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In recent years, the essential role of bi-directional cross-talk between natural killer (NK) and
dendritic cells (DC) during immune responses has been clearly elucidated. In particular, this
cross-talk results in the development of an efficient innate response, through DC-mediated
NK cell activation, and a potent adaptive immune response, through NK-mediate DC editing
and maturation. Recently, some novel human DC subsets have been identified: migratory
DCs in afferent lymph and draining lymph nodes; CLEC9A+/BDCA3+ (CD141) DCs in inter-
stitial dermis, liver, lung; inflammatory DCs in several inflammatory fluids. At the same
time, it has been shown that also human NK cells are present in these compartments.
Here, we will review the most recent findings on NK/DC cross-talk and we will discuss the
necessity of acquiring more complete knowledge about these interactions in view of the
new information available on both DC and NK cell subsets.
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INTRODUCTION
Natural killer (NK) cells were originally identified as lymphocytes
that can spontaneously kill certain tumor target cells in the absence
of previous stimulation in vivo or in vitro (1). NK cell activa-
tion results from the balance of signals produced by activating
(2) and inhibitory (3) receptors. CD16 (FcRIIIa) is one of these
activating NK cell receptors and binds human immunoglobu-
lins, therefore mediating antibody-dependent cellular cytotoxicity
(ADCC) of opsonized target cells. However, many other innate
receptors acting upstream of the adaptive immunity have also
been discovered. Among these, the first to be identified were nat-
ural cytotoxicity receptors (NCR) termed NKp46, NKp44, and
NKp30 (2). NK cells also express additional activating receptors
such as NKG2D and DNAM-1, which are partially shared with
T lymphocytes, 2B4, NTBA, and NKp80 which promote NK cell
triggering during the process of natural cytotoxicity (4). Activating
NK cell signals are therefore mediated by several receptors and it
is widely accepted that the ligands for NK cell activating receptors
are mainly expressed on “stressed” cells, hence favoring killing of
both tumor or infected cells (4). Nevertheless, an important excep-
tion to this rule is the ability of NK cells to kill normal autologous
dendritic cells (DCs) (5, 6) as well as other immune cells such as
macrophages and T lymphocytes (7–9).

On the other hand, human NK cells also express different
inhibitory receptors recognizing human leukocyte antigen (HLA)
class I molecules: killer immunoglobulin (Ig)-like receptors (KIRs)
are specific for allelic determinants of HLA class I molecules, the
Ig-like transcript (ILT)-2 receptor is characterized by a speci-
ficity for different HLA class I molecules, and CD94/NKG2A
recognizes non-classical HLA class I molecules HLA-E (4). There-
fore, cells that have lost HLA class I molecules such as tumor or
virus-infected cells fail to deliver inhibitory signals to NK cells.

Peripheral blood NK cells in humans can be divided into two
main subsets according to CD56 expression, namely CD56dim and
CD56bright, characterized by distinct functional and phenotypic
properties. It has been established that a division of labor exists
among these two subsets: CD56dim, expressing CD16, KIRs, and
high levels of perforin, have enhanced killing activity, whereas
CD56bright cells, characterized by low levels of perforin and CD16,
no KIRs and high expression of NKG2A, can secrete large amounts
of cytokines (e.g., IFN-γ, GM-CSF, TNF) but not kill target cells.
Nevertheless, with the appropriate stimulus, also CD56dimCD16+

NK cells are abundant cytokine producers (10, 11).
In the last few years, the functional links between NK cells

and DCs have been widely investigated and different studies
have demonstrated that reciprocal activations ensue upon NK/DC
interactions. More recently, the anatomical sites where these inter-
actions take place have started to be identified together with the
related cell subsets involved.

Dendritic cells were identified for the first time in 1973 by
Ralph Steinman as accessory cells in mice spleen. During the
last two decades, it has been established that DCs are profes-
sional antigen presenting cells (APCs), uniquely skilled to attract
and activate CD4+ and CD8+ T cells. Most of our knowledge
on DCs comes from studies of blood and skin DCs. However,
improvements of both flow cytometric and genomic approaches
have recently allowed the identification of several distinct sub-
sets of DCs. Despite their heterogeneity, there are some features
common to all DC subsets, both in mice and humans. Imma-
ture DCs act like sentinels efficiently sampling antigenic material.
Upon pathogen encounter, they undergo a complex maturation
process that leads to professional antigen presentation, cytokine
production, and T cell stimulatory capacities. During the matu-
ration process, they upregulate distinct molecules on their surface
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such as major histocompatibility complex (MHC) class II, CD80,
CD83, CD86, and CD40 essential for antigen presentation and
interaction with T cells; at the same time, they migrate from the
periphery to secondary lymphoid organs (SLO) where they can
induce CD8+ and CD4+ T cell response (12).

Two main populations of DCs have been described in humans:
BDCA2+ (CD303)/CD123+ plasmacytoid DCs (pDCs) and
myeloid DCs (mDCs) (13). The latter includes several subsets
identified in distinct tissues, thus resulting in a high level of
heterogeneity; peripheral blood contains two main DC subsets:
BDCA1+(CD1c) DCs and CLEC9A+/BDCA3+ (CD141) DCs (14,
15); as they are both also present in lymph nodes and tonsils, they
have been described as blood-derived lymphoid organ-resident
DCs (14–17).

Besides peripheral blood, also the skin includes distinct and
well-characterized DC subsets: the epidermis contains Langerhans
cells (LCs) and the dermis at least three subsets: dermal CD1a+

DCs, dermal CD14+ DCs, and CLEC9A+/BDCA3+ DCs (18–20).
All these DC subsets can migrate through the lymph to draining
lymph nodes (21). Finally, in several inflammatory conditions such
as atopic dermatitis, psoriasis, rheumatoid arthritis, and tumor
ascites, a different DC subtype, referred to as “inflammatory DC,”
has lately been described (22). Transcriptomic analysis revealed
that they likely derive from monocytes that differentiate at the site
of inflammation. Interestingly, it has been recently suggested that,
in inflamed tissues, CD56bright NK cells may induce differentiation
of monocytes into inflammatory DCs (23).

This broad heterogeneity corresponds to distinct specialized
functions in terms of tissue distribution, cytokine release, antigen
presentation, and regulation of T cell response. These different fea-
tures of the distinct DC subsets will be reviewed here and discussed
in the context of possible interactions of NK cells with different
DC subsets.

DISTRIBUTION OF HUMAN NK CELL SUBSETS
In the last few years, it has become evident that NK cells are not
exclusively found in peripheral blood and SLO but can populate
different non-lymphoid tissues (24). In mice, where investigating
NK cell localization is more straightforward than in humans, the
presence of NK cells in many organs has been revealed (25) and
distribution seems to be subset-specific, as different NK cell sub-
sets showed organ-specific localizations. Lately, some light has also
been shed regarding the distribution of human NK cells in solid tis-
sues, showing that NK cells populate, and may re-circulate through
most human peripheral tissues, and that organ-specific chemokine
expression patterns can drive the homing of functionally distinct
NK cell subsets to the various human body compartments, both
at steady-state and pathology (26). In particular, CD56bright NK
cells selectively accumulate in several organs, including SLO, liver,
visceral adipose tissues, and gastrointestinal tract. Moreover, in a
large variety of human malignancies, CD56bright NK cells repre-
sent the majority of NK cells infiltrating the tumor. Recently, we
have reported that seroma, an accrual of fluid subsequent to surgi-
cal procedures such as axillary lymph node dissection, represents
an accumulation of afferent lymph, drained from upstream tis-
sues during the interval of time needed for lymphatic vessels to
re-anastomose with the efferent ducts (27). Seroma accumulates

without major contamination by either surgery-induced exudate
or leaky blood-derived cells, thus confirming the lymph-associated
origin of the cells contained in seroma fluids (21). Interestingly,
only CD56bright/CD16low/neg/KIRneg non-cytotoxic NK cells were
detectable in afferent lymph from seroma fluids and appear there-
fore able, similarly to naïve T cells, to re-circulate via afferent
lymph. NK cells are also present in human efferent lymph (28) sug-
gesting that they can re-circulate from solid tissues to peripheral
blood through lymphatic circulation and SLO.

The evidence that CD56bright NK cells are, in most solid tissues,
more abundant than in peripheral blood (which contains only
around 2% of human body total lymphocytes) (29, 30), suggests
they might probably outnumber CD56dim NK cells in the human
body. The functional role of such an abundant non-cytolytic, but
cytokine-secreting, NK cell subset in solid organs remains to be
fully clarified. Interestingly, it has been shown that human DCs
primarily activate this NK cell subset (31) promoting IFN-γ release
and proliferation.

DISTRIBUTION OF HUMAN DC SUBSETS
Thanks to improvements in both flow cytometric and genomic
techniques, it is now clearer and clearer that human DCs rep-
resent a heterogeneous cell population and that each DC subset
is often characterized by specific functional properties. BDCA1+

DCs have recently been described as the most potent human
IL-12-producing APCs (32), suggesting a potential key role in pro-
moting IFN-γ release by NK cells, and therefore Th1 polarization.
CLEC9A+/BDCA3+DCs, originally identified in peripheral blood
and lymph nodes, have recently been detected also in other human
organs such as skin, liver, lung, and intestine, where they show a
more mature phenotype compared to CLEC9A+/BDCA3+ DCs
observed in either blood or lymph nodes, indicating that they
may represent a mature stage of differentiation (18). Moreover,
CLEC9A+/BDCA3+ DCs are characterized by the peculiar ability
to cross-present antigens from dead cells better than other DC sub-
types (18) but they seem equally able to cross-present soluble anti-
gens (33) when compared to other DCs. It can be hypothesized that
different DC subsets need distinct TLR stimulation to efficiently
cross-present exogenous antigens. Cross-presentation represents
a key process for specific CTL response against most tumors and
viruses that do not infect APCs. The antigen forms, as well as the
activation signals received by DCs, are likely to be critical in deter-
mining the efficiency of cross-presentation. Moreover, it has been
shown that CLEC9A+/BDCA3+ DCs have the dual capacity to
produce both IL-12 and type I IFN (34), thereby enabling both
NK cell activation and Th1 polarization, which could be signifi-
cant for a protective immune response against viral infections. In
particular, type I IFN can enhance NK cell cytotoxicity while IL-12
promotes IFN-γ secretion and Th1 polarization.

Dendritic cells in human skin also show distinct patterns of
functional capabilities: dermal CD1a+ DCs have been described
as immature cells capable of inducing T cell response only upon
stimulation, while in steady-state they might be tolerogenic (35).
On the other hand, dermal CD14+ DCs seem to play a critical role
in the regulation of humoral immunity and LC in the induction
of CTL response (20). LCs also secrete IL-15 and are therefore
potentially able to activate both CD8+ T cells and NK cells (36).
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In general, immature (non-activated) DCs act as sentinels in
peripheral tissues; upon activation through danger signals they ini-
tiate the maturation process that allows them to migrate to lymph
nodes via afferent lymph. In many experimental animal models,
DCs have been shown to be able to continuously migrate from
intestine or from skin to SLO (12, 37, 38). Most recently, DCs in
human afferent lymph have also been characterized (21). Besides
dermal CD1a+ DCs, dermal CD14+ DCs and LC, afferent lymph
also includes CLEC9A+/BDCA3+ DCs and CD1a+ CD14+ DCs,
the latter likely representing an immature stage of differentiation
from CD14+ DCs to CD1a+ DCs.

NK CELL CROSS-TALK WITH DENDRITIC CELLS
The cooperative interaction between DCs and NK cells plays a key
role in triggering immune response against pathogens. This dialog
results in a bi-directional activation and has effects also on the sub-
sequent adaptive immune response, influencing the development
of Th1 cells and CTLs, both essential for an effective anti-tumor
and anti-viral immune response.

DCs INDUCE NK CELL ACTIVATION
Dendritic cells promote the release of cytokines by NK cells
(mainly TNF and IFN-γ) and enhance NK cell proliferation and
cytolytic activity. DC-mediated NK cell activation occurs mainly
through the release of soluble factors (Figure 1) although cell-
to-cell contacts play a relevant role during NK/DC interaction, as
better specified below.

It has been shown, in different mice models, that NK cell pre-
activation by DCs is required for an efficient immune response
against viral infections (39–41) and tumors (42). A large variety
of microbial stimulation and signaling via TLRs can induce DC

FIGURE 1 | DCs subsets may differently affect NK cell function. Distinct
DC subsets reflect different capability to promote NK cell function: IL-15
released by LC may promote NK cell proliferation; IL-12, mainly produced by
CLEC9A+/BDCA3+ DCs and BDCA1+ DCs, induces IFN-γ release and
subsequent Th1 polarization of T cells; NK cytolytic activity may be boosted
by IFN-α secreted by pDCs and CLEC9A+/BDCA3+ DCs.

maturation and secretion of several cytokines which can in turn
activate NK cells. IL-12, mainly secreted by mDCs (in particu-
lar from BDCA1+ DCs), efficiently stimulate IFN-γ secretion by
NK cells. IL-18 can potentiate the effect of IL-12 by inducing the
expression of IL-12R on NK cells. Moreover, IL-18 synergizes with
IL-12 for enhancing NK cell cytolytic activity (43).

Also pDCs might activate NK cells, most likely via the release
of type I IFN, which has been shown sufficient to boost NK cell
cytotoxicity (44). Indeed, a protective NK cell response during
infection with the murine cytomegalovirus (MCMV) was found
to be type I IFN-dependent (45). Of note, the recently described
CLEC9A+/BDCA3+ DC subset can also release high amounts of
INF-α, suggesting that, upon viral infection, they may play a key
role in promoting NK cell cytotoxicity in peripheral tissues, such
as skin, liver, lung, and intestine (34).

Another relevant cytokine for NK cell development and func-
tions is IL-15, which is also produced by DCs. This cytokine can
be presented by DCs via its binding to IL15R alpha or as trans-
membrane protein; it can stimulate NK cell proliferation, survival,
and priming of protective NK cell response (44). In particular, it
has been shown that LC can support NK survival via IL-15 (46).
Besides the membrane-bound form of IL-15, it has been estab-
lished that also other contact-dependent mechanisms are involved
in NK–DC cross-talk. In general, the formation of stimulatory
synapses between DCs and NK cells plays a critical role during NK
cell activation induced by DC-derived cytokines, including IL-12
(47). Also, the interaction of CXC3CL1 expressed on DCs with
CX3CR1 on NK cells results in IFN-γ release by NK cells (48) and
it has been shown that influenza virus-infected DCs can support
IFN-γ production by triggering the activating receptors NKp46
and NKG2D (49).

Most of the studies on NK/DC interactions in humans are based
on DCs derived from monocytes, which are generated after several
days of culture with different cytokines. On the other hand, the
interactions between ex vivo isolated human DCs and NK cells
have been poorly investigated so far and, despite the clear hetero-
geneity of human DC subsets, only peripheral blood DCs have,
to some extent, been investigated (50–52). In these studies, it has
been shown that both plasmacytoid and myeloid peripheral blood
DCs are capable of activating NK cells, enhancing their cytolytic
activity and inducing IFN-γ release in response to influenza virus
or dsRNA.

Among human NK cell subsets, CD56bright NK cells were
found to be particularly responsive to activation by DCs (31,
53). Interestingly, they are enriched in SLO and in most solid
tissues (26). Their presence in afferent lymph also suggests that
they may re-circulate from peripheral solid tissues to SLO; thus, it
is conceivable that, in vivo, NK–DC cross-talk may occur either
in peripheral tissues or in lymph nodes, where, in both cases,
NK cells can encounter distinct myeloid DC subsets. Recent
reports indicate that DC heterogeneity may also correspond
to the induction of different functions in NK cells: BDCA1+

DCs may be important for IL-12 secretion in SLO, favoring
IFN-γ secretion and consequent Th1 polarization of T cells;
CLEC9+BDCA3+ DCs may be relevant in peripheral tissue where,
upon virus infection, they can induce NK cytolytic activity by
releasing IFN-α.
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In conclusion, the activation of NK cells ensuing upon interac-
tion with DCs has important consequences not only for the lysis
of tumor or virus-infected cells, but it can also boost ongoing
adaptive responses by the release of IFN-γ, which promotes type
1 polarization of T cells (Figure 2). Moreover, once activated, NK
cells can edit DCs, by eliminating the more immature, allegedly
tolerogenic DCs, as further discussed below. At the same time, NK
cells can also shape adaptive immune responses by causing DC
activation.

NK CELLS INDUCE ACTIVATION AND EDITING OF DCs
Activation of NK cells can occur via triggering of activating recep-
tors by target cells or by stimulation of soluble factors released
by accessory cells. Following activation, NK cells release large
amounts of TNF and IFN-γ, which are known to affect DC matu-
ration. TNF enhances the expression of costimulatory molecules
on DCs and, synergizing with IFN-γ, contributes to DC produc-
tion of IL-12 (54, 55). Moreover, exposure of NK cells to innate
cytokines such as IL-12 and IL-18 (both released by mDCs) can
promote Th1 polarization [Figure 2 and Ref. (56)]. INF-γ can
also induce the expression of a membrane-bound form of IL-
15 on DCs, thus sustaining both T and NK cell survival and
activation (57).

Besides soluble factors, it has been shown that engagement of
the NK activating receptor NKp30 can mediate DC maturation
(58). Thus, recognition of target cells by NK cells can induce
an additional mechanism of DC maturation, which might be

particularly relevant in tumor immunity, where the absence of
danger signals precludes DC maturation via the engagement of
pattern recognition receptors (59, 60).

During initiation of an anti-viral or anti-tumor immune
response, the microenvironment is influenced by a peculiar
cytokine milieu, which includes cytokines released following NK
cell activation (61, 62). It must be noted that NK cell triggering
often occurs upstream of T cell activation, providing both a first
line of defense and an early production of cytokine, critical for
the subsequent development of the adaptive immune response.
Although it is generally accepted that CTL response needs helper
signals provided by CD4+ T cells, interactions occurring between
DCs and NK cells can bypass these helper signals by leading to the
production of IFN-γ, which, in turn, can stimulate IL-12 produc-
tion by DCs, thus eventually leading to a protective CTL response
(57, 63, 64).

While the helper role of NK cells in inducing DC-mediated
generation of Th1 polarized T cells and CTLs has been well docu-
mented, an issue not exhaustively elucidated so far is the ability of
NK cells to promote DC cross-priming. Nevertheless, some reports
suggest a role for NK cells in promoting antigen cross-presentation
by DCs. It has been shown that DCs can take up dying cells killed
by NK cells and present them on MHC class I molecules (65, 66).
Obviously, NK cell ability to lyse virally infected or tumor cells
could help uptake and cross-presentation of antigens by DCs but
whether NK cells also play a direct role in favoring DC cross-
presentation is still not clear. In a human in vitro system, it has

FIGURE 2 | NK/DC cross-talk. The interaction between NK cells and DCs
results in reciprocal activation: mature DCs release cytokines able to promote
NK cell activation (all myeloid mature DCs can produce IL-12 whereas pDCs
and CLEC9A+ BDCA3+ DCs can release large amounts of IFN-α); in turn,
IFN-γ released by activated NK cells promotes Th1 polarization and, together

with TNF, DC maturation, and migration to draining lymph nodes. Activated NK
cells can also lyse tumor cells, leading to the generation of tumor antigenic
material; tumor debris are then engulfed by DCs and tumor antigens are
processed and presented by mature DCs to both CD8+ (cross-priming) and
CD4+ T cells.
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been demonstrated that cross-presentation of antigens to CD8+

T cells by DCs requires NK cells: capture of tumor cells and matu-
ration status of DCs are not sufficient to induce cross-priming of
T cells without further NK-mediated activation and IL-18 release
(67). Moreover, the capability of mono-derived DCs, generated in
the presence of IFN-α (IFN-DCs), to prime CD8+ T cells against
human tumor antigens is dependent on NK cells; NK cell removal
indeed leads to generation of IFN-DCs with no priming activ-
ity of tumor Ag-specific T cells (68). In vivo, in a mice model of
melanoma, tumor regression resulted from an immune cascade
initiated by activated pDCs and involving NK cells, mDCs, and T
cells. It was shown that CpG-activated pDCs can recruit NK cells
at the tumor sites via chemokine production (CCL3, CCL4, and
CCL5), and enhance their cytolytic activity through IFN-α release.
Activated NK cells, in turn, can kill tumor cells, induce mDC mat-
uration, and migration to draining lymph nodes, where mDCs
can cross-present tumor antigens to CD8 T cells (69). Again, in
this study, cross-priming of CD8+ T cells is exclusively NK cell-
dependent, as NK cell depletion results in complete abrogation of
CD8+ T cell priming. Therefore, it is likely that NK cells can favor
cross-presentation by DCs, although the specific abilities of dif-
ferent DC subsets, as well as the mechanisms involved are still to
be clearly identified. It is conceivable that NK cell killing of tumor
cells could provide antigens subsequently taken up, processed, and
cross-presented by DCs; at the same time, activation of NK cells
is associated to the secretion of cytokines, such as TNF or IFN-γ,
potentially able to help cross-priming of specific CTLs (Figure 2).

Thus, NK cells, upon interaction with DCs, can induce the acti-
vation of specific functions on DCs. Nevertheless, the capability
of NK cells to induce DC activation is not the only mechanism
by which NK cells may influence DC functions. Once activated
by DCs, NK cells acquire the capability of killing immature, but
not mature, mDCs (5). It has been proposed that more mature,
activated DCs, by upregulating their surface expression of MHC
class I molecules, would be protected from NK cell lysis. Con-
versely, immature DCs, expressing lower levels of MHC class I
molecules, are more susceptible to NK cell killing. DCs that fail
to express sufficient amounts of MHC class I molecules would
induce inappropriate, low affinity T cell priming resulting either
in Th2 response or in the induction of tolerance (70, 71). For
these reasons, it was hypothesized that NK-mediated DC killing
might represent a mechanism of DC selection for the control of
downstream adaptive immune response (DC editing) (70). While
in vivo evidence for DC activation by NK cells has extensively
been provided, the direct demonstration that DC editing by NK
cells also occurs in vivo, as well as its putative role in promot-
ing an efficient immune response, has only recently been proven
(72). In an experimental model of cancer cell vaccination, NK
cells were necessary for removing less immunogenic DCs by a
perforin-dependent mechanism, leading to an improved capabil-
ity of residual DCs to induce anti-tumor CTL response and mice
survival.

CONCLUDING REMARKS
Studies performed in the last few years have clearly shown that,
during immune response, different leukocytes act by not only dis-
playing their own protective functions, but also interacting with

each other to optimize the response against microorganisms and
cancer cells. Recent identification of different DC subsets in the
human system is leading to new insights in the field of innate
cell interactions, particularly for the cross-talk occurring between
these DC subsets and NK cells. As DC subsets show a specific
distribution in human tissues, their interactions with NK cells
should now be better dissected. Noteworthy, some light has also
been recently shed regarding the distribution and trafficking of
NK cells in the human body, thus allowing a more complete
depiction of where these two cell types could physically inter-
act. Interestingly, DC subsets are now emerging as cells endowed
with peculiar functions, either in terms of specific cytokine secre-
tion or of signals provided to other neighboring cells through
distinctive surface molecules during cell-to-cell contacts. There-
fore, NK/DC interactions should no longer be considered as the
cross-talk between two homogeneous populations of innate cells
but rather as a more complex network of cell subset cooperation
acting in discrete regions of the body to fulfill complementary
tasks.
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