.955* 1184 R 0.922

722 M 0.740 970 T 0.811 1189 L 0.886

749 P 0.791 988 M 0.940

814 E 0.637 994 S 0.729

NOTE.—The HOG indicates the ID of the gene family. The node relates to the nodes indicated in the gene trees of each HOG. LRT—results of likelihood ratio test, P-value is the
result of chi2 test of the LRT. Positively selected sites are the result of BEB (Bayes empirical Bayes) test implemented in codeml. The starred values indicate sites under significantly
high probability of selection (>95%).
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(allowing x� 1) for all the investigated branches, indicating a

signature of positive selection on all of the investigated fore-

ground branches (table 2, fig. 4). With this result we followed

up with the post-hoc Bayes Empirical Bayes (BEB) analysis

implemented in the alternative model (Yang et al. 2005).

For the branch leading to all 31 A. winterbourni genes, the

BEB analysis identified 39 amino acids residues to be under

positive selection in the alignment with 4 sites having an over

95% probability of being selected. For sites under positive

selection among different subsets of foreground lineages,

see table 3. Analysis of positive selection on the structures

of the enzyme showed the active, DNA or mental binding

site to be under highest probability of selection suggesting

an important role (supplementary fig. S8, results S5,

Supplementary Material online). However, without experi-

mental characterization it is difficult to say what role the fam-

ily might be playing in A. winterbourni.

Conclusions

In our study, we report a de novo sequenced genome of a

digenean trematode parasite, A. winterbourni, its phyloge-

netic position among other digenean trematodes, and the

time of speciation of its ancestor from Opisthorchiata subor-

der. Using 14 other currently available and well-studied par-

asitic digenean trematodes, we reconstruct the ancestral

trematode genome and investigate which genes have origi-

nated through duplication, which were gained and which

have remained conserved (retained) through each speciation

point until the extant genome of A. winterbourni. The com-

parative genomic approach is a powerful tool for identifying

candidate duplicated gene families involved in adaptation. We

find 13 gene families expanded recently in A. winterbourni,

and for two we infer signatures of positive selection. Our de-

scription of candidate gene families putatively involved in par-

asite infectivity will facilitate the identification of genomic

regions directly involved in the host–parasite coevolutionary

arms race and will facilitate studying coadaptation in the lab-

oratory. Gene expression studies in diverse life-cycle stages

and functional confirmation via, for example, RNAi knock-

out studies will be required to provide a direct link between

the genes and phenotypes involved. By focusing on gene

duplications and retention across the digenean trematodes

our work informs on the genomic basis of adaptation to par-

asitic lifestyles and paves the way for future adaptation geno-

mics focusing on antagonistic relationships between host and

parasites.
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