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NUPR1, a new target in liver cancer: implication in
controlling cell growth, migration, invasion and
sorafenib resistance

MR Emma1,2, JL Iovanna3, D Bachvarov4,5, R Puleio6, GR Loria6, G Augello1,2, S Candido7, M Libra7, A Gulino8, V Cancila8,
JA McCubrey9, G Montalto*,1,2 and M Cervello*,1

Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC).
However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects
is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and
its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in
HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in
the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration
and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes.
Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling
of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular
response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly
suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several
HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-
regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell
sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The
identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new
treatment strategies for HCC management.
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Hepatocellular carcinoma (HCC) is the most common liver
cancer, accounting for 90% of primary liver cancers
and is currently the third major cause of cancer-related deaths
globally.1 Although recent progress in diagnostic and treat-
ment technologies has improved survival, the long-term
survival of HCC patients remains dismal owing to the lack of
adequate therapies. Despite the approval of sorafenib
(Nexavar, BAY43-9006), an oral multi-kinase inhibitor that
targets Raf kinases, and several other tyrosine kinases,
including vascular endothelial growth factor receptor-2/3,
platelet-derived growth factor receptor-β, Fms-like tyrosine
kinase 3 and c-Kit, for the treatment of advanced HCC,1

and its extensive application in clinical practice during the
past few years, it is increasingly clear that the benefits of
sorafenib are modest, and the precise mechanism of action
of this drug remains elusive. Indeed, several targets
other than Raf and receptor tyrosine kinases have been
identified,2,3 including signal transducer and activator of
transcription 3 signaling,4 and the secretory pathway.5

The mitochondria is also a sorafenib target, as shown by
the inhibition of mitochondrial respiration in liver cancer
cells and a shift toward aerobic glycolysis and glycolytic
adaptation response to mitochondrial damage during sorafe-
nib treatment.6,7
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Several reports have indicated that sorafenib may induce
cell death signaling pathways via endoplasmic reticulum (ER)
stress activation.8–10 Our recent studies analyzing the
molecular mechanisms of sorafenib treatment in human
HCC cells identified several genes involved in ER stress
response modulated by sorafenib.11 In particular, the stress-
inducible gene nuclear protein-1 (NUPR1, also known as
p8/Com-1) was upregulated after sorafenib treatment and its
expression was found to be additionally potentiated on
treatment with the anti-inflammatory drug celecoxib.11,12

The NUPR1 gene was initially identified as a transcriptional
factor, which is rapidly and strongly induced in rat pancreatic
acinar cells during acute pancreatitis, developing pancreas
and pancreatic regeneration.13 Recently, NUPR1, a small
highly basic and loosely folded stress-inducible multifunctional
protein, has emerged as a new drug-targetable protein whose
blockade could prevent cancer progression and metastasis
development.14 The functions of NUPR1 in the various tissues
with different molecular contexts may be different or even
opposite, therefore it can be seen as a double-edged knife with
its ability to promote both tumor suppression and tumor
development.14–17 It is also implicated in drug resistance
mechanisms in pancreatic and breast cancer models.18,19 In
particular, in the pancreatic model some types of stress
increased the expression of NUPR1 and of three of its target
genes, activating transcription factor 4 (ATF4), C/EBP-homo-
logous protein (CHOP) and Tribbles homolog 3 (TRB3), acting
in the ER stress pathway and inducing cell death.15 On the
other hand, subsequent studies conducted with the same
tumor model showed that NUPR1 can induce the expression
of pro-survival genes, such as V-rel avian reticuloendothelio-
sis viral oncogene homolog B (RELB) and immediate early
response 3 (IER3).16

In the liver, NUPR1 has been shown to be an important
element in hepatocyte stress response after hepatic injury by
CCl4.

20 NUPR1 has also been identified as a key regulator
and metabolic switch in response to mitochondrial damage
during liver cancer progression.21 In addition, Bak et al.22

recently reported that NUPR1 is activated by hepatitis B
virus X protein and mediates the cell growth and survival of
HBV-positive cells.
As the role of NUPR1 in hepatocarcinogenesis is not yet

fully understood, we decided to examine its involvement in the
context of sorafenib treatment in HCC cells.

Results

Sorafenib treatment increases NUPR1 expression levels.
NUPR1 is a stress-inducible protein and, as mentioned
before, one possible mechanism of action of sorafenib is
induction of ER stress response.8–10 Therefore, we first
investigated the effects of sorafenib on well-known ER stress-
regulated genes. Sorafenib treatment activated ER stress
response in HCC cell lines in a dose- and time-dependent
manner (Figure 1). Genes involved in ER stress response,
such as GRP78, ATF4, CHOP and TRB3 were upregulated
(Figures 1a and b), and splicing of X-box-binding protein 1
(XBP1) mRNA was also induced (Figures 1c and d).

We then analyzed the basal expression of NUPR1 on the
human HCC cell lines HepG2, Huh7, Hep3B and PLC/PRF/5,
both at the protein and mRNA levels. HCC cell lines showed
different expression levels of NUPR1 (Figures 2a and b). PLC/
PRF/5 cells expressed the highest levels while Huh7 cells
showed the lowest expression of both protein (Figure 2a) and
mRNA (Figure 2b).
Subsequently, NUPR1 protein expression in HCC cells was

investigated by immunofluorescence analysis after sorafenib
treatment. As shown in Figure 2c, NUPR1 was localized in the
nuclei of HCC cells, and its expression increased after
sorafenib treatment. NUPR1 mRNA expression was similarly
induced in HCC cell lines in a dose- and time-dependent
manner upon sorafenib treatment (Figures 2d and e).

Bioinformatics analysis of NUPR1 gene expression in
liver cancer. To explore the clinical relevance of NUPR1 in
liver cancer development, we analyzed the HCC microarray
data sets available on the Oncomine software. Only six out of
the nine data sets showed a statistical significanceo0.05 (by
Student’s t-test) when expression levels were analyzed in the
normal liver (NL) tissues, precancerous lesions and HCC
samples (Supplementary Table S1) and were then consid-
ered for further analyses.23–30 The data summarized in
Supplementary Table S2 show that NUPR1 transcript levels
were significantly lower in cirrhosis and liver cell dysplasia
than in NL tissue, while higher NUPR1 gene expression
levels were detected in HCC samples than in normal and
cancer precursor tissues. An opposite trend was observed in
the Archer et al.23 data set. Interestingly, HCC harboring
TP53 mutations showed higher NUPR1 transcript levels than
in the HCC wild-type subset, and NUPR1 gene expression
levels were higher in early-stage than in advanced-stage
HCC samples (Supplementary Table S2).

Expression of NUPR1 in human HCC tissues. In view of
the results above, we investigated NUPR1 expression in
HCC (n=21), in liver cirrhosis (n=3) and in NL tissues (n= 3)
by immunohistochemistry (Figure 3a) and by quantitative-
PCR (qPCR) in 17 patients with liver cirrhosis-associated
HCC, in 5 surrounding non-tumor regions (cirrhotic tissues)
and in 4 NL tissues (Figure 3b). Immunohistochemical
analysis showed high NUPR1 expression in all the HCC
patients studied; moreover, NUPR1 displayed a nuclear
localization in the tumor hepatocytes but not in NL hepa-
tocytes (Figure 3a). The sum of the scores (intensity
+percentage of positive nuclei) for NUPR1 was significantly
higher in tumors (Po0.05) than in NL tissues (Supple-
mentary Table S3A). In addition, the percentage of NUPR1-
positive nuclei was significantly different in HCC tissues with
different differentiation grades (Po0.05), whereas no correla-
tion was observed between NUPR1 expression and TNM
classification (Supplementary Table S3B).
In 9 of the 17 (53%) patients analyzed, NUPR1 mRNA

expression was higher in the tumor samples than in NL tissues
(Figure 3b). Of note, both HCV-associated (7 out of 14) and
HBV-associated (1 out of 3) HCC showed high NUPR1
expression levels. In the cirrhotic tissues, three out of the five
patients displayed a lower NUPR1 expression than in the
NL. These results are therefore in agreement with the
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bioinformatics analyses. However, possibly owing to the
limited number of patients in both cases results did not reach
statistical significance (NL versus LC P=0.7600; NL versus
HCC P=0.6715; LC versus HCC P= 0.1829).

Small interference RNA (siRNA)-mediated NUPR1 gene
silencing inhibits cell growth and increases cell
response to sorafenib treatment. To investigate the func-
tional role of NUPR1 in the regulation of tumor cell growth
and chemoresistance, HCC cells were transfected with
specific human NUPR1 siRNA and the effects on cell viability
and chemoresistance were evaluated after sorafenib
treatment. We found that NUPR1 knockdown decreased cell
viability and colony formation and increased tumor cell
sensitivity to sorafenib treatment (Figures 4a and b and
Supplementary Figures S1A and B). These data demonstrate

that NUPR1 may have an oncogenic potential in HCC and it
may be involved in drug resistance. This was further
confirmed after generation of NUPR1 knockdown stable
clones using NUPR1-specific short hairpin RNA (shRNA), in
which NUPR1 gene silencing significantly decreased Hep3B
cell viability and proliferation (Supplementary Figures S1C
and D) and increased sensitivity to sorafenib treatment
(Supplementary Figure S1C).

Downregulation of NUPR1 decreases HCC cell migration
and invasion. Next we assessed whether downregulation of
NUPR1 could affect HCC cell migration and invasiveness.
We found that NUPR1 gene silencing significantly reduced
PLC/PRF/5 cell migration in wound-healing assays (Figure 4c
and Supplementary Figure S1E). Transwell migration and
Matrigel invasion assays confirmed these findings, as

Figure 1 Expression of ER stress genes after sorafenib treatment in HCC cells. (a and c) Dose- and (b and d) time-dependent effects of sorafenib treatment on ER stress
gene expression in HCC cell lines determined by qPCR (a and b) and semiquantitative-PCR (c and d). In panels (a and c), HCC cells were treated with the indicated
concentrations of sorafenib, and total RNA was extracted after 24 h of treatment. In panels (b and d), HepG2 and Huh7 cells were treated with 7.5 μM sorafenib, and total RNA
was extracted at different times of treatment. U= unspliced XBP1 mRNA; S= spliced XBP1 mRNA. In panels (a and b), relative expression was calculated as the ratio of drug-
treated samples versus control (DMSO) and corrected by the quantified expression level of β-actin. The results shown are the means± S.D. of three experiments, each performed
in triplicate
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knockdown of NUPR1 by shRNA significantly reduced Hep3B
cell migration and invasion (Figures 4d and e and
Supplementary Figure S1F). These results are in agreement
with data reported by Lee et al.21 and indicate that NUPR1 has
a role in regulating the metastatic potential of human HCC cells.

NUPR1 regulates RELB and IER3 gene expression. To
further explore the functional role of NUPR1 in HCC, we
focused on NUPR1-regulated genes, RELB and IER3.16

NUPR1 gene silencing caused downregulation of both RELB
and IER3 mRNAs in HCC cell lines (Figure 5a and
Supplementary Figure S2A). Gene expression analyses

using the stable Hep3B shNUPR1 knockdown clones
confirmed that NUPR1 silencing caused a significant down-
regulation of RELB and IER3 genes (Figure 5b and
Supplementary Figure S2B).
IER3 has been shown to induce sustained activation of

extracellular signal-regulated kinase (ERK) by inhibition
of the serine–threonine protein phosphatases-2A (PP2A)
activity.31,32 To verify whether NUPR1 gene silencing may
also influence ERK1/2 phosphorylation, western blotting
analysis was performed in stable Hep3B shNUPR1 clones.
As shown in Figure 5c and Supplementary Figure S2C,
there was a sharp decrease in ERK1/2 phosphorylation

Figure 2 Expression of NUPR1 in HCC cells. (a) NUPR1 protein and (b) mRNA expression in HCC cells in basal condition. (c) Immunofluorescence analysis of NUPR1
protein expression after treatment for 3 h with the indicated concentrations of sorafenib in HCC cells. (d) HCC cells were treated with the indicated concentrations of sorafenib, and
total RNA was extracted after 24 h of treatment. (e) HepG2 and Huh7 cells were treated with 7.5 μM sorafenib, and total RNA was extracted at different times of treatment
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(Thr202/Tyr204) status in Hep3B shNUPR1 cells compared
with control cells. These data suggest that NUPR1 may act
through theRELB/IER3 pathway by regulating the activation of
ERK kinase, which is involved in a pro-survival signaling
pathway, and could be responsible for the improved sorafenib
effects on cell viability observed in previous experiments.

Silencing of RELB and IER3 by siRNA decreases HCC
cell growth and chemoresistance. We have shown that
NUPR1 gene knockdown in HCC cells produces a significant
downregulation of the pro-survival genes RELB and IER3.
Specific siRNA was therefore used for RELB and IER3
silencing in Hep3B cells (Figure 5d and Supplementary
Figure S2D), which led to a significant decrease in cell
viability in basal conditions (Figure 5e and Supplementary
Figure S2E, no treatment), and also significantly diminished
clonogenic capacity (Figure 5f) and significantly increased
cell sensitivity to sorafenib treatment (Figure 5e and
Supplementary Figure S2E). As expected, IER3 expression
was also downregulated after RELB silencing (Figure 5d and
Supplementary Figure S2D), confirming that IER3 is a
downstream RELB-regulated gene in HCC cells. These
results confirm the existence of a NUPR1/RELB/IER3
pathway involved in the regulation of HCC cell growth and
drug resistance.

NUPR1 gene silencing inhibits tumor growth in vivo. To
assess the effect of NUPR1 gene silencing on tumorigenicity
in HCC cells, Hep3B shNUPR1 cells were injected into nude

mice. Four weeks after injection, we found that Hep3B
pSilencer cells gave rise to tumor in all cases (n= 12), while
Hep3B shNUPR1 cells inoculated into the same animals
were unable to form tumors (Figures 6a–c). These data
demonstrate that NUPR1 is essential for tumor cell establish-
ment and growth in vivo.

Transcriptomic analysis identifies gene expression
changes following NUPR1 knockdown. To better under-
stand the molecular mechanism(s) of NUPR1 action in HCC
cells, we compared the global gene expression of the Hep3B
shNUPR1 clone against the corresponding control clone
(pSilencer). For each comparison, a subset of common
differentially expressed genes was selected by initial filtering
on confidence at P-value ≤ 0.05, followed by filtering on
expression level (≥ 3 fold). Using these stringent selection
criteria, we found 273 genes upregulated and 153 genes
downregulated in Hep3B cells following NUPR1 knockdown
(Supplementary Table S4). Pathway and network analyses
generated using the Ingenuity Pathway Analysis (IPA) soft-
ware showed the major functionally related gene groups,
which were differentially expressed in the shNUPR1 clone
compared with control cells (Supplementary Table S5 and
Figure 7). Pathways implicated in cellular development, cell
growth and proliferation and cell assembly and organization,
as well as cellular function and maintenance were mostly
upregulated in the stable Hep3B shNUPR1 knockdown clone
(Figure 7a), whereas pathways implicated in cellular move-
ment, lipid metabolism, molecular transport and cellular
response to therapies were mostly suppressed (Figure 7b).
Common networks, generated by merging the five top-

scoring networks, including both downregulated and upregu-
lated genes (≥ 3-fold), recognized some functionally related
gene nodes upon NUPR1 knockdown, such as nuclear factor
kappa from B cells (NF-κB), ERK, p38MAPK and transforming
growth factor β2 (TGFβ2) (Figure 7c). In addition, several
genes known to be involved in hepatocarcinogenesis were
also suppressed, such as fibroblast growth factor 19 (FGF19),
Dickkopf 3 (DKK3), cyclin-dependent kinase inhibitor 2B
(CDKN2B) and TGFβ2.
To validate themicroarray results, wearbitrarily selected seven

differentially expressed genes and quantified their expression by
semiquantitative PCR or qPCR. We found that in all cases both
methods (microarray analysis and PCR) detected similar
patterns for selected genes (Supplementary Table S6).
The observation that bone morphogenetic protein 7

(BMP7), a member of the TGFβ superfamily, is downregulated
in Hep3B cells upon NUPR1 knockdown appears interesting,
asBMP7 has been demonstrated to be overexpressed in HCC
and may be a potential biomarker for poor prognosis in HCC
patients.33 Several reports have demonstrated that BMP7
transcriptionally induces Runt-related transcription factor 2
(RUNX2) expression.34,35 Intriguingly, Wang et al.36 reported
that in ovarian cancer cells RUNX2 gene silencing provides a
sharp downregulation of NUPR1, suggesting the existence of
an interaction between these two transcription factors. Indeed,
in our preliminary microarray analyses conducted using ≥1.5-
fold selection criteria, we found that RUNX2 was down-
regulated in Hep3B cells upon NUPR1 suppression. Inhibition
of RUNX2 mRNA expression upon NUPR1 silencing was

Figure 3 NUPR1 expression in human HCC samples. (a) NUPR1 protein
expression levels were examined by immunohistochemistry in the NL (A) and HCC
(B) tissues. Magnification= × 20, insert magnification= × 40. Scale bar= 100 μm.
(b) NUPR1 gene expression analysis in 17 HCC tissues and 5 surrounding non-tumor
cirrhotic tissues (LC) performed by qPCR. Data are indicated as NUPR1 fold change
(relative quantitation, RQ) compared with control (RQ= 1 calculated as the mean of
NUPR1 Ct in NL tissues). Data are expressed as mean±S.D. NS= non-significant
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further confirmed by qPCR (Figure 8a and Supplementary
Figure S3A).

Silencing of RUNX2 decreases HCC cell growth
migration and chemoresistance. To ascertain whether
NUPR1 biological effects on regulation of cell growth,

migration and chemoresistance were due to regulation of the
RUNX2 transcript, we performed RUNX2 gene silencing in
Hep3B cells using specific human siRNA. RUNX2 gene
silencing significantly decreased Hep3B cell growth
(Figure 8b) and migration (Figure 8c) and increased cell
sensitivity to sorafenib treatment (Figure 8d and

Figure 4 NUPR1 regulates cell viability, growth, migration and invasion of HCC cells. (a) Cell viability of HCC cells transfected with siNUPR1 (siNUPR1 #1) and siNC was
assessed by MTS assay after treatment with the indicated concentrations of sorafenib for 48 h. Data are expressed as the percentage of control cells and are the means±S.D.
of three separate experiments, each performed in triplicate. *Po0.05, **Po0.01. (b) Representative images of clonogenic assay of HCC cells transfected with
siNUPR1 (siNUPR1 #1) and siNC. The experiment continued for 14 days. Surviving colonies were stained and counted. Data are expressed as the percentage of colonies and are
the means± S.D. of three separate experiments, each performed in duplicate. (c) Representative images of wound-healing assay after NUPR1 siRNA-mediated gene silencing
(shNUPR1 #1) in PLC/PRF/5. The experiment was conducted for 24 h. Data are reported as the percentage of cell migration and represent the average± S.D. of three
experiments, each performed in duplicate. *Po0.05. (d) Representative images of transwell migration assay of Hep3B shNUPR1 (shNUPR1 #1) or Hep3B pSilencer cells. Data
are reported as the percentage of migrated cells compared with control (siNC) and are the means± S.D. of three separate experiments, each performed in duplicate (*Po0.05).
(e) Matrigel invasion assay in Hep3B shNUPR1 cells (shNUPR #1) compared with pSilencer as control. Data are reported as the percentage of invaded cells compared with
control (pSilencer) and are the means±S.D. of three separate experiments, each performed in duplicate. *Po0.05
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Supplementary Figure S3B). Interestingly, in accordance with
data reported by Wang et al.,36 gene expression analysis
showed that RUNX2 suppression strongly downregulates
NUPR1, as well as NUPR1-regulated genes RELB and IER3
(Figure 8e and Supplementary Figure S3C). This result

suggests that RUNX2 might regulate NUPR1 gene expression.
Therefore, we performed an in silico analysis by using the
open-source Jasper database (http://jaspar.genereg.net/) to
predict the binding sites of RUNX2 in the promoter region of
NUPR1 gene. This analysis allowed us to identify eight putative

Figure 5 NUPR1 regulates expression of RELB and IER3 genes, and RELB and IER3 regulate cell viability and the colony-formation capacity of HCC cells. (a) Gene
expression analysis by qPCR in HCC cells after NUPR1 gene silencing (siNUPR1 #1). Data are reported as the percentage of gene expression inhibition of each gene and are the
means±S.D. of three separate experiments, each performed in triplicate. (b) Gene expression analysis, by qPCR, in Hep3B shNUPR1 (shNUPR1 #1) cells compared with
pSilencer, as control. Data are expressed as reported in panel (a). (c) Western blotting analysis of P-ERK1/2 (Thr202/Tyr204) and total ERK1/2 in Hep3B shNUPR1 (shNUPR #1)
and in control cells (pSilencer). (d) Gene expression analyses by qPCR after RELB and IER3 gene silencing in Hep3B cells. Data are expressed as reported in panel (a).
(e) Cell viability of Hep3B cells transfected with siRELB, siIER3 and siNC was assessed by MTS assay after treatment with the indicated sorafenib concentrations for 48 h. Data
are expressed as reported in Figure 4. *Po0.05. (f) Representative images of the clonogenic assay of Hep3B cells transfected with siRELB, siIER3 and siNC. The experiment
continued for 14 days. Surviving colonies were stained and counted. Data are expressed as reported in Figure 4. *Po0.05; ns= non-significant
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RUNX2-binding sites in the NUPR1 promoter region (Supple-
mentary Table S7 and Supplementary Figure S4). Further
studies are needed to clarify whether these binding sites are
functional and are involved in the control of NUPR1 expression
by RUNX2. However, these data strongly suggest the existence
of a NUPR1/RELB/IER3/RUNX2 pathway that may act as an
auto-regulatory loop.

Expression of RUNX2 in human HCC samples. Finally, we
examined RUNX2 mRNA and protein expression in HCC
tissues compared with NL tissues (Figures 8f and g). Real-
time PCR analysis showed that RUNX2 mRNA was over-
expressed in 8 out of the 12 (66.6%) HCC tissues (Figure 8f),
suggesting that RUNX2, as well as NUPR1, may have an
important role in hepatocarcinogenesis. Of note, from the
eight samples with high RUNX2 expression, four cases (50%)
also displayed increased NUPR1 expression. In addition,

RUNX2 expression was analyzed by immunohistochemistry.
As shown in Figure 8g, high RUNX2 expression was
observed in HCC tissues, with clear nuclear localization in
the tumor hepatocytes but not in NL hepatocytes. All scores
analyzed for RUNX2 were significantly higher in HCC than in
NL tissues (Supplementary Table S8A). In addition, the
percentage of positive nuclei and the sum of the scores were
significantly higher in HCC than in LC tissues (Supple-
mentary Table S8A). Furthermore, the percentage of positive
nuclei and the sum scores were significantly different in HCC
tissues with different differentiation grades, whereas no
correlation was observed between RUNX2 expression and
TNM classification (Supplementary Table S8B).
Finally, we found a significant correlation between the

percentage of NUPR1- and RUNX2-postive nuclei (Po0.05)
and the sum of the scores (Po0.05) in HCC tissues
(Supplementary Table S9).

Figure 6 NUPR1 knockdown inhibited tumor growth of Hep3B cells in nude mice. (a) Microphotography of 8 out of the 12 mice inoculated with stable Hep3B cells harboring
NUPR1 shRNA (shNUPR1) (right flank) or non-specific shRNA (pSilencer) (left flank). (b) Microphotographs of tumors collected after 4 weeks of injection with Hpe3B pSilencer
cells. (c) Tumor growth of Hep3B cells harboring pSilencer or shNUPR1. *Po0.05; **Po0.01

Figure 7 Functional analysis for the data set of differentially expressed genes and network analysis of dynamic gene expression obtained following shRNA-mediated NUPR1
knockdown in Hep3B cells. (a and b) IPA functional pathway analyses of genes differentially expressed (≥ 3-fold) in Hep3B cells upon NUPR1 suppression. Top functions that
meet a P-value cutoff of 0.05 are displayed. The orange line represents the cutoff value for significance. (a) Genes that were upregulated and (b) genes downregulated. (c) The
five top-scoring networks were merged and are displayed graphically as nodes (genes/gene products) and edges (the biological relationships between the nodes). Intensity of the
node color indicates the degree of up regulation (red) or downregulation (green). Nodes are displayed using various shapes that represent the functional class of the gene product
(rhomboid= transporter; square= cytokine; diamond= enzyme; vertical oval= transmembrane receptor; horizontal oval= transcription factor; rectangle= nuclear receptor;
hexagon= translation factor; circle= other). Edges are displayed with various labels that describe the nature of the relationship between the nodes:→ acts on;— binding only.
The length of an edge reflects the evidence supporting the specific node-to-node relationship, as edges supported by articles from the literature are shorter. Dotted edges
represent indirect interaction
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Discussion

HCC is a complex disease and currently sorafenib represents
the only systemic therapy available for the treatment of

advanced disease,1 although its benefits are modest. On
the other hand, the molecular mechanism of action of
sorafenib has not yet been fully clarified. Therefore, a better
understanding of the molecular mechanism(s) responsible for
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its antitumor effect could be critical for improving treatment
effectiveness, while minimizing side effects. Several
studies have shown that sorafenib blocks tumor cell prolifera-
tion and induces cell death through mitogen-extracellular
activated protein kinase kinase (MEK)/ERK-dependent and

-independent mechanisms.2–7 In particular, ER stress has
been demonstrated to be part of the MEK/ERK-independent
program of cell death induced by this drug.8–10

In this study, we present potential molecular mechanisms to
explain sorafenib resistance in HCC cells. First, confirming

Figure 8 RUNX2 regulates cell viability, growth, migration and the expression of NUPR1, RELB and IER3 genes in Hep3B cells and is expressed in human HCC samples.
(a) Gene expression analysis by qPCR after NUPR1 gene silencing (shNUPR1 #1) in Hep3B cells. (b) Colony assay after RUNX2 siRNA-mediated gene knockdown. Data are
expressed as reported in Figure 4. (c) Representative images of transwell migration assay after RUNX2 gene silencing in Hep3B cells. Data are expressed as reported in
Figure 4.**Po0.01. (d) Cell viability of Hep3B cells transfected with siRUNX2 (siRUNX2 #1) and siNC was assessed by MTS assay after treatment with the indicated
concentrations of sorafenib for 48 h. Data are expressed as reported in Figure 4. (e) Gene expression analysis after RUNX2 gene silencing (siRUNX2 #1) in Hep3B cells
performed by qPCR. Data are expressed as reported in Figure 5. (f) RUNX2 gene expression analysis in 12 HCC tissues performed by qPCR. Data are indicated as reported in
Figure 3. (g) RUNX2 protein expression levels were examined by immunohistochemistry in the NL (A) and HCC tissues (B). Magnification= ×20, insert magnification= × 40.
Scale bar= 100 μm
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and extending previous data,11,12 we found that sorafenib
induces, in a time- and dose-dependent manner, the expres-
sion of several genes involved in ER stress, such as GRP78,
ATF4, CHOP and TRB3 as well as NUPR1, a stress-inducible
gene, and the splicing of XBP1 mRNA.
Recently, it has been reported that NUPR1 is over-

expressed in several human cancers.15–17,37 However, stu-
dies have demonstrated that NUPR1 can act either as an
inducer or suppressor of tumor growth. In the liver, NUPR1 has
been reported to be involved in cellular stress response to
hepatic injury by CCl4.

20 Recently, Lee et al.21 identified
NUPR1 as one of the 10 commonmitochondrial defect-related
genes that may induce a retrograde signaling from cancer cell
mitochondria to intracellular transcriptome, having a critical
role in liver cancer progression.
In this study, we examined NUPR1 expression status (both

protein and mRNA) in HCC patient tissues and in healthy liver
tissues. Immunohistochemical analysis revealed that NUPR1
expression level was higher in HCC tissues than in healthy
liver tissues, with a nuclear localization only in malignant
hepatocytes. In450% of HCC tissues, we found higher levels
of NUPR1 mRNA than in normal and in cirrhotic liver tissues,
suggesting its involvement in hepatocarcinogenesis. Of note,
we found that NUPR1 mRNA expression was high in both
HBV- and HCV-associated HCC, which suggests that not only
HBV22 but also HCVmight regulateNUPR1 expression during
hepatocarcinogenesis.
Furthermore, both our in vitro and in vivo data confirmed that

NUPR1 has a critical role in the regulation of tumor cell growth,
tumor migration and invasive capacity and survival of HCC
cells, suggesting its oncogenic role in HCC.
Chemoresistance represents a major challenge for HCC

treatment. It has been reported that NUPR1 is involved in
chemoresistance in breast and pancreatic cancers.38,39 Here
we demonstrated that NUPR1 depletion led to a significant
increase in HCC cell sensitivity to sorafenib treatment,
suggesting that it may also have a pivotal role in HCC
chemoresistance.
Moreover, and as already reported,16 we found that NUPR1

gene silencing resulted in RELB and IER3 downregulation.
The role of IER3 in regulating tumor cell growth is highly
controversial. Several studies have demonstrated that IER3
(also known as IEX-1), similar to NUPR1, may act as an
oncogenic or pro-apoptotic factor in different human
malignancies.40 Recently, Kwon et al.41 demonstrated that
IER3 may be considered as a functional biomarker for an
aggressive HCC subtype. To better understand whether the
biological effects observed in HCC cells after NUPR1 gene
silencing were determined through regulation of these
transcripts, we used specific siRNA to silence RELB and
IER3 genes and demonstrated that RELB and IER3 knock-
down inhibits cell growth and migration and increases cell
sensitivity to sorafenib in HCC cells.
To clarify the molecular mechanisms and biological path-

ways involved in NUPR1-mediated action on HCC cells, we
performed a comparative analysis of global gene expression
using DNA microarray technology in Hep3B cells upon
NUPR1 knockdown. Microarray data showed that NUPR1
gene silencing resulted in a strong downregulation of several
genes involved in cellular movement, lipid metabolism,

molecular transport and cellular response to therapies. IPA
pathway and network analyses highlighted some important
gene nodes related to NUPR1 depletion in Hep3B cells that
confirmed its functional role observed in HCC cells.
In particular, we found that NUPR1 knockdown results in

upregulation of some important factors known to be involved in
the regulation of cell growth and proliferation in HCC. Among
these, we observed a strong upregulation of TGFβ2, shown to
induce cell death in Hep3B cells with low endogenous TGFβ
levels.42 In addition, DKK3, which acts as a Wnt-antagonist
and tumor suppressor, and the CDKN2B (coding for
p15INK4B protein), which acts as a negative regulator of cell
cycle progression,43,44 were found to be upregulated in Hep3B
cells upon NUPR1 suppression. These data confirm the effect
of NUPR1 knockdown in reducing cell growth.
On NUPR1 suppression, we also observed a strong and

significant downregulation of some important genes involved
in the regulation of cell proliferation and movement. Among
these, FGF19 has been implicated in HCC development in
humans45,46 and in HCC cell proliferation and migration,46 as
its expression has been suggested to be an independent
prognostic factor for overall and disease-free survival.46 Of
interest, we also found that NUPR1 gene silencing sharply
downregulates BMP7. This gene has been reported to be
overexpressed in HCC andmay be considered as a biomarker
for poor prognosis in HCC.33 Moreover, in another study Lu
et al.47 demonstrated that overexpression of BMP7 gene
increases HCC cell viability and migration.
Interestingly, our microarray data analysis also provided

evidence of the involvement of NUPR1 in lipid metabolism
regulation. We found that several genes, such as APOM,
ADH4, ACOX2, ACSL1 and SLC1A3, were downregulated in
Hep3B cells upon NUPR1 suppression.
Finally, we found that NUPR1 suppression also resulted in

RUNX2 downregulation. Many authors have reported that
RUNX2 has an oncogenic role in different human
malignancies,36,48 although its role in HCC still remains
unclear. We found that RUNX2 protein was significantly higher
in HCC tissues than in LC and NL tissues and that RUNX2
mRNA was overexpressed in 8 out of the 12 (66.6%) HCC
patient tissues, with a co-expression of RUNX2 mRNA and
NUPR1 mRNA observed in 50% of RUNX2-positive HCC
samples. This result was also supported by immunohisto-
chemical analysis, which showed that expression of NUPR1
was significantly correlated with expression of RUNX2 in HCC
tissues. Moreover, we demonstrated that RUNX2 gene
silencing significantly decreases cell growth and migration
and increases Hep3B cell response to sorafenib treatment. In
addition, and as previously reported,36 we observed that
RUNX2 suppression results in a strong downregulation of
NUPR1 and of the NUPR1-regulated genes RELB and IER3.
These data imply the existence of a NUPR1/RELB/IER3/
RUNX2 pathway that may act as an auto-regulatory loop,
which we demonstrated as having a key role in HCC cell
growth, migration, invasion and chemoresistance. The identi-
fication of a NUPR1/RELB/IER3/RUNX2 pathway as a
potential therapeutic target may contribute to the development
of new treatment strategies for HCC management.
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Materials and Methods
Tissue specimens and immunohistochemistry. The study included
17 primary HCC patients with hepatitis virus B (HBV)-associated (n= 3) and HCV-
associated (n= 14) chronic liver disease (13 male, 4 female; mean age 63 years,
range 50–82 years). Fresh tumor and non-tumor samples were collected during
surgical resection and used for real-time PCR studies of NUPR1 and RUNX2 gene
expression. All samples were snap-frozen and stored at − 80 °C until RNA
extraction. In five cases, paired tumor and surrounding non-tumor regions (cirrhotic
tissues) were analyzed. All patients had in fact undergone surgery or liver
transplantation at the Division of Surgery of the University Medical School of
Palermo, Italy or at the Istituto Mediterraneo Trapianti e Terapie (ISMETT), Palermo,
Italy. Informed consent was obtained from all patients. The study protocol is
conformed to the ethical guidelines of the 1975 Declaration of Helsinki.
For immunohistochemical analyses, liver cancer tissue microarray (TMA) slides

were purchased from Abcam (Abcam, Cambridge, UK). Each TMA slide contains
27 cases in duplicates: 3 NL, 3 premalignant, and 21 cancer tissues with progressive
grades (5 Grade I, 12 Grade II and 4 Grade III) and TNM stages (17 T2N0M0,
3 T3N0M0 and 1 T4N0M0). Tissue sections in TMA were deparafinized and
rehydrated and the antigen unmasking technique was performed using Novocastra
Epitope Retrieval Solutions (Leica Microsystems Srl, Milan, Italy) at pH 6 or pH 9 in
PT Link Dako (Dako Italia SRL, Milan, Italy) at 98 °C for 30 min. Subsequently, the
sections were brought to room temperature and rinsed in PBS. After neutralization of
the endogenous peroxidase with 3% H2O2 and Fc blocking by a specific protein block,
the samples were incubated overnight at 4 °C with the primary antibodies against
human NUPR1 (produced by Dr JL Iovanna) and RUNX2 (1:200, pH 6) purchased
from Santa Cruz (Santa Cruz Biotechnologies Inc., Dallas, TX, USA). Staining was
revealed by Polymer Detection Kit (Novocastra Leica Biosystems, Newcastle, UK)
and 3,3′diaminobenzidine (DAB) substrate chromogen. The slides were counter-
stained with hematoxylin (Novocastra, Leica Biosystems). Negative control staining
was performed by using rabbit immune sera instead of the primary antibodies. All the
sections were analyzed under a Leica DM 2000 optical microscope (Leica
Microsystems, Wetzlar, Germany) and microphotographs were collected using a
Leica DFC320 digital camera (Leica).
The relative percentages of positive nuclei for NUPR1 or RUNX2, as well as

staining intensity, were evaluated by two independent observers (AG and VC).
Staining intensity was classified as follows: 0 (no staining), 1 (weak), 2 (moderate),
and 3 (strong). Percentages of positive nuclei were classified as follows: 0 (no positive
tumor nuclei), 1 (1–25% positive), 2 (26–50% positive), 3 (51–75% positive), and 4
(76–100% positive). The scores for staining intensity percentages and for positive
nuclei were added together to give a single immunohistochemical staining score from
0 to 7.

Reagents and cell culture. Sorafenib was purchased from Alexis
Biochemical (Lausen, CH, Switzerland) and dissolved in dimethyl sulfoxide
(DMSO). The human HCC cell lines HepG2, Hep3B, PLC/PRF/5 and Huh7 used
in this study had a low passage number and were maintained as previously
reported.49 HepG2 and Hep3B cells were obtained from the American Type Culture
Collection (ATCC, Rockville, MD, USA). PLC/PRF/5 cells used in this study were a
gift from Professor O Bussolati (University of Parma, Parma, Italy) and Huh7 were a
gift from Professor M Levrero (Sapienza University of Rome, Rome, Italy). All cell
lines were authenticated by short tandem repeat profiling (BMR Genomics, Padua,
Italy), and used within 6 months of receipt. All cell cultures were routinely tested and
found to be free of mycoplasma contamination.

Immunofluorescence. HCC cells were seeded in chamber slides at 1.0 × 104

cells/well in RPMI 10% FBS. After 24 h, cells were treated with 7.5 and 10 μM
sorafenib for 3 h. Cells treated with DMSO were used as controls. After treatment,
cells were fixed, permeabilized and stained with primary anti-NUPR1 antibody. After
staining, slides were mounted using Vectashield mounting medium with DAPI
(Vector Laboratories Inc., Peterborough, UK) to visualize cell nuclei. Images were
acquired with a Leica microscope.

SiRNA transfection. Cells were seeded into 60-mm plates using medium
without antibiotics and 24 h later transfected with 75 nmol/l siRNA targeting
human-specific genes. Transfections were performed using the Lipofectamine RNAi
Max reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s
instructions. The following specific siRNAs were purchased from QIAGEN
(Germantown, MD, USA): siNUPR1 #1 (SI02664326); siRELB #2 (SI00089117);
siIER3 #2 (SI00057540); siRUNX2 #2 (SI00062993) and from Santa Cruz: siNUPR1

#2 (sc-40792); siRELB #1 (sc-36402); siIER3 #1 (sc-43859); and siRUNX2 #1 (sc-
37145). Negative control siRNA (siNC) was purchased from QIAGEN (1027281).

Extraction of cellular RNA and quantitative real-time PCR
(qPCR). Total RNA was extracted using TRIzol reagent according to the
manufacturer’s instructions. In all, 1.5 μg of total RNA were subjected to reverse
transcription to generate cDNA and qPCR was performed as previously reported.49

mRNA level was evaluated using specific QuantiTect Primer Assays (QIAGEN) as
previously reported.11,49 All samples were analyzed in triplicate.

Cell viability and clonogenic assays. Twenty-four hours after transfection,
cells were detached and plated in 96-well plates for MTS assay or 60-mm
plates for colony assay and mRNA expression analysis. Transfected cells were
exposed to sorafenib for an additional period of 48 h and then analyzed for cell
viability. MTS assays were performed as previously reported.49 Each experiment was
performed in triplicate and repeated three times. Cell viability was expressed as a
percentage of the absorbance measured in the control cells. Values were expressed
as means±S.D.
The effect of NUPR1, RELB, IER3 and RUNX2 gene silencing on cell viability was

also assessed using a clonogenic assay, as previously described.11,12 Relative colony
formation was determined by the ratio of the average number of colonies in cells
transfected with human-specific siRNA for NUPR1, RELB, IER3 and RUNX2 to the
average number of colonies in siNC-transfected cells. All experiments were
performed in duplicate and repeated three times.

Wound healing, cell migration and invasion assays. For wound-
healing assay 24 h after transfection, 5.0 × 105 cells transfected with human NUPR1
siRNA and with siNC were plated on 35-mm plates until confluent. Cells were
scratched using 200-μl tips, washed and cultured in fresh media. Transwell cell
migration and invasion assays were performed as previously described.36

Stable shRNA-mediated NUPR1 transfection. For stable clone
generation, Hep3B cells were seeded in six-well plates in RPMI medium without
antibiotics. After 24 h, cells were transfected with 2 μg of NUPR1-specific shRNA or
scramble shRNA (pSilencer), containing a region for resistance to puromycin, and
Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. Stable
clones were selected in 2 μg/ml puromycin for 8 weeks, after which single clones
were selected using a limited dilution technique. NUPR1 gene silencing was tested
by qPCR.

NUPR1 shRNA stable clone cell viability. Cell proliferation (cell index)
was analyzed using the xCELLigence Real-Time Cell Analyzer instrument, as
previously reported.36 In addition, to evaluate the effect of NUPR1 shRNA-mediated
knockdown on cell response to sorafenib treatment, cells were plated in six-well
plates at 3.0 × 105/well and treated with different concentrations of sorafenib. Cells
were trypsinized 48 h after treatment and counted after staining with 0.4% (w/v)
trypan blue (Sigma-Aldrich Srl, Milan, Italy).

Western blotting analyses. Whole-cell lysates were obtained using RIPA
buffer (Cell Signaling Technologies Inc., Danvers, MA, USA) and western blotting
analyses were performed as previously described,49 with primary antibodies raised
against ERK1/2, phospho-ERK1/2 (Cell Signaling) and β-actin (Sigma-Aldrich).

In vivo studies. A total of 10 × 106 Hep3B cells stably expressing shRNA
against NUPR1 or control shRNA (pSilencer) were implanted subcutaneously in
female nude athymic mice (Fox1 nu/nu) (6 weeks old, male; n= 12) obtained from
Envigo (Udine, Italy). The mice were examined for tumor formation for 4 weeks and
were killed in conformity with institutional guidelines, which are in compliance with
national (D.L., 116 G.U., Suppl.40; 18 February 1992) and international laws and
policies (ECC Council Directive 86/609, OJ L358.1, 12 December 1987). This study
was authorized by the Italian Ministry of Health.

Bioinformatics, gene expression profiling and data analysis.
Nine HCC public data sets were analyzed for the pattern of NUPR1 gene mRNA
expression by the Oncomine software (https://www.oncomine.com). Clinical and
pathological features were available in four data sets (Supplementary Table S1).
Expression fold change, data normalization and the statistical significance of the
differential analysis data were obtained using Oncomine algorithms.
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Open-source Jasper database (http://jaspar.genereg.net/) was used to predict
the binding sites of RUNX2 in the promoter region of the NUPR1 gene. This
bioinformatics tool includes a collection of transcription factor DNA-binding
preferences, modeled as matrices. To this purpose, the sequence Chr16:28535
905-28541804 (GeneBank: Chromosome 16, NC_000016.10 – GRCh38.p2 Primary
Assembly), including 3003 bp downstream and 2897 bp upstream ATG codon, here
considered as NUPR1 promoter region, was selected for the Jaspar prediction
analysis. In this analysis, only the predicted sites of RUNX2 factor with a relative
profile score threshold 480% was considered.
Gene expression was analyzed using Agilent 44K Human Whole Genome

Oligonucleotide Microarrays (containing ~ 44 000 genes) (Agilent, Palo Alto, CA,
USA), as previously described.11,12,36 All microarray experiments were performed in
duplicate, using dye-swap during labeling. The GeneSpring software (Agilent) was
used to generate lists of selected genes for the different statistical and visualization
methods. Network and pathway analyses of the microarray data were completed
using the IPA software (http://www.Ingenuity.com). The microarray data were
deposited in the GEO database with accession number GSE73521.

Statistical analysis. Statistical analysis was performed using Student’s t-test
(two-tailed), with Po0.05. The Mann–Whitney U-test and Spearman’s rank
correlation test were used when appropriate.
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