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Abstract: WW domain-containing oxidoreductase (WWOX) is known as one of the risk factors for
Alzheimer’s disease (AD), a neurodegenerative disease. WWOX binds Tau via its C-terminal SDR
domain and interacts with Tau phosphorylating enzymes ERK, JNK, and GSK-3β, and thereby limits
AD progression. Loss of WWOX in newborns leads to severe neural diseases and early death. Gradual
loss of WWOX protein in the hippocampus and cortex starting from middle age may slowly induce
aggregation of a protein cascade that ultimately causes accumulation of extracellular amyloid beta
plaques and intracellular tau tangles, along with reduction in inhibitory GABAergic interneurons,
in AD patients over 70 years old. Age-related increases in pS14-WWOX accumulation in the brain
promotes neuronal degeneration. Suppression of Ser14 phosphorylation by a small peptide Zfra
leads to enhanced protein degradation, reduction in NF-κB-mediated inflammation, and restoration
of memory loss in triple transgenic mice for AD. Intriguingly, tumor suppressors p53 and WWOX
may counteract each other in vivo, which leads to upregulation of AD-related protein aggregation
in the brain and lung. WWOX has numerous binding proteins. We reported that the stronger the
binding between WWOX and its partners, the better the suppression of cancer growth and reduction
in inflammation. In this regard, the stronger complex formation between WWOX and partners
may provide a better blockade of AD progression. In this review, we describe whether and how
WWOX and partner proteins control inflammatory response and protein aggregation and thereby
limit AD progression.

Keywords: tumor suppressor; p53; WWOX; TRAPPC6A; TIAF1; SH3GLB2; Alzheimer’s disease;
neurodegeneration; functional antagonism

1. Brain Protein Aggregation Starts from Middle Age

Alzheimer’s disease (AD) is the most common cause (60–75%) of dementia and an
age-related neurodegenerative disease. Occurrence of AD is frequently seen in patients
over 65 years old—the so called late-onset AD. For early-onset AD, the symptoms may
start in patients in their 30s or 40s due to gene mutations inherited in an autosomal
dominant fashion [1–3]. The early-onset is approximately 1–2% of AD. For example, gene
mutations of amyloid precursor protein (APP) on chromosome 21, presenilin 1 (PSEN1) on
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chromosome 14, and presenilin 2 (PSEN2) on chromosome 1 are associated with early-onset
AD [1–3]. It is generally agreed that protein aggregation plays a key role in the pathogenesis
of age-related AD progression. Indeed, protein aggregates are present in the brains of
healthy middle-aged individuals, suggesting that AD progression may start gradually in
middle-aged humans [4–7]. Currently, there is insufficient knowledge regarding how AD
progression starts from middle age.

Extracellular amyloid beta (Aβ) plaques around the neurons and intracellular neu-
rofibrillary tangles (NFTs) caused by hyperphosphorylated tau proteins are considered
the key markers of AD [1–3]. Significant reduction in the level of acetylcholine (ACh)
neurotransmitter is frequently observed in AD [1–3]. Aggregate formation of tau and Aβ

levels in the brains are very low in middle-aged healthy humans of 40 to 70 years old [4–7].
Aβ and tau aggregates are able to invoke neuronal death and block neurogenesis and
learning and memory capabilities in old AD patients.

2. Spread of Pathogenic Tau and Aβ in the Brain

Pathogenic tau, Aβ, and other proteins can be spread by transmitting from one neuron
to another by exocytosis or via synapses or extracellular vesicles (EV) in the central nervous
system (CNS), or transferring to the CNS from the peripheral nervous system [8–13]. The
transmission results in amplification of the pathogenic proteins. Conceivably, spreading
and propagation contribute to tau and Aβ aggregation and pathogenesis in AD patients [11].
Once uptaken by neurons, for example, oligomeric tau becomes aggregated and accumu-
lates intracellularly, and the aggregated tau proteins may lead to neuronal death eventually
if the proteasome-based protein degradation system is severely damaged [10–13]. These
toxic proteins cause abnormal postsynaptic function and induce neuronal dysfunction
leading to cognitive impairments. It is unclear when pathological protein transmission
between neurons starts to occur during a human life span.

It appears that hyperphosphorylated tau protein captured in the EV is conformation-
ally altered and is pathogenic. Tau binds and stabilizes microtubules. A small portion of
intracellular tau is released to the extracellular space under physiological conditions [14].
Tau is found in the body fluids such as cerebrospinal fluid and blood. Spatiotemporal
spreading and distribution of pathogenic tau correlates with cognitive decline in AD
patients [8–11]. It is postulated that when tau is misfolded in the neurons, it can be re-
leased from one neuron and transmitted to another. Rapid transmission of pathogenic
tau in a prion-like manner among neurons leads to diseased conditions and eventual
neuronal death.

Presumably, tau undergoes misfolding during the period from middle to old age, and
then the misfolded proteins are transmitted among neurons prior to the appearance of AD
symptoms. Conceivably, misfolded tau proteins are the pathological seeds for native tau
to merge and become misfolded. Phosphorylation in many specific amino acid residues
in tau causes tau aggregation. Acetylated tau promotes memory loss due to disruption
of the formation of spatial memories [15]. Targeting acetylation in tau is considered as a
therapeutic strategy to restore memory loss.

3. Protein Instability and Aggregation and Induced Chronic Brain Inflammation
with Age

There is an age-dependent increase in protein instability and aggregation [16–18]. The
aggregated proteins can ultimately lead to the formation of Aβ plaques [17]. When protein
aggregation occurs in middle-aged C. elegans, no significant aggregation of amyloid β

occurs [17]. Similarly, tau and Aβ aggregates are hard to detect in the brains of middle-
aged healthy individuals [4–7].

The upstream pathway(s) that causes Aβ aggregation is largely unknown. Further-
more, the deciding factors rendering protein aggregation are not well defined. If protein
aggregation starts in middle age and goes on very slowly year by year, it would be very dif-
ficult to identify and characterize the aggregation initiator(s) and the downstream protein
aggregation cascade(s). Aggregated protein complexes suppress proteasomal function [19],
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and induce chronic inflammations due, in part, to upregulated inflammatory cytokines
and activated microglial cells before the late-onset of AD [4–6,20]. The chronic inflamma-
tion eventually induces accumulation of Aβ plaques and tau tangles to generate the AD
symptoms at old age.

4. TGF-β Induces Intracellular Protein Aggregation

Transforming growth factor beta (TGF-β) orchestrates the formation of extracellular
matrix and controls cell growth or death. TGF-β strongly inhibits the growth of epithelial
and endothelial cells [5,21,22]. TGF-β enhances cellular protein aggregation, which affects
cellular senescence and stem cell aging [5,21]. TGF-β levels are upregulated in the neocortex
of AD and related dementia [23]. In contrast, TGF-β/Smad signaling is significantly
downregulated in AD patients [21–25].

5. Protein Aggregates of TRAPPC6A, TIAF1, and SH3GLB2 in the
Middle-Aged Hippocampi

We have demonstrated the presence of TGF-β-regulated protein aggregation in the
hippocampi of middle-aged normal human brains. Three proteins have been identified,
which are TGF-β-induced antiapoptotic factor (TIAF1), trafficking protein particle complex
subunit 6A (TRAPPC6A or TPC6A), and SH3 domain-containing GRB2 such as endophilin
B2 (SH3GLB2) [4–6,26–30]. These proteins are responsive to TGF-β1-induced polymer-
ization [4]. The aggregated TIAF1 and TPC6A proteins, for example, are found in the
hippocampi and cortices of middle-aged normal humans (40 to 75 years old), and do not
undergo degradation with age [5,6].

Transiently overexpressed TIAF1 polymerizes and causes degradation of membrane
amyloid precursor protein (APP), followed by generation of Aβ and amyloid fibrils
in vitro [4–6,26–30]. In parallel, undegradable TIAF1 aggregates progressively cause ac-
cumulation of Aβ, fibrils, and plaques in the brain with age [4–6]. Polymerized TIAF1
binds Smad2/3/4 to prevent nuclear translocation, and thereby restricts SMAD-mediated
gene transcription in vitro [4–6,26–30]. The observations suggest that downregulation of
TGF-β/Smad signaling in old AD patients is due, in part, to TIAF1 aggregation.

6. WWOX in Neural Diseases

In the following sections, we will discuss how tumor suppressor WW domain-
containing oxidoreductase (WWOX, FOR, or WOX1) limits protein aggregation [31–37].
Most recently, WWOX is regarded as one of the five newly-discovered risk factors for
AD [38].

6.1. WWOX-Interacting Partners for AD

WWOX protein possesses two N-terminal WW domains containing conserved tryp-
tophan residues, a nuclear localization signal located between the WW domains, a C-
terminal short-chain alcohol dehydrogenase/reductase domain (SDR), and a proapoptotic
C-terminal tail termed D3 [35–40] (Figure 1). WWOX exhibits numerous functions and par-
ticipates in many signaling pathways [31–37]. There are three types of binding interactions
between WWOX and its protein partners. First, the N-terminal first WW domain binds
PPxY or PPPY motif in the target proteins [32,33,39,40] (Figure 1).

Second, when cells are exposed to stress stimuli, WWOX undergoes Tyr33 phosphory-
lation [32] (Figure 1). pY33-WWOX has an expanded capability in binding protein partners.
Binding of pY33-WWOX with the target proteins does not depend upon the PPxY (or PPPY)
motif. Notably, many of the pY33-WWOX-interacting proteins (marked in red) partici-
pate in neuropathological events in vivo. For example, pY33-WWOX binds JNK and ERK
and blocks hyperphosphorylation of tau by these enzymes [41]. pY33-WWOX physically
binds TPC6A, TPC6A∆, and TIAF1, and prevents their aggregation in the brain [4–6,28,30].
During sciatic nerve dissection, endogenous p-cJUN, p-CREB, and NF-κB p65 bind pY33-
WWOX in vivo to undergo nuclear translocation, so as to rescue damaged neurons or
induce neuronal death [42].
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Zfra (Zinc finger-like protein that regulates apoptosis) is a 31-amino-acid protein that
binds WWOX at both the N-terminal WW domain and the C-terminal SDR domain [43].
Zfra is a potent inhibitor of protein aggregation in AD progression [28]. pY33-WWOX
binds a viral protein LMP2A to block proliferation of Epstein–Barr virus [44]. The binding
affinity of pY33-WW1 domain with a p73 peptide is reduced, compared to that of non-
phosphorylated WW1 with p73 [45]. In contrast, transiently overexpressed full-length
WWOX and p73 have an increased binding, in which WWOX is Y33 phosphorylated [46].
The differences in binding strength are unknown. However, both studies did not check the
phosphorylation of endogenous WWOX at Y33 and whether pY33-WWOX interacts with
a specific domain in endogenous p73. Furthermore, transient overexpression may cause
artificial binding effects.

Third, the SDR domain contains a catalytic site to bind NADPH and contributes to
the redox activity of WWOX, which is involved in aerobic metabolism [32–36]. An NSYK
(Asn-Ser-Tyr-Lys) motif in the SDR domain is responsible for binding sex steroid hormones
such as androgen and estrogen [47,48]. SDR domain binds and blocks GSK-3β-mediated
tau hyperphosphorylation and thereby promotes neuronal differentiation [41,49]. TGF-β1
and hyaluronan trigger the signaling of membrane Hyal-2/WWOX/Smad4 to induce cell
proliferation or death [36,50,51]. The Hyal-2/WWOX/Smad4 signaling contributes to
neuronal death during traumatic brain injury [50].
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Figure 1. WWOX physically binds proteins via the N-terminal first WW domain and the C-terminal
SDR domain. Upon phosphorylation at Tyr33, pY33-WWOX acquires a significant increase in
the numbers of binding partners. Phosphorylation sites at Ser14, Tyr33, and Tyr287 have been
documented [52–54]. Other phosphorylation sites need further investigation. See legends in the text
for details. NLS = nuclear localization signal (KRKR).

Finally, tyrosine kinase ACK1 induces polyubiquitination of WWOX to undergo
proteasomal degradation [52], which is critical for controlling cell growth. Many WW
domain-containing proteins bind PPxY motif-protein targets. This binding leads to subse-
quent ubiquitination and degradation in the target protein [55]. However, WWOX does
not appear to possess such a function.

6.2. WWOX Loss or Dysfunction Accelerates Cell Migration: Potential Role in
Neuronal Heterotopia

A portion of WWOX is located in the cell membrane [47,50,51,56,57]. When nor-
mal or functional WWOX-expressing cells (WWOXf) encounter WWOX-dysfunctional
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or -deficient metastatic cancer cells (WWOXd), the collectively migrating WWOXf cells
force the individually migrating WWOXd cells to undergo retrograde migration [47,56].
WWOXd cells, in return, induce apoptosis of WWOXf cells from a remote distance. We
determined that cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading
WWOXd to move backward [47]. In contrast, when epitope WWOX7-21 (gre) is exposed,
WWOXf greets WWOXd to migrate forward for merging. The gre peptide is potent in
blocking cancer growth in vivo [57,58]. We identified a membrane signaling complex,
which is composed of WWOX, type II TGFβ receptor (TβRII), and Hyal-2 [47]. Specific
inhibition of each component by antibody leads to alteration in cell–cell recognition. That
is, the membrane complex is crucial in deciding the status of cell–cell recognition, either
merging peacefully or killing each other [47].

Neuronal heterotopia or neuronal migration disorder contributes, in part, to the
development of seizures [7,59,60], and that WWOX plays a critical in the seizure develop-
ment [61–64]. For example, Wwox deficiency leads to neurodevelopmental and degenera-
tive neuropathies in newborns [61–64]. Mechanistically, GSK-3β mediates epileptic seizure
activity in mice [61]. Both Wwox knockout and heterozygous mice are readily subjected to
seizure attack [61]. These mice have WWOXd cells. When cortical neurons possess dys-
functional WWOX protein, these neuronal cells are likely to undergo accelerated migration
to the epicortex [61].

6.3. WWOX/Hyal-2/Smad4 Signaling in Traumatic Brain Injury

WWOX/Hyal-2 signaling is involved in traumatic brain injury (TBI). During TBI in
rats, Hyal-2 and WWOX undergo nuclear translocation, and the Hyal-2/WWOX complex
becomes accumulated in the nucleus and causes neuronal death [50]. In vitro analysis
revealed that nuclear accumulation of Hyal-2 and WWOX leads to non-apoptotic bubbling
cell death (BCD) at 37 ◦C [36,50,65–67]. High-molecular-weight hyaluronan induces BCD
when the signaling complex Hyal-2/WWOX/Smad4 is overexpressed [50]. Interestingly,
p53 competes with Hyal-2 in binding WWOX. As a result, the p53/WWOX protein com-
plex does not undergo nuclear translocation and no BCD occurs [66]. Instead, the cells
undergo blebbing without apoptotic death, suggesting that under stress conditions, p53
may counteract the function of WWOX in blocking cell death.

In principle, WWOXf cells exhibit BCD and functional Ca2+ influx in response to
UV or apoptotic stress at room temperature [47]. When cells are exposed to chemother-
apeutic chemicals, BCD also occurs at 37◦C [58]. Hyaluronan-mediated signaling via
Hyal-2/WWOX/Smad4 causes BCD at 37◦C [36,50]. However, WWOXd cells have a
defective or a less efficient system in generating Ca2+ influx. WWOXd cells undergo
non-apoptotic explosion in response to UV irradiation in room temperature.

6.4. WWOX Binds Transcription Factors for Relocating to the Nucleus during Neuronal Damage

In vitro studies showed that pro-survival JNK1 blocks the proapoptotic function of
WWOX [53,68]. During the acute phase of sciatic nerve dissection in rats, both JNK1 and
WWOX become activated and relocate to the nuclei. Large-sized neurons in the dorsal
root ganglion die in 24 hours [42]. Two months later in the chronic phase, concurrent
activation of WWOX, CREB, and NF-κB occurs to delay the loss of mall neurons [42].
Apparently, binding of pY33-WWOX with p-CREB or NF-κB is needed to delay the loss of
small neurons.

Transiently overexpressed WWOX frequently sequesters transcription factors in the
cytoplasm, and thereby blocks their transcription for prosurvival proteins in the nucleus of
cancer cells in vitro [33,34]. However, the observations do not occur in vivo. As mentioned
above, WWOX co-translocates with transcription factors (e.g., cJun, CREB, and NF-kB) to
the nuclei to exert biological or pathological function in vivo [42].
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7. WWOX in Alzheimer’s Disease

WWOX blocks Tau hyperphosphorylation by directly binding Tau via its C-terminal
SDR domain [41,69]. By direct binding, the SDR domain of WWOX restricts GSK3β-
mediated hyperphosphorylation of Tau [41,69]. In contrast, the first WW domain of WWOX
binds JNK and ERK, and thereby prevents Tau hyperphosphorylation [41,69]. Together
with WWOX, Tau protein supports polymerization of tubulin monomers for microtubule
assembly, so as to promote neurite outgrowth [48].

7.1. WWOX in Neural Development and Neural Diseases

During mouse embryonic development, WWOX protein is highly expressed in the
neural crest-derived structures such as cranial and spinal ganglia, skin pigment cells, and
mesenchyme in the head, indicating the potential involvement of WWOX in neuronal
differentiation and maturation [69–77]. Genetic deficiency of WWOX/Wwox gene causes
severe neural diseases (e.g., epilepsy, microcephaly, retinal degeneration, and ataxia),
metabolic disorders (including lipid, cholesterol, and glucose metabolism), and early death
in newborns [60–63,69–75]. Chronic inflammation in the brain occurs due to increased
activation of GSK-3β for causing epileptic seizure, and upregulation of microglia cells
and astrocytes and reduced GABG-ergic inhibitory interneurons in the brain cortex and
hippocampus [61]. Together, WWOX deficiency in newborns suffer the disorder of sex
differentiation (DSD), spinocerebellar ataxia (SCA), early infantile epileptic encephalopathy
(EIEE), and WWOX-related epileptic encephalopathy (WOREE syndrome) [60–63,69–73].
WWOX controls neuronal differentiation, and that loss of WWOX induces activation of GSK-
3β that contributes to neurodegeneration [49]. Extensive analysis of available databases
also revealed that WWOX participates in autism spectrum disorder [71]. However, there
are still no effective remedies to cure WWOX-related neural diseases and early death in
newborn infants.

7.2. WWOX Downregulation and Induction of Protein Aggregation Cascade

We reported that when WWOX protein is downregulated in the hippocampi of middle-
aged individuals, brain protein aggregation may start to occur [4–7]. The aggregation
process is slow and may take 20 to 30 years. Ultimately, extracellular amyloid β plaques and
intracellular tau tangles are built up in the brain of AD patients approximately at 70-years
old or older. Meanwhile, reduction of inhibitory GABAergic interneuron occurs [62].

In Wwox knockout mouse, it only takes less than 15 days after birth to let the brain
proteins polymerize and aggregate in a cascade-like manner [4–7,26,28,75]. The sequen-
tial protein aggregation starts from TPC6A∆, then TIAF1 and SH3GLB2, and ultimately
amyloid-beta (Aβ) and tau. In Wwox heterozygous mice, they exhibit a faster kinetics of
AD progression, compared to triple-transgenic mice [28].

Under physiological conditions, TPC6A or TPC6A∆ binds the C-terminal tail of
WWOX in the cytoplasm and provides a piggyback ride for WWOX to translocate to the
nucleus [4]. The WWOX/TPC6A complex is then dissociated, and TPC6A translocates
to the nucleolus, followed by relocating to the mitochondria [4]. The mitochondrion-
nucleolus trafficking suggests that TPC6A carries essential materials from the nucleoli to
the mitochondria to support the physiological functions of mitochondria. TGF-β1 causes
the dissociation of the WWOX/TPC6A complex [4]. Thus, excessive TGF-β1 induces
aberrant signaling and trafficking and eventual aggregation of TPC6A or TPC6A∆. TPC6A
is a member of the TRAPP family. The family proteins have been shown to be associated
with neural diseases such as AD [78,79].

WWOX prevents the aggregation of TPC6A or TPC6A∆ in the cytoplasm. Without
the presence of WWOX, the fluid-phase TPC6A∆ acquires S35-phosphorylation, binds
mitochondria, and undergoes polymerization. TPC6A∆ binds membrane-bound pS37-
TIAF1 on the mitochondrial surface. The TPC6A∆/TIAF1 complex stimulates activation of
caspase 3, which leads to Thr688-dephosphorylation of the membrane amyloid precursor
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protein (APP). APP is then degraded to generate an intracellular domain (AICD) and Aβ.
Aβ is secreted into the extracellular matrix to form amyloid fibrils and plaques [4,6,75].

7.3. pS14-WWOX Promotes AD Progression

When mice are subjected to traumatic brain injury or sciatic nerve dissection, en-
dogenous WWOX is significantly upregulated and phosphorylated at Tyr33 [36,42,50,80].
pY33-WWOX induces apoptosis from the nucleus, so as to remove damaged cells both
in vivo and in vitro.

When pY33-WWOX is downregulated, pS14-WWOX is significantly increased in the
lesions of AD hippocampus and cortex [7,28]. pS14-WWOX promotes AD progression
in vivo. Suppression of Ser14 phosphorylation by Zfra leads to enhanced degradation of ag-
gregated proteins, reduction in NF-κB-mediated inflammation, and restoration of memory
loss in triple transgenic mice for AD [7,28]. Overall, pY33-WWOX prevents neurodegener-
ation. In stark contrast, pS14-WWOX enhances the progression of neurodegeneration. The
underlying signaling pathways that lead to divergent outcomes remain to be established.
By the same token, during cancer growth, the proapoptotic pY33-WWOX is downregulated,
and pS14-WWOX upregulated [28,81]. Conceivably, transition between pY33 and pS14
phosphorylation in WWOX contributes to the regulation of the progression of AD, cancer
and other diseases.

7.4. Binding of Endogenous WWOX with Intracellular Partner Proteins In Vivo

The aforementioned pY33-pS14 transition raises the question regarding whether bind-
ing of WWOX with its protein partners contributes to the control of disease progression. We
determined that Zfra4-10 or WWOX7-21 peptide strongly suppresses the growth of cancer
xenografts in mice [57,58]. The growth suppression is associated with intracellular protein
complex formation. For example, when mice receive Zfra4-10 or WWOX7-21 peptide, these
mice have increased binding of endogenous WWOX with p53 in the spleen, lung, liver,
and other organs [57]. This correlates with cancer suppression. Additionally, Zfra4-10 or
WWOX7-21 peptide enhances the binding of endogenous WWOX with C1qBP, CD133, p21,
JNK1, COX2, p-ERK, Foxp3, and p53 in the spleen. There is also an increased binding of
WWOX with Iba1, Oct4, ERK1/2, NF-κB p65, GFAP, and p53 in the lung. Whether the
increased binding leads to inhibition of AD progression remains to be established.

In contrast, when Zfra4-10 and WWOX7-21 peptides are in combination in treating
mice, binding of endogenous WWOX with protein partners is significantly reduced in
many organs, and the cancer xenograft growth is increased [57].

Finally, Zfra4-10 covalently interacts with proteins for rapid degradation in a
ubiquitination/proteasome-independent manner [28,81]. Zfra binds the N-terminal WW
domain and C-terminal SDR domain of WWOX [43]. Conceivably, the WWOX/Zfra com-
plex is subjected to degradation and thereby affects the efficacy of Zfra in mitigating AD
progression [28].

8. p53 and WWOX in AD

Tumor suppressor p53 participates in the AD progression and neurodegeneration [82–84].
However, p53 has not been considered as a risk factor for AD [38]. Both p53 and WWOX
are essential in maintaining chromosomal integrity and stability [7,33]. WWOX and p53
possess many phosphorylation sites. Phosphorylation in a specific amino acid represents
their action to carry out proper duties. p53 tends to undergo mutation and conformational
changes. Accordingly, p53 tends to be readily undergoing aggregation, causes chronic
inflammation in the brain, and facilitates AD progression [84]. Dysfunctional p53 affects
the neuronal physiology, including inflammation, redox homeostasis, normal synaptic
function, and amyloid β formation [80–82]. During AD progression, chronic inflammatory
neurons induce p53 activation, so as to fix damaged DNA. WWOX may play the similar
role. However, the inflamed neurons possess tau oligomers due to breakdown of the
microtubule network, and this blocks p53 to undergo nuclear translocation. Cytoplasmic
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accumulation of p53 without degradation leads to aggregation. In the absence of p53 in the
nucleus, neurons will undergo cell cycle arrest, DNA damage repair, and apoptosis [84].

8.1. Expression of p53 and WWOX and Their Binding Partners in the Human Brains

We selected 16 WWOX-related gene expression data from the Human Brain Tran-
scriptome (https://hbatlas.org/pages/hbtd; last visit on 25 June 2021) [85,86]. Brain areas
examined for gene expression are cerebellar cortex (CBC), mediodorsal nucleus of the
thalamus (MD), striatum (STR), amygdala (AMY), hippocampus (HIP), and 11 areas of
neocortex (NCX). Notably, the expression of p53 and MDM2 genes are downregulated
after birth and the reduction continues in teenage (Figure 2; red arrow). The reduction
in gene expression also occurs in MDM2, Hyal-2, Smad3, Smad4, and TGFβRI (Figure 2;
red arrows). The levels of other listed gene expression are not downregulated and rel-
atively stable. In the IκBα/WWOX/ERK survival signaling [54], no reduction of gene
expression for IκBα, WWOX, and ERK is shown from prenatal to the teenage period. No
reduction for WWOX and TGFβRII genes for signaling cell–cell recognition is shown [47].
No downregulation of TRAPPC6A, SH3GLB2 and tau is shown up to the teenage period.

WWOX signals with p53, Smad4, and HYAL-2 for growth suppression, apoptosis,
and BCD [26,36,55,76]. The gene expression levels for p53, Smad4, and Hyal-2 are reduced
in the brain up to the teenage period. Gene expression for TGFβRI and Smad2 are also
downregulated with age, and their encoded proteins can undergo aggregation during AD
progression. Presumably, specific genes and encoded protein expression, which participate
in the cell growth suppression and apoptosis, tend to undergo downregulation with age.

8.2. p53 and WWOX Physical Binding and Induction of Apoptosis

Both p53 and WWOX are guardians of the genome [7,33,87,88]. Under stress con-
ditions, increased binding of p53 with WWOX occurs, in which activated pY33-WWOX
complexes with pS15- or pS46-p53 both in vitro and in vivo [31,32,35–37,53,80]. Both pro-
teins act synergistically in inducing apoptosis in vitro. Presumably, the stronger the binding
of p53 with WWOX, the stronger the complex-mediated cancer suppression and probably
inhibition of AD progression. It is not clear whether WWOX binds monomeric or tetrameric
p53, or both forms. Whether pS14-WWOX physically binds p53 is unknown. The activated
p53/WWOX complex relocates to mitochondria or nuclei to induce apoptosis [31,32,52,80].
Loss of WWOX in cells results in reduced p53 stability and proapoptotic function [80].
Whether MDM2 limits the activity of pS15- or pS46-p53 by complexing with pY33-WWOX
is unknown. Transiently overexpressed p53 tends to undergo aggregation and this leads to
failure in binding with WWOX.

8.3. Estrogen in the p53/WWOX Signaling

When cells are exposed to micromolar amounts of 17-beta estradiol (E2), cell death
occurs in a p53/WWOX-dependent manner [89]. Mechanistically, E2 binds the SDR
domain of WWOX and then induces activation of both pY33-WWOX and pS15-p53 to cause
accumulation of the E2/pY33-WWOX/pS15-p53 complex in the nucleus. The complex
leads to apoptosis. Whether this event occurs in vivo has yet to be investigated.

8.4. TIAF1, p53, and WWOX Triad in Apoptosis

TIAF1 complexes with p53 and WWOX to form a triad [76]. The TIAF1/p53/WWOX
triad is potent in blocking cancer cell migration, anchorage-independent growth, and
SMAD promoter activation, and causing apoptosis [76]. However, the role of the TIAF1/
p53/WWOX complex in AD is largely unknown. TIAF1 physically binds the first N-
terminal WW domain of WWOX. Activated p53 binds TIAF1, and WWOX strengthens
the p53/TIAF1 complex so as to stabilize the triad. Without p53 activation, no binding
interaction occurs between TIAF1 and p53 [76]. Silencing of TIAF1 by siRNA abolishes
the nuclear translocation of pS15-p53 in response to UV or etoposide [90]. When TIAF1
is replaced by Smad4 in the p53/WWOX complex, the resulting Smad4/p53/WWOX
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complex induces membrane blebbing without causing apoptosis [67], suggesting that
TIAF1 and Smad4 competitively bind p53 or WWOX, which may affect the extent of cell
survival or death.
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Figure 2. Selected gene expression profiles in the brain with age. Six gene-encoded proteins, including p53, TGFβRI, Hyal-2,
MDM2, Smad2 and Smad4, are known to participate in growth suppression and apoptosis. Notably, their gene expression
tend to downregulate with age. The gene expression data are from the database of the Human Brain Transcriptome
(https://hbatlas.org/pages/hbtd) [85,86]. Gene expression is shown from the brain areas, including cerebellar cortex (CBC),
mediodorsal nucleus of the thalamus (MD), striatum (STR), amygdala (AMY), hippocampus (HIP), and 11 areas of neocortex
(NCX). Certain genes are not downregulated with age, and their encoded proteins participate in the IκBα/WWOX/ERK [54]
and WWOX/TGFβRII signal pathways [47]. However, proapoptotic proteins, including p53, Hyal-2, Smad4, and WWOX,
tend to undergo downregulation with age.

8.5. Extracellular Matrix-Mediated TIAF1 Aggregation and Regulation of SMAD Promoter

When extracellular matrix is altered in the microenvironment, intracellular TIAF1
is upregulated and undergoes aggregation. For example, when any cells are seeded on
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extracellular matrices derived from other cells, these cells start to increase the intracellular
levels of aggregated TIAF1 and Aβ [26,27,91]. The TIAF1/Aβ aggregates further induce the
expression of WWOX and Smad4, which in turn builds up TIAF1/Smad4 complex for Aβ

accumulation [26,27,91]. For cancer cells, they are able to handle intracellular accumulation
of proteins effectively [5,26]. However, the event is detrimental to neurons. For example,
cancer cell-derived TIAF1 is toxic to neurons [5,26].

Polymerized TIAF1 binds Smad4 and blocks SMAD promoter activation [26]. When
p53 protein is downregulated or absent, TIAF1 undergoes self-polymerization and activates
the SMAD-regulated promoter [26]. Interestingly, transiently overexpressed TIAF1 induces
WWOX expression, and vice versa [26]. The observations suggest a regulatory control of
WWOX for TIAF1 aggregation.

9. p53 and WWOX Functional Antagonism In Vivo

While p53 and WWOX act synergistically in vitro in inducing apoptosis, it is intriguing
to find that p53 may functionally antagonize with WWOX in vivo [76]. This functional
antagonism leads to increased formation of protein aggregates in the brain and lung,
enhanced cancer cell growth, and inflammatory splenomegaly (Figure 3). In our recent
study, when non-small cell lung cancer NCI-H1299 cells were stably transfected with p53
or WWOX cDNA, or both cDNA expression constructs, followed by growing in nude
mice. Ectopic WWOX alone is most effective in suppressing cancer cell growth than p53
in mice [76]. Moreover, WWOX inhibits cancer cell-induced inflammation, as reflected by
the sizes of spleens. That is, WWOX inhibits splenomegaly, whereas p53 fails to do so [76].
WWOX is most effective in suppressing cancer growth, and p53 less effective [76].

Cells 2021, 10, x FOR PEER REVIEW 11 of 18 
 

 

When in combination, p53 strongly abolishes the biological effects of WWOX, in-
cluding cancer suppression and inhibition of inflammation (or causing splenomegaly). 
Most strikingly, cancer-regulated protein aggregation in the brain is blocked by WWOX 
(Figure 3). Again, p53 antagonizes WWOX in increasing protein aggregation. The 
p53/WWOX-cancer mice exhibit AD pathologies, including BACE (Beta-Secretase 1) up-
regulation, APP degradation, tau tangle formation, and amyloid β generation in the brain 
and lung [74]. The likely mechanism for the functional antagonism is that p53/TIAF1 
blocks WWOX-mediated inhibition of inflammatory response and protein aggregation 
[76]. 

 
Figure 3. p53 may functionally antagonize the biological functions of WWOX in vivo. Four stable transfectants of NCI-
H1299 cells with vector only, WWOX, p53, or WWOX/p53 mammalian expression vectors, were established [76]. Subcu-
taneous inoculation of these established cells in nude mice revealed that WWOX is most effective in cancer suppression 
and inhibition of inflammation (splenomegaly), as compared to p53 [76]. p53 inhibits the effect of WWOX in blocking 
cancer growth. Protein aggregates, including pERK, BACE, APP, Aβ, NFT, and α-tubulin, are found in the brains of 
p53/WWOX-NCI-H1299 mice, but not in other mice. Protein aggregates in the lung are also observed. 

10. Concluding Remarks 
Despite more than 100 years of research in AD, there are still no effective therapeutic 

drugs available to cure the disease [1–3,7]. Nowadays, more than 36.5 million persons 
worldwide are living with AD, and this may increase to 65.7 million in 2030 and to 115.4 
million in 2050 [1–3,7]. Therefore, AD is declared as “global public health priority” by the 
World Health Organization (WHO) and is one of the greatest medical care challenges in 
the world [1–3,7]. 

It is generally considered that there is an inverse relationship between the develop-
ment of cancer and neurodegeneration in vivo [92,93]. It is proposed that PIN1 and p53 
play key roles to the inverse relationship. Nonetheless, biochemical basis provided by 
gene chip analyses revealed that many signaling pathways are shared by both cancer and 
neurodegeneration, including DNA damage, cell cycle aberrations, inflammation, im-
munity, and oxidative stress. Furthermore, specific genes are mutated or altered during 
the progression of cancer and AD such as α-synuclein, PTEN and PINK1 [92,93]. Despite 

Figure 3. p53 may functionally antagonize the biological functions of WWOX in vivo. Four stable transfectants of NCI-H1299
cells with vector only, WWOX, p53, or WWOX/p53 mammalian expression vectors, were established [76]. Subcutaneous
inoculation of these established cells in nude mice revealed that WWOX is most effective in cancer suppression and inhibition
of inflammation (splenomegaly), as compared to p53 [76]. p53 inhibits the effect of WWOX in blocking cancer growth.
Protein aggregates, including pERK, BACE, APP, Aβ, NFT, and α-tubulin, are found in the brains of p53/WWOX-NCI-H1299
mice, but not in other mice. Protein aggregates in the lung are also observed.

When in combination, p53 strongly abolishes the biological effects of WWOX, in-
cluding cancer suppression and inhibition of inflammation (or causing splenomegaly).
Most strikingly, cancer-regulated protein aggregation in the brain is blocked by WWOX
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(Figure 3). Again, p53 antagonizes WWOX in increasing protein aggregation. The p53/
WWOX-cancer mice exhibit AD pathologies, including BACE (Beta-Secretase 1) upregula-
tion, APP degradation, tau tangle formation, and amyloid β generation in the brain and
lung [74]. The likely mechanism for the functional antagonism is that p53/TIAF1 blocks
WWOX-mediated inhibition of inflammatory response and protein aggregation [76].

10. Concluding Remarks

Despite more than 100 years of research in AD, there are still no effective thera-
peutic drugs available to cure the disease [1–3,7]. Nowadays, more than 36.5 million
persons worldwide are living with AD, and this may increase to 65.7 million in 2030 and to
115.4 million in 2050 [1–3,7]. Therefore, AD is declared as “global public health priority” by
the World Health Organization (WHO) and is one of the greatest medical care challenges
in the world [1–3,7].

It is generally considered that there is an inverse relationship between the develop-
ment of cancer and neurodegeneration in vivo [92,93]. It is proposed that PIN1 and p53
play key roles to the inverse relationship. Nonetheless, biochemical basis provided by
gene chip analyses revealed that many signaling pathways are shared by both cancer
and neurodegeneration, including DNA damage, cell cycle aberrations, inflammation,
immunity, and oxidative stress. Furthermore, specific genes are mutated or altered during
the progression of cancer and AD such as α-synuclein, PTEN and PINK1 [92,93]. Despite
the observations, it is difficult to predict and decipher the key proteins that run in a parallel
or an opposite manner to manipulate the outcome of cancer and/or neurodegeneration.

One of the proteins that runs in parallel in promoting cancer and neurodegeneration
is pS14-WWOX [28,81]. pS14-WWOX strongly enhances the progression of cancer and
neurodegeneration. Inhibition of Ser14 phosphorylation by Zfra1-31 or Zfra4-10 peptide
abolishes cancer growth and AD progression [28,81].

10.1. pS14-WWOX Is Linked to AD Progression

WWOX exhibits a plethora of functional properties in vivo. WWOX restricts cancer
growth and AD progression, induces immune cell differentiation [35,53,54], and blocks
bacterial and viral infections [94]. pY33-WWOX exerts apoptosis and tumor suppression
when overexpressed in vivo and in vitro. pY33-WWOX also integrates the signaling of
Hyal-2/WWOX/Smad4 for TGF-β1 and hyaluronan, Wnt, and many other signal path-
ways [7,32–37,49,50]. WWOX phosphorylation at Tyr33 is reduced under certain conditions.
In the instance of abnormal development of hematopoietic diseases and malignancies, cal-
cium ionophore, and phorbol ester can force the differentiation of T lymphoblastic leukemia
cells. The event involves a newly identified IκBα/WWOX/ERK signaling to drive leukemia
cell differentiation, in which WWOX phosphorylation at Ser14 is required [35,53]. Normal
T cell differentiation also needs pS14-WWOX.

Unfortunately, pS14-WWOX is significantly upregulated in the lesions of cancer [81]
and AD hippocampus and cortex [28]. That is, as the disease is in progression, pY33-
WWOX disappears and pS14-WWOX is upregulated to promote tumor growth and AD
progression [28,81]. We believe that pS14-WWOX is likely to control the progression of
other diseases.

10.2. Zfra and Zfra-Activated Z Cells for AD Therapy

Zfra4-10 and Zfra1-31 peptides are of therapeutic potential in blocking AD progres-
sion [28]. Two potential mechanisms are involved. First, Zfra dramatically suppresses S14
phosphorylation in WWOX (>90%), which leads to blockade of AD progression in 3xTg
and Wwox heterozygous mice [28]. The full-length Zfra is only 31 amino acid [43,95]. As
short as 7 amino acids, Zfra4-10 (RRSSSCK) is potent in cancer suppression and restoring
memory loss [28,81]. Similar results were also observed using the full-length Zfra peptide.

Second, exogenous full-length Zfra1-31 and Zfra4-10 peptides induce memory an-
ticancer response via expansion of Zfra-reactive spleen Z lymphocytes [28,57,81]. We
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have first identified Z cells and showed that activated Z cells confer cancer resistance in
recipient mice [28,57,81]. Zfra binds the membrane Hyal-2, and then recruits WWOX and
Smad4 for gene transcription [28,57,81]. Without prior encountering with cancer antigens,
Zfra-activated Z cells are able to recognize many cancer cell types and suppress their
growth. Clonal expansion of activated Z cells and their killing of cancer cells can be seen
in vitro [57]. Naïve Z cells cannot attack and kill cancer cells. The chances of Zfra-activated
Z cells in blocking AD-related seizure and memory loss are strong.

10.3. Manipulating the Binding Strength between WWOX and Binding Partner Proteins to Limit
Disease Progression

Supporting evidence showed that the stronger the binding strength between WWOX
and its partner proteins, the better the extent of cancer suppression [57]. By the same token,
WWOX is expected to limit AD progression effectively if its binding with partner proteins
is strong. For example, WWOX needs to effectively bind tau and TPC6A∆ and control
the function of tau-hyperphosphorylating enzymes [41,69,70]. Unfortunately, the level
of WWOX starts to decline from middle age. Another conundrum is that endogenous
WWOX is functionally inactivated by cytosolic Zfra [43]. That is, instead of using WWOX
peptides for therapy, Zfra peptides are reliable and nontoxic and exhibit its activity in
blocking AD progression and the growth of tumors [28,57,79]. While Zfra activates Z cells
to block cancer growth, utilization of activated Z cells in treating seizure, WOREE, and AD
development is expected to be promising.

11. Conclusions and Perspectives for the Future

In conclusion, WWOX and its binding proteins play a critical role in limiting inflam-
mation and associated AD progression. The stronger the binding, the better the inhibition
of inflammation and suppression of AD symptoms. Presumably, when there is an elevated
intracellular Zfra, Zfra binds WWOX and the Zfra/WWOX complex is subjected to degra-
dation. Consequently, free, excessive p53 and other WWOX-binding proteins start to exert
inflammatory reactions [57,76].

Despite WWOX being a defined risk factor for AD [38], functional WWOX is needed
to support the development of neural system and maintain normal neuronal physiology.
Presence of dysfunctional WWOX, loss of WWOX, or excessive WWOX causes neurode-
generative diseases and neuronal death such as in AD [7,28,41], WOREE [60–63,69–73],
sciatic nerve damage [42,96], retinal degeneration [68], and Parkinson’s disease [97].

Ectopic p53 and WWOX mediate apoptosis in a synergistic manner in vitro [31,53,80],
whereas functional antagonism between these two proteins may occur in vivo. This leads
to inflammatory splenomegaly and brain protein aggregation for AD in vivo. That is, an
inflammatory reaction may occur as a result of an intracellular battle between p53 and
WWOX. In principle, WWOX is a stronger inhibitor for inflammation and AD progression
than p53. Under aberrant TGF-β/Smad/TIAF1 signaling [27], TIAF1 undergoes polymer-
ization and causes cytoplasmic localization of Smads, WWOX, and p53. These proteins
then become functionally inactivated. In the presence of excessive TGF-β1 in the microen-
vironment, aberrant TGF-β/Smad signaling occurs. Furthermore, p53 and TIAF1 together
block WWOX or Smad4-regulated SMAD promoter activation. We do not exclude the
possibility that p53/TIAF1/WWOX triad becomes aggregated in the brain and contributes
to aggregation of tau and amyloid beta of the AD pathologies.

Despite several decades of global efforts, there are still no effective drugs available in
curing AD. A recent monoclonal antibody-based drug Aducanumab for AD treatment has
been approved by FDA [98]. Nonetheless, this has sparked numerous controversies. In
the Table 1, we propose a few outstanding questions, along with suggested future research
directions. We believe that these advanced concepts are good for developing strategies in
drug design for curing AD.
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Table 1. Outstanding questions and future research directions.

Outstanding Questions Suggested Future Research Directions

1. WWOX is potent in blocking inflammation
and preventing protein aggregation [28,74,79].
Is there a feasible approach to use autologous
normal cells for stably expressing WWOX so as
to suppress inflammation and AD progression?

• Cell therapy for reinstalling functional
WWOX would provide a strong
anti-inflammatory microenvironment
in vivo.

• Autologous cells can be engineered to
stably express functional WWOX and
reinstalled in a non-brain area to shut
down chronic inflammation in the brain.

2. Zfra effectively blocks cancer growth and
inhibits AD progression by blocking chronic
systemic inflammation [74]. However, Zfra
inactivates WWOX by degradation via an
unknown proteolytic mechanism. Can WWOX
be replaced by exogenous Zfra peptide in
mitigating AD progression?

• Therapeutic peptides composed of both
short Zfra and WWOX amino acid
sequences can be made and tested for
their efficacy in blocking AD progression
and cancer growth in vivo.

• These peptides are expected to block
seizure associated with WWOX
deficiency-related syndromes such as
WOREE in newborns.

• The peptides are not expected to be
immunogenic to cause inflammatory
response in vivo.

3. Chronic inflammation induces protein
aggregation in the lung. Do lung protein
aggregates accelerate the formation of protein
polymerization and plaque formation in
the brain?

• Synthetic Zfra4-10 peptide can be used to
eradicate lung protein aggregation in
3xTg mice. Concurrent restoration of
memory loss in these mice is expected to
be achieved also.

4. Activated Z cells suppress and prevent
cancer growth [28]. Can autologous Z cell
therapy be effective in preventing and blocking
AD progression?

• While Zfra activates Z cells in vivo,
autologous activated Z cells can be
purified and used for cell therapy. This
will benefit patients suffering seizure, AD
and other neurodegenerative diseases.
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