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Abstract: Anaplasma capra, a species of the family Anaplasmataceae, is zoonotic tick-borne obligate
intracellular bacteria. There have been no reports of human infection with this pathogen since 2015.
Therefore, the zoonotic characteristics of A. capra need to be further studied. To verify the ability of A.
capra to infect human cells, A. capra were inoculated in human erythrocytes, HL-60, and TF-1 cell
lines in vitro. Cell smears were taken after inoculation, using Giemsa staining, transmission electron
microscope (TEM), chromogenic in situ hybridization and immunocytochemistry for detection. In
the Giemsa staining, many dark colored corpuscles or purple granules were seen in the inoculated
erythrocytes, HL-60, and TF-1 cells. The results of chromogenic in situ hybridization show that there
were brown precipitates on the surface of most erythrocytes. Immunocytochemistry results show
many dark brown vacuolar structures or corpuscles in the cytoplasm of erythrocytes, HL-60, and
TF-1 cell lines. The A. capra morulae were seen in the cytoplasm of both HL-60 and TF-1 in TEM, and
their diameter was about 295–518 nm. Both dense-cored (DC) and reticulate cell (RC) form morulae
could be seen. This study confirmed the ability of A. capra to infect human erythrocytes, HL-60, and
TF-1. This study is of profound significance in further verifying the zoonotic characteristics of the
pathogen and for establishing an in vitro cultivation model.
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1. Introduction

Anaplasma capra is one of the species of the Anaplasma genus that are now considered
significant zoonotic pathogens [1]. As early as 2010, Zhou et al. (2010) [2] detected an
unknown Anaplasma species in goat blood samples in the Chongqing region of China.
In 2015, Li et al. [3] detected the above pathogen at the Mudanjiang Central Hospital in
Heilongjiang in the blood of patients with a tick bite history. The infected patients primarily
manifested fever, headache, fatigue, dizziness, and chills. After phylogenetic analysis based
on 16S rRNA, gltA, msp2, and msp4 loci, the above species was considered a new species
of the Anaplasma genus; it was temporarily named A. capra. Similar to A. phagocytophilum
and A. ovis, it could infect humans [4,5]. Moreover, it is similar to A. ovis, A. centrale, and
A. marginale in being infectious to animal erythrocytes [6]. Over the past two decades,
diseases caused by Anaplasma have spread rapidly among humans. Since the first report of
human infection with A. phagocytophilum, a growing number of tick-borne pathogens with
zoonotic potential have been discovered. They cause anaplasmosis or related diseases and
pose a considerable impact on public health worldwide [7].
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According to relevant reports from China, A. capra (initially considered A. centrale)
can also infect cattle [2]. Nevertheless, the pathogen was named after the first discovered
host, the goat [2]. In Heilongjiang, China, A. capra was first detected from Ixodes persulcatus,
which was later regarded as its main transmission vector [3]. Besides, the DNA of this
pathogen was also detected in several other tick species such as Haemaphysalis longicornis, H.
qinghaiensis, Rhipicephalus microplus, Dermacentor nuttalli, and D. abaensis [8–10]. Therefore,
these species could be the main carriers that spread the pathogen to humans and vertebrates
by sucking blood. There is little information about the life history and reservoir host of
A. capra in nature. Although different strains of A. capra have been detected in ticks and
animals such as goats, cattle, and deer in various regions of the world [6,7,11,12], there is
no evidence thus far that any form of the pathogen has been detected by microscope in
the human blood cells. Thus, morphological investigation of A. capra in infected human
blood cells plays an important role in guiding the laboratory examination of the pathogen
from human samples. This is of profound significance to the diagnosis and treatment
of anaplasmosis.

Since the successful in vitro cultivation of Anaplasma phagocytophilum, the technologies
for the in vitro cultivation and isolation of other Anaplasma species have been developing
rapidly [13]. A. phagocytophilum can form vacuoles in the cytoplasm of the host cells
and replicate inside these vacuoles. In laboratory settings, the human promyelocytic cell
line HL-60 is the most common cellular model for phagocyte research as it expresses
the receptors to be invaded by the bacteria [14]. During intracellular growth, Anaplasma
species transforms from a dense-cored (DC) form capable of invading the host cells to a
reticulate cell (RC) form that replicates inside vacuoles [15]. Human-derived A. capra has
been cultured in HL-60 cells. Although A. phagocytophilum, A. ovis, and A. marginale can
all be cultured in the tick cell lines ISE6 and IDE8 [16–18], these cell lines are not easily
storable, and, hence, not widely used in laboratory settings. All these studies provide
excellent references for the in vitro cultivation of A. capra. TF-1 is an erythroleukemia cell
line derived from human bone marrow, and its surface has receptors resembling that of
erythrocytes. This was established by Kitamura et al. in 1987 [19]. We recently reported that
A. capra could infect goat erythrocytes [20]. To verify the ability of A. capra to infect human
cells, A. capra were inoculated in human erythrocytes, HL-60, and TF-1 cell lines in vitro.
This research is of profound significance for further verifying the pathogen’s zoonotic
characteristics and establishing an in vitro cultivation model.

2. Materials and Methods
2.1. Pathogen Collection and Identification

Initially, 5 mL of A. capra-positive goat venous blood with anticoagulant were col-
lected. The erythrocytes were then isolated from the whole blood sample as per the
erythrocyte/leukocyte isolation kit instructions (Haoyang Biotechnology, Tianjing, Hebei,
China). Next, the isolated erythrocytes were resuspended in a double volume of Alsever’s
solution (Solarbio, Beijing, China) and stored at 4 ◦C for subsequent use. Later, a four-fold
volume of pre-cooled (4 ◦C) erythrocyte lysis buffer (Solarbio, Beijing, China) was added to
the erythrocyte suspension by gentle pipetting to ensure uniform mixing; this suspension
was then placed in a 4 ◦C refrigerator for 10 min until complete lysis of the erythrocytes
was attained. Finally, the pathogen was collected by high-speed centrifugation (Beckman
JXN-30, Miami, FL, USA) for 30 min at 30,000× g and 4 ◦C. This was followed by resuspen-
sion of the collected pathogen in 1 mL of the RPMI 1640 medium (HyClone, Logan, UT,
USA) containing 10% FBS (Gibco, Carlsbad, CA, USA).

DNA was extracted from 300 µL of the pathogen suspension by using a bacterial
genomic DNA extraction kit (LifeFeng Biotechnology, Shanghai, China) as per the instruc-
tions and stored at −20 ◦C for subsequent use. Nested PCR reactions targeting the gltA
gene and conventional PCR targeting the heat shock protein (groEL) gene and the major
surface protein4 gene (msp4) of A. capra were performed as previously described for A.
capra identification [3].
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2.2. Human Erythrocytes Isolation and Preserved In Vitro

After collecting 2 mL of human venous blood in an EDTA-Na2-coated blood collection
tube, human erythrocytes were isolated with the goat erythrocyte isolation kit (Haoyang
Biotechnology, Hebei, China) as per its instructions. The human erythrocytes were trans-
ferred to the RPMI 1640 medium (500 mL, HyClone, Logan, UT, USA) containing 10% FBS
(50 mL, Gibco, Carlsbad, CA, USA); the cell density in the medium was adjusted to around
3 × 1010 cells/mL. They were then preserved in a CO2 incubator (3111, Thermo, Waltham,
MA, USA) set at 37 ◦C with 5% CO2.

2.3. Thawing and Cultivation of HL-60 and TF-1 Cells

HL-60 and TF-1 cells were thawed and cultured by the same methods. Specifically,
cell cryopreservation tubes were removed from the liquid nitrogen container, placed
quickly into a 36–37 ◦C water bath, and shaken regularly to allow rapid thawing; this
exercise was completed within 30–60 s. After wiping and disinfecting with 75% ethanol,
the cryopreservation tubes were opened. The cell suspensions were pipetted into the
centrifuge tubes dropwise with 10 mL of the culture medium and centrifuged at low speeds
(500–1000× g) for 5 min. The supernatants were discarded, and the remaining cells were
washed again with the culture medium. After proper dilution with the culture medium,
the cells were placed in culture flasks and kept in a 5% CO2 incubator at 37 ◦C. The next
day, the culture medium was replaced, and the cultivation was continued. Cells were
subcultured when the confluence reached 90%.

2.4. Pathogen Inoculation

Each 500 µL of the identified A. capra suspension were inoculated into the human
erythrocytes, HL-60, and TF-1 cells that were cultured in vitro. After inoculation, the
pathogen cell suspensions were divided into twelve aliquots and cultured in 12-well plates.
Meanwhile, the uninoculated cells were cultured as three negative controls. After 96 h of
the normal in vitro cultivation of the inoculated cells, the samples from three wells were
collected to examine the cell infection.

2.5. Cell Infection Identification
2.5.1. Wright–Giemsa Staining

Cell smears were prepared from the uninoculated and inoculated human erythrocytes,
HL-60, and TF-1 cells that were collected at different time points and examined by Wright–
Giemsa staining.

2.5.2. Immunocytochemistry

Cell smears were prepared from the uninoculated and inoculated human erythrocytes,
HL-60, and TF-1 cells that were collected at different time points. The A. capra-positive
serum samples collected from the goat were used as the primary antibody and incubated at
4 ◦C overnight. Subsequently, HRP-conjugated Rabbit Anti-Goat IgG (H + L) (Servicebio,
Wuhan, China) was applied to the smears and incubated at 37 ◦C for 1 h. The antibody
was visualized using 3,3′-diaminobenzidine (Servicebio, Wuhan, China), and the images
recorded using a light microscope (Nikon, Tokyo, Japan). As negative controls, the anti-
serum from the A. capra-negative goat and A. capra-negative blood smears were processed
in the same manner and examined.

2.5.3. Chromogenic In Situ Hybridization (CISH)

Cell smears were prepared from the uninoculated and inoculated human erythrocytes
collected at different time points. CISH was performed with a commercial kit according
to the manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). Briefly, the blood films
were reverse-stained with eosin, visualized using Digital Slice Scanner (Pannoramic MIDI,
Budapest, Hungary), and fixed with a fixative (Solarbio, Beijing, China). The CISH probes
were designed specifically for the A. capra groEL gene (KM206273). To obtain sufficient
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signal intensity, 16 probes were designed along the lncRNA/mRNA sequence of the groEL
gene, which covered the entire fragment length of the RNA molecules. The probes were
labeled with digoxigenin (DIG) at both ends, and the samples under test were considered
positive when a brown precipitate was observed.

2.5.4. Transmission Electron Microscopy (TEM)

The collected HL-60 and TF-1 cells were infiltrated with acetone and Pon 812 epoxy
resin (SPI, West Chester, USA) (1/1, 2 h; then, 1/2, 12 h) and cured at 60 ◦C for 48 h. The
cured resin blocks were trimmed, thin-sectioned, thin sections collected on formvar copper
200 mesh grids, and then post-stained with 2% aqueous uranyl acetate and Reynold’s
lead citrate. The sections were examined using a HT7700 electron microscope (HITACHI,
Tokyo, Japan).

3. Results
3.1. Wright–Giemsa Staining Results

The human erythrocytes, HL-60, and TF-1 cells, which had been inoculated for
96 h, were subjected to Wright–Giemsa staining. Many darker stained bodies were
visible and primarily distributed at the edges of the inoculated human erythrocytes
(Figure 1B). In contrast, the edges of the uninoculated human erythrocytes did not exhibit
this phenomenon (Figure 1A). Substantial purple-reddish granules were observed inside
the HL-60 cells (Figure 2B1–D1). Pathogenic morulae of about 0.8 µm × 0.9 µm size were
visible in the cytoplasm (Figure 2C1). It was also observed that the pathogenic morulae
were vacuole-shaped, which was an early manifestation (Figure 2C1–D1). Substantial
purple-reddish granules were observed inside the TF-1 cells, which were visible in the
cytoplasm under all cell growth stages (Figure 2B2–D2). Besides, A. capra morulae of
0.3 µm × 0.5 µm in size were observed in the TF-1 cytoplasm (Figure 2D2).

Pathogens 2021, 10, x FOR PEER REVIEW 4 of 11 
 

 

the antiserum from the A. capra-negative goat and A. capra-negative blood smears were 
processed in the same manner and examined. 

2.5.3. Chromogenic In Situ Hybridization (CISH) 
Cell smears were prepared from the uninoculated and inoculated human erythro-

cytes collected at different time points. CISH was performed with a commercial kit ac-
cording to the manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). Briefly, the blood 
films were reverse-stained with eosin, visualized using Digital Slice Scanner (Pannoramic 
MIDI, Budapest, Hungary), and fixed with a fixative (Solarbio, Beijing, China). The CISH 
probes were designed specifically for the A. capra groEL gene (KM206273). To obtain suf-
ficient signal intensity, 16 probes were designed along the lncRNA/mRNA sequence of 
the groEL gene, which covered the entire fragment length of the RNA molecules. The 
probes were labeled with digoxigenin (DIG) at both ends, and the samples under test were 
considered positive when a brown precipitate was observed. 

2.5.4. Transmission Electron Microscopy (TEM) 
The collected HL-60 and TF-1 cells were infiltrated with acetone and Pon 812 epoxy 

resin (SPI, West Chester, USA) (1/1, 2 h; then, 1/2, 12 h) and cured at 60 °C for 48 h. The 
cured resin blocks were trimmed, thin-sectioned, thin sections collected on formvar cop-
per 200 mesh grids, and then post-stained with 2% aqueous uranyl acetate and Reynold’s 
lead citrate. The sections were examined using a HT7700 electron microscope (HITACHI, 
Tokyo, Japan). 

3. Results 
3.1. Wright–Giemsa Staining Results 

The human erythrocytes, HL-60, and TF-1 cells, which had been inoculated for 96 h, 
were subjected to Wright–Giemsa staining. Many darker stained bodies were visible and 
primarily distributed at the edges of the inoculated human erythrocytes (Figure 1B). In 
contrast, the edges of the uninoculated human erythrocytes did not exhibit this phenom-
enon (Figure 1A). Substantial purple-reddish granules were observed inside the HL-60 
cells (Figure 2B1–D1). Pathogenic morulae of about 0.8 µm × 0.9 µm size were visible in 
the cytoplasm (Figure 2C1). It was also observed that the pathogenic morulae were vacu-
ole-shaped, which was an early manifestation (Figure 2C1–D1). Substantial purple-red-
dish granules were observed inside the TF-1 cells, which were visible in the cytoplasm 
under all cell growth stages (Figure 2B2–D2). Besides, A. capra morulae of 0.3 µm × 0.5 µm 
in size were observed in the TF-1 cytoplasm (Figure 2D2). 
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A. capra.
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3.2. Immunocytochemistry Results

After 96 h of inoculation of the human erythrocytes, HL-60, and TF-1 cell smears, brown
substances were visible on the surfaces of the substantially inoculated human erythrocytes
(Figure 3B), indicating that these cells were infected with A. capra. However, this phenomenon
was absent in the uninoculated human erythrocytes (Figure 3A). Substantial numbers of
vacuole-like structures were observed in the cytoplasm of A. capra-inoculated HL-60 cells,
where the vacuole edges were dark brown in color (Figure 4B1–D1). This indicated the
generation of immunological reactions between the vacuoles and the antibodies. In contrast,
the uninoculated HL-60 cells did not exhibit this phenomenon (Figure 4A1). Dark brown
bodies were present in the cytoplasm of the A. capra-inoculated TF-1 cells, which were
the products of reaction with antibodies (Figure 4B2–D2). However, this structure was
not found in the uninoculated TF-1 cells (Figure 4A2). Thus, all three types of cells were
successfully infected with A. capra.
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3.3. CISH Results

CISH analysis of the human erythrocyte smear after 96 h of inoculation revealed the
presence of DAB-stained brown precipitates on the surfaces of the substantially inoculated
erythrocytes (Figure 5B). This indicated that these cells were infected with A. capra. In
contrast, this brown substance was not found in the uninoculated human erythrocytes
(Figure 5A).
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3.4. TEM Results

The A. capra-inoculated HL-60 cells, as well as the uninoculated controls, were sub-
jected to TEM. Multiple pathogenic morulae of about 295–518 nm diameters were observed
in the cytoplasm of the HL-60 cells after 96 h of inoculation (Figure 6B1). The pathogens
inside the morulae showed varying densities (Figure 6B,C1). Multiple circular or elliptical
bodies were noticed inside the DC morulae (Figure 6C1). In contrast, in the uninoculated
HL-60 cells, lysosomes and mitochondria were visible, while no vacuole-like inclusion
structure was observed (Figure 6A1).
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(A1,A2) The negative controls. The black and white triangular symbols indicate the different states of the lysosomes. (B1,C1)
The A. capra-positive HL-60 cells. Red arrows depict the morulae. Circular or elliptical bodies indicated by the black arrow
in (C1) are seen inside the morulae. (B2,C2) The A. capra-positive TF-1 cells. Red arrows indicate the morulae.

According to the TEM results of the inoculated and uninoculated TF-1 cells, attachment
of morulae was observed outside the cell membrane of the TF-1 cells 96 h after artificial
inoculation with A. capra (Figure 6B2). Multiple mulberry-like pathogenic morulae were
visible in the cytoplasm; the largest was approximately 0.7 µm× 1 µm inside, with multiple
globular bodies (Figure 6C2). The largest of these globular bodies was about 46 nm in
diameter. In the uninoculated TF-1 cells, lysosomes were observed in different states,
which differed distinctly from the mulberry-like morphology in the test group. Besides,
the mitochondria were visible without presenting the mulberry-like structure (Figure 6A2).

4. Discussion

Ixodid ticks are increasing annually due to global warming, deforestation, and in-
creased animal mobility. Their distribution ranges have also expanded gradually. The
incidence of anaplasmosis, tick-borne disease with worldwide distribution, is recently
rising [8]. Anaplasma capra is a novel zoonotic species that significantly increases the risk to
human infections [21]. The objective of this study was to determine the infectivity of A.
capra on human erythrocytes, HL-60, and TF-1 cells. Currently, there is no report on the
artificial infection of human erythrocytes with A. capra. We for the first time demonstrate
that the goat-derived A. capra can infect human erythrocytes, and TF-1 cells, evidencing
its pathogenicity on human cells and zoonotic nature. Although the survival time and
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fecundity of the pathogen were not studied, the outcomes will be helpful for the in vitro
cultivation of A. capra.

Currently, the genus Anaplasma is considered to comprise seven species: A. phagocy-
tophilum, A. marginale, A. centrale, A. ovis, A. bovis, A. platys, and A. capra [21]. Among these,
A. phagocytophilum infects the neutrophils in the blood of animals and humans [1,22,23].
This species can also grow on human cell lines (HL-60, THP-1, NB4, HMEC-1, and MVEC),
macaque cell line (RF/6A), bovine cell line (BCE), and Ixodid tick cell lines (ISE6 and
IDE8) [3,24,25]. A. marginale can infect ruminant erythrocytes and can be cultured in Ixodid
tick cell lines, macaque cell line (RF/6A), and bovine cell line (BCE). Moreover, it can also
be cultured for a short time in bovine turbinate and pulmonary artery endothelial cells
as well as in in vitro cultured erythrocytes [18,26–30]. A. ovis has been reported to infect
HL-60 cells in vitro; the infection can last for four months [4]. The in vitro cultivation of A.
centrale, A. bovis, and A. platys have not yet been reported [31,32]. This study confirmed
that the goat-derived A. capra can infect HL-60 and TF-1 cells. In a study by Li et al. [3]
(2015), human-derived A. capra was demonstrated to infect HL-60 and THP-1 cells. Thus,
A. capra from different hosts is capable of infecting human cells.

HL-60 is derived from patients with acute promyelocytic leukemia and can be differ-
entiated into granulocytes, monocytes, or macrophages under drug induction [33]. HL-60
cells can be used to grow A. phagocytophilum and A. ovis [4,25,34]. A. ovis is a pathogen
that obligately parasitizes erythrocytes, while A. phagocytophilum obligately parasitizes neu-
trophils. Thus, HL-60 cells have a relatively wide potential for infection with bloodborne
pathogens. During the in vitro A. marginale infection of IDE8 cell line, the pathogen formed
vacuoles to prevent acidification and avoid clearance by the lysosomal enzymes. Upon
creating a synthetic deficiency of the A. marginale protein, the parasitic vacuoles lost their
regulatory ability, began to acidify, and thus were cleared by the lysosomal enzymes [35].
In this study, the morulae of A. capra was also observed within the HL-60 cells through
TEM and showed varying densities. They were probably the two different types (DC and
RC) of the Anaplasma species that reflected the different developmental stages. Thus far,
there has been no report related to the in vitro cultivation of Anaplasma in the TF-1 cells.

In the TEM photomicrographs of the A. capra-infected TF-1 cells, the lysosomes were
involved in the pathogenic vacuole formation. This might also be associated with the
formation of pathogenic vacuoles and the clearing action of lysosomes. Some host cells
responded to bacterial infection by phagocytosing bacteria and then digesting them inside
the cells. Such a cellular defense system has been validated in several Ixodid tick cell
lines (IDE12 and DAE15) [36]. When A. phagocytophilum isolates infected the cell lines
derived from Ixodes ricinus and Ixodes scapularis, they could inhibit the apoptotic pathway
of these tick cells in the early infection stages; this promoted their survival and helped
their passaging in the cell lines for a long time. Besides, the pathogen infectivity might also
change with its adaptability to or interaction with the host cells [25,37]. However, all of
this needs to be confirmed through further research.

5. Conclusions

In this study, A. capra isolates from goats were artificially inoculated into human
erythrocytes, HL-60, and TF-1 cells that were cultured under in vitro conditions. Moreover,
the infectivity of the pathogen in the three cell lines was confirmed. Further, the zoonotic of
A. capra was verified. The findings of this study lay a foundation for the in vitro cultivation
modeling of the pathogen and enable the exploration of host–pathogen interaction and
pathogen invasion mechanisms.
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