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In this paper, we introduce fuzzy bipolar soft semiprimality in the structure of ordered semigroups and investigate 
some properties of the concept. Moreover, ordered semigroups and their some classes are characterized by means 
of fuzzy bipolar soft semiprimality. Finally, the Cartesian product of fuzzy bipolar soft semiprime (resp., prime) 
ideals over ordered semigroups is examined. Some of the ideas are supported by apt examples.
Introduction

The Zadeh’s concept of fuzzy set [1] has proved to be a big boom 
in the modern world of science and technology. The notion is so much 
innovative, crucial and ingenious that, since its emergence in 1965, it 
has touched almost each and every area of research exploration and 
analysis across the world. At present, the study of fuzzy set theory is 
in a rapid progress with multiple research dimensions. This remarkable 
concept was extended to various areas of mathematics by researchers. 
Chang [2] applied the idea to general topology and transformed some 
of the basic concepts of topological spaces to fuzzy topological spaces. 
Rosenfeld [3] is the first who initiated the study of the concept on 
abstract algebra by defining fuzzy subgroupoid (resp., subgroup). Simi-

larly, Kuroki [4] extended the same concept to semigroups and initiated 
the study of fuzzy semigroup theory. Liu [5] studied the concept of 
fuzzy set on ring theory and, among others, introduced fuzzy (left, 
right) ideals of rings. In the same way, Kehayopulu and Tsingelis [6] 
took the lead in extending the concept to ordered semigroup theory. 
They [7, 8, 9] studied, among others, fuzzy ideal theory in ordered 
semigroups and introduced the concept of fuzzy left (resp., right, two-

sided, bi-, interior, quasi-) ideals in ordered semigroups and examined 
their related properties. Moreover, they characterized various classes of 
ordered semigroups in terms of these ideals. Jirojkul and Chinram [10] 
defined fuzzy quasi-ideal subsets and fuzzy quasi-filters in ordered semi-

groups and characterized ordered semigroups by these notions. Shabir 
and Iqbal [11] introduced bipolar fuzzy left (resp., right, bi-) ideals in 
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ordered semigroups and characterized their various classes by the prop-

erties of these ideals. Similarly, Xie and Tang [12, 13], Shabir and Khan 
[14, 15], Davvaz and Khan [16], and F. M. Khan et al. [17, 18] studied 
ordered semigroups by means of fuzzy set theory. In the same fash-

ion, many other researchers [19, 20, 21, 22, 23] contributed a lot to 
fuzzy ideal theory in ordered semigroups through various dimensions. 
On the other hand, Hayat et al. [24] studied bipolar fuzzy BRK-ideals 
in BRK-algebras and discussed their related properties. Karaaslan et al. 
[25] applied the notion of bipolar soft sets to group theory, and thus 
defined bipolar soft groups and examined some of their related proper-

ties. In [26], the notions of bipolar anti fuzzy h-ideals and bipolar anti 
fuzzy interior h-ideals in hemirings were introduced and some proper-

ties of these concepts were investigated. In [27], the authors introduced 
some new operations on type-2 soft sets and examined related proper-

ties. Sana et al. [28] introduced and studied the concepts of possibility 
fuzzy soft ideals and possibility fuzzy soft interior ideals in ordered 
semigroups. In [29], the authors applied soft set, based on acceptable 
and satisfactory levels, to design concept evaluation techniques.

In 1982, Kuroki [30] initiated and examined the concept of fuzzy 
semiprimality in semigroups (without order), whereas, in ordered semi-

group theory, Shabir and Khan [31] studied the concept of semiprime 
fuzzy quasi-ideals. Likewise, Kehayopulu and Tsingelis [7] character-

ized fuzzy left (resp., right) semiprime ideals of ordered semigroups. 
Muhiuddin et al. [32] further studied fuzzy semiprime subsets in or-

dered semigroups. It is worth mentioning that Naz and Shabir [33] 
introduced the concept of fuzzy bipolar soft set which is an awesome 
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blending of fuzzy and soft set theories. They examined the algebraic 
properties of the notion and studied its application in decision mak-

ing problems. Since the concept of fuzzy bipolar soft set is a novel one, 
thus, in the present paper, we study semiprimality in ordered semi-

groups in terms of this structure, and hence the notion of fuzzy bipolar 
soft semiprimality is introduced. In addition, some properties of the 
concept are investigated on left (resp., right, intra-, completely) regular 
and Archimedean ordered semigroups. Besides, the Cartesian product 
of fuzzy bipolar soft semiprime (resp., prime) ideals over ordered semi-

groups is studied.

1. Preliminaries

Here, we state some definitions that are helpful in comprehending 
the content of the paper. For studying the applications of FBS set theory 
and further details, the readers may resort to [33]. An ordered semi-

group (𝑆, ⋅, ≤) is a set 𝑆 where (𝑆, ⋅) is a semigroup and (𝑆, ≤) is a 
partially ordered set (poset) such that the order relation “≤” is com-

patible with the binary operation of multiplication “⋅”. Moreover, for a 
nonempty subset 𝑃 of 𝑆 , we say that 𝑃 is a subsemigroup of 𝑆 if and 
only if: (i) 𝑃𝑃 ⊆ 𝑃 , and (ii) if 𝑎 ∈ 𝑃 and 𝑆 ∋ 𝑏 ≤ 𝑎 then 𝑏 ∈ 𝑃 . Similarly, 
if 𝑃 be a nonempty subset of 𝑆, then we denote by (𝑃 ] the subset of 𝑆
defined as follows:

(𝑃 ] = {𝑠 ∈ 𝑆 ∣ 𝑠 ≤ 𝑝 for some 𝑝 ∈ 𝑃 }.

Let’s recall that Naz and Shabir [33] presented the concept of fuzzy 
bipolar soft set which is a hybrid structure of fuzzy and soft set theories. 
Moreover, it possesses an intrinsic property of bipolarity. In the follow-

ing, the concept is redefined so that ordered semigroups may be studied 
more conveniently in terms of fuzzy bipolar soft set theory.

Definition 1. Assume 𝑆 be an initial universe set,  (𝑆) the collection 
of all fuzzy subsets of 𝑆 and 𝐸 a set of parameters. For 𝐴 ⊆ 𝐸, let 
𝑓 ∶ 𝐴 → 𝐸 be an injective function. Then, a fuzzy bipolar soft (FBS) set 
𝜆𝐴 over 𝑆 is an object of the form

𝜆𝐴 = (
+
𝜆,

−
𝜆,𝐴),

where 
+
𝜆 ∶ 𝐴 →  (𝑆) and 

−
𝜆 ∶ 𝑓 (𝐴) →  (𝑆) are set-valued functions such 

that the condition

0 ≤
+
𝜆(𝜀)(𝑥) +

−
𝜆(𝑓 (𝜀))(𝑥) ≤ 1

holds, for all 𝜀 ∈𝐴 and 𝑥 ∈ 𝑆.

Note. In what follows, the universe set 𝑆 always represents an ordered 
semigroup. Further, instead of (

+
𝜆, 

−
𝜆, 𝐴), we write (

+
𝜆, 

−
𝜆) for the sake of 

convenience.

Definition 2. Let 𝜆𝐴 be an FBS set over 𝑆 satisfying the condition 𝑥 ≤
𝑦 ⇒

+
𝜆(𝜀)(𝑥) ≥

+
𝜆(𝜀)(𝑦), 

−
𝜆(𝜀)(𝑥) ≤

−
𝜆(𝜀)(𝑦) for all 𝜀 ∈𝐴, where 𝑥, 𝑦 ∈ 𝑆. Then, 

it is called an FBS ordered semigroup over 𝑆 if and only if 
+
𝜆(𝜀)(𝑥𝑦) ≥

min(
+
𝜆(𝜀)(𝑥), 

+
𝜆(𝜀)(𝑦)) and 

−
𝜆(𝜀)(𝑥𝑦) ≤max(

−
𝜆(𝜀)(𝑥), 

−
𝜆(𝜀)(𝑦)), for all 𝜀 ∈𝐴 and 

𝑥, 𝑦 ∈ 𝑆.

Definition 3. Let 𝜆𝐴 be an FBS set over 𝑆 satisfying the condition 𝑥 ≤
𝑦 ⇒

+
𝜆(𝜀)(𝑥) ≥

+
𝜆(𝜀)(𝑦), 

−
𝜆(𝜀)(𝑥) ≤

−
𝜆(𝜀)(𝑦) for all 𝜀 ∈ 𝐴, where 𝑥, 𝑦 are any 

elements in 𝑆. Then, it is called an FBS left (resp., right) ideal over 𝑆 if 
and only if 

+
𝜆(𝜀)(𝑥𝑦) ≥

+
𝜆(𝜀)(𝑦), 

−
𝜆(𝜀)(𝑥𝑦) ≤

−
𝜆(𝜀)(𝑦) (resp., 

+
𝜆(𝜀)(𝑥𝑦) ≥

+
𝜆(𝜀)(𝑥), 

−
𝜆(𝜀)(𝑥𝑦) ≤

−
𝜆(𝜀)(𝑥)), for all 𝜀 ∈𝐴 and 𝑥, 𝑦 ∈ 𝑆.

Moreover, 𝜆𝐴 is called an FBS two-sided ideal or, simply, an FBS 
ideal over 𝑆 if it is both an FBS left ideal and an FBS right ideal over 
𝑆 . Equivalently, we say that 𝜆𝐴 is an FBS ideal over 𝑆 if and only if 
+
𝜆(𝜀)(𝑥𝑦) ≥ max(

+
𝜆(𝜀)(𝑥), 

+
𝜆(𝜀)(𝑦)) and 

−
𝜆(𝜀)(𝑥𝑦) ≤min(

−
𝜆(𝜀)(𝑥), 

−
𝜆(𝜀)(𝑦)), for all 

𝜀 ∈𝐴 and 𝑥, 𝑦 ∈ 𝑆.
2

Definition 4. Let 𝜆𝐴 be an FBS ordered semigroup over 𝑆. Then, it 
is called an FBS bi-ideal over 𝑆 if and only if 

+
𝜆(𝜀)(𝑥𝑦𝑧) ≥ min(

+
𝜆(𝜀)(𝑥),

+
𝜆(𝜀)(𝑧)) and 

−
𝜆(𝜀)(𝑥𝑦𝑧) ≤max(

−
𝜆(𝜀)(𝑥), 

−
𝜆(𝜀)(𝑧)), for all 𝜀 ∈ 𝐴 and 𝑥, 𝑦 ∈ 𝑆.

Definition 5. Let 𝜆𝐴 be an FBS set over 𝑆. Then, it is called FBS 
prime if and only if 

+
𝜆(𝜀)(𝑥𝑦) = max{

+
𝜆(𝜀)(𝑥), 

+
𝜆(𝜀)(𝑦)} and 

−
𝜆(𝜀)(𝑥𝑦) =

min{
−
𝜆(𝜀)(𝑥), 

−
𝜆(𝜀)(𝑦)}, for all 𝜀 ∈𝐴 and 𝑥, 𝑦 ∈ 𝑆.

Definition 6. An FBS ideal 𝜆𝐴 over 𝑆 is called FBS prime ideal if and 
only if it is FBS prime. Similarly, an FBS left (resp., right) ideal 𝜆𝐴 over 
𝑆 is called FBS prime left (resp., right) ideal if and only if it is FBS 
prime.

Definition 7. Let 𝜆𝐴 be an FBS set over 𝑆 and 𝑥 ∈ 𝑆. Then the FBS set 
< 𝑥, 𝜆𝐴 > over 𝑆, where

< 𝑥,
+
𝜆 > (𝜀)(𝑦) =

+
𝜆(𝜀)(𝑥𝑦), < 𝑥,

−
𝜆 > (𝜀)(𝑦) =

−
𝜆(𝜀)(𝑥𝑦),

for all 𝜀 ∈𝐴 and 𝑦 ∈ 𝑆, is called the extension of 𝜆𝐴 by 𝑥.

Definition 8. Let 𝑃 be a non-empty subset of 𝑆. Then an FBS set of the 
form

𝑃
𝜒
𝐴
= ( +

𝜒
𝑃
,

−
𝜒
𝑃
,𝐴)

over 𝑆 is called FBS characteristic function of 𝑃 , where

+
𝜒
𝑃
(𝜀)(𝑥) =

{
1, if 𝑥 ∈ 𝑃 ,

0, if 𝑥 ∉ 𝑃 ,

and

−
𝜒
𝑃
(𝜀)(𝑥) =

{
0, if 𝑥 ∈ 𝑃 ,

1, if 𝑥 ∉ 𝑃 ,

for all 𝜀 ∈𝐴 and 𝑥 ∈ 𝑆.

2. Fuzzy bipolar soft semiprimality in ordered semigroups

In this section, we introduce the concept of FBS semiprimality in 
ordered semigroup theory and some properties of the notion are stud-

ied. The concept is elaborated by an example. Moreover, a semiprime 
ideal 𝑃 of 𝑆 is characterized by its FBS characteristic function. If 𝑆 is 
Archimedean, then it is proved that every FBS semiprime ideal 𝜆𝐴 over 
𝑆 is a constant mapping.

Definition 9. An FBS set 𝜆𝐴 over 𝑆 is called FBS semiprime if and only 
if, for all 𝜀 ∈𝐴 and 𝑥 ∈ 𝑆, we have

+
𝜆(𝜀)(𝑥) ≥

+
𝜆(𝜀)(𝑥2),

−
𝜆(𝜀)(𝑥) ≤

−
𝜆(𝜀)(𝑥2).

Definition 10. An FBS ideal 𝜆𝐴 over 𝑆 is called FBS semiprime ideal if 
and only if it is FBS semiprime. Similarly, an FBS left (resp., right) ideal 
𝜆𝐴 over 𝑆 is called FBS semiprime left (resp., right) ideal if and only if 
it is FBS semiprime.

Example 1. Consider the ordered semigroup 𝑆 = {𝜏0, 𝜏1, 𝜏2, 𝜏3, 𝜏4} with 
the multiplication “⋅” and the order relation “≤” given below:

⋅ 𝜏0 𝜏1 𝜏2 𝜏3 𝜏4
𝜏0 𝜏0 𝜏0 𝜏0 𝜏0 𝜏0
𝜏1 𝜏0 𝜏1 𝜏1 𝜏1 𝜏4
𝜏2 𝜏0 𝜏1 𝜏1 𝜏2 𝜏4
𝜏3 𝜏0 𝜏1 𝜏1 𝜏3 𝜏4
𝜏4 𝜏0 𝜏1 𝜏1 𝜏4 𝜏4

≤= {(𝜏0, 𝜏0), (𝜏1, 𝜏1), (𝜏1, 𝜏4), (𝜏2, 𝜏2), (𝜏2, 𝜏4), (𝜏3, 𝜏3), (𝜏4, 𝜏4)}.
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Let 𝐸 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6} be a set of parameters, 𝐴 = {𝜀1, 𝜀3, 𝜀5} be 
its subset and 𝑓 ∶𝐴 →𝐸 be an injective function defined by 𝑓 (𝜀𝑖) = 𝜀𝑖+1
(𝑖 = 1, 3, 5). Further, let 𝜆𝐴 be an FBS left ideal over 𝑆 defined as follows:

+
𝜆(𝜀1)(𝑥) =

⎧⎪⎨⎪⎩
0.6 if 𝑥 ∈ {𝜏1, 𝜏2},
0.7 if 𝑥 = 𝜏0,

0.5 if 𝑥 ∈ {𝜏3, 𝜏4},

+
𝜆(𝜀3)(𝑥) =

⎧⎪⎨⎪⎩
0.4 if 𝑥 ∈ {𝜏1, 𝜏2},
0.6 if 𝑥 = 𝜏0,

0.2 if 𝑥 ∈ {𝜏3, 𝜏4},

+
𝜆(𝜀5)(𝑥) =

⎧⎪⎨⎪⎩
0.3 if 𝑥 ∈ {𝜏1, 𝜏2},
0.5 if 𝑥 = 𝜏0,

0.1 if 𝑥 ∈ {𝜏3, 𝜏4},

−
𝜆(𝜀2)(𝑥) =

⎧⎪⎨⎪⎩
0.6 if 𝑥 ∈ {𝜏1, 𝜏2},
0.5 if 𝑥 = 𝜏0,

0.7 if 𝑥 ∈ {𝜏3, 𝜏4}.

−
𝜆(𝜀4)(𝑥) =

⎧⎪⎨⎪⎩
0.4 if 𝑥 ∈ {𝜏1, 𝜏2},
0.2 if 𝑥 = 𝜏0,

0.6 if 𝑥 ∈ {𝜏3, 𝜏4}.

−
𝜆(𝜀6)(𝑥) =

⎧⎪⎨⎪⎩
0.5 if 𝑥 ∈ {𝜏1, 𝜏2},
0.3 if 𝑥 = 𝜏0,

0.6 if 𝑥 ∈ {𝜏3, 𝜏4}.

Since

+
𝜆(𝜀)(𝑥) =

+
𝜆(𝜀)(𝑥2),

−
𝜆(𝜀)(𝑥) =

−
𝜆(𝜀)(𝑥2),

for all 𝜀 ∈𝐴 and 𝑥 ∈ 𝑆, thus, 𝜆𝐴 is FBS semiprime.

Proposition 1. Let 𝜆𝐴 be an FBS ordered semigroup over 𝑆 and 𝑎 ∈ 𝑆. If 
𝜆𝐴 is FBS semiprime, then the assertions

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑎2),

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑎2),

hold, for all 𝜀 ∈𝐴 and 𝑎 ∈ 𝑆.

Proof. Since 𝜆𝐴 is an FBS ordered semigroup over 𝑆, thus we have

+
𝜆(𝜀)(𝑎) ≥

+
𝜆(𝜀)(𝑎2) ≥min{

+
𝜆(𝜀)(𝑎),

+
𝜆(𝜀)(𝑎)} =

+
𝜆(𝜀)(𝑎),

and

−
𝜆(𝜀)(𝑎) ≤

−
𝜆(𝜀)(𝑎2) ≤max{

−
𝜆(𝜀)(𝑎),

−
𝜆(𝜀)(𝑎)} =

−
𝜆(𝜀)(𝑎),

for all 𝜀 ∈𝐴 and 𝑎 ∈ 𝑆. Thus, the proof of the proposition follows. □

The following theorem explains that the concept of FBS semiprimal-

ity in ordered semigroups is, in fact, an extension of semiprimality in 
ordered semigroup theory.

Theorem 1. Let 𝑃 be a nonempty subset of 𝑆. Then the following conditions 
are equivalent.

(1) 𝑃 is semiprime.

(2) The FBS characteristic function 𝑃
𝜒
𝐴

of 𝑃 is FBS semiprime.

Proof. First assume that 𝑃 is semiprime and let 𝑃
𝜒
𝐴

be the FBS charac-

teristic function of 𝑃 . Let 𝜀 ∈𝐴 and 𝑎 ∈ 𝑆. If 𝑎2 ∉ 𝑃 , then

+
𝜒
𝑃
(𝜀)(𝑎2) = 0, −

𝜒
𝛬
(𝜀)(𝑎2) = 1.

Since
3

+
𝜒
𝑃
(𝜀)(𝑎) ≥ 0, −

𝜒
𝑃
(𝜀)(𝑎) ≤ 1,

thus, we have

+
𝜒
𝑃
(𝜀)(𝑎) ≥ +

𝜒
𝑃
(𝜀)(𝑎2), −

𝜒
𝑃
(𝜀)(𝑎) ≤ −

𝜒
𝑃
(𝜀)(𝑎2).

If 𝑎2 ∈ 𝑃 , then

+
𝜒
𝑃
(𝜀)(𝑎2) = 1, −

𝜒
𝑃
(𝜀)(𝑎2) = 0.

Since 𝑃 is semiprime, thus, we have 𝑎 ∈ 𝑃 . Then, it follows that

+
𝜒
𝑃
(𝜀)(𝑎) = 1, −

𝜒
𝑃
(𝜀)(𝑎) = 0.

So, in this case, we obtain

+
𝜒
𝑃
(𝜀)(𝑎) = +

𝜒
𝑃
(𝜀)(𝑎2), −

𝜒
𝑃
(𝜀)(𝑎) = −

𝜒
𝑃
(𝜀)(𝑎2).

Therefore, 𝑃
𝜒
𝐴

is FBS semiprime. Conversely, let the FBS characteristic 
function 𝑃

𝜒
𝐴

of 𝑃 is FBS semiprime. Suppose 𝜀 ∈𝐴 and 𝑎 be an element 
in 𝑆 such that 𝑎2 ∈ 𝑃 . Then, by the hypothesis, we have

+
𝜒
𝑃
(𝜀)(𝑎) ≥ +

𝜒
𝑃
(𝜀)(𝑎2), −

𝜒
𝑃
(𝜀)(𝑎) ≤ −

𝜒
𝑃
(𝜀)(𝑎2).

Further, since 𝑎2 ∈ 𝑃 , we have

+
𝜒
𝑃
(𝜀)(𝑎2) = 1, −

𝜒
𝑃
(𝜀)(𝑎2) = 0.

Thus, we obtain

+
𝜒
𝑃
(𝜀)(𝑎) = 1, −

𝜒
𝑃
(𝜀)(𝑎) = 0,

which implies that 𝑎 ∈ 𝑃 . Therefore, 𝑃 is semiprime. The proof of the 
proposition is completed. □

Similarly, the following theorem explains that the concept of FBS 
primality in ordered semigroups is, in fact, an extension of primality in 
ordered semigroup theory.

Theorem 2. Let 𝑃 be a nonempty subset of 𝑆. Then the following conditions 
are equivalent.

(1) 𝑃 is prime.

(2) The FBS characteristic function 𝑃
𝜒
𝐴

of 𝑃 is FBS prime.

Proof. It is straightforward. □

Proposition 2. Let 𝜆𝐴 be an FBS semiprime left (resp., right, two-sided) 
ideal over 𝑆 and 𝑎 ∈ 𝑆. Then, for all 𝑛 ∈ℕ and for all 𝜀 ∈𝐴, we have

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑎𝑛),

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑎𝑛).

Proof. Let 𝜀 be an arbitrary element in 𝐴. For 𝑛 = 2, we have

+
𝜆(𝜀)(𝑎2) =

+
𝜆(𝜀)(𝑎𝑎) ≥

+
𝜆(𝜀)(𝑎) ≥

+
𝜆(𝜀)(𝑎2),

and

−
𝜆(𝜀)(𝑎2) =

−
𝜆(𝜀)(𝑎𝑎) ≤

−
𝜆(𝜀)(𝑎) ≤

−
𝜆(𝜀)(𝑎2).

Suppose, for 𝑛 ≥ 2, we have

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑎𝑛),

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑎𝑛).

Then

+
𝜆(𝜀)(𝑎𝑛+1) =

+
𝜆(𝜀)(𝑎𝑎𝑛) ≥

+
𝜆(𝜀)(𝑎𝑛)

≥
+
𝜆(𝜀)(𝑎2𝑛) =

+
𝜆(𝜀)(𝑎𝑛−1𝑎𝑛+1)

≥
+
𝜆(𝜀)(𝑎𝑛+1),

and
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−
𝜆(𝜀)(𝑎𝑛+1) =

−
𝜆(𝜀)(𝑎𝑎𝑛) ≤

−
𝜆(𝜀)(𝑎𝑛)

≤
−
𝜆(𝜀)(𝑎2𝑛) =

−
𝜆(𝜀)(𝑎𝑛−1𝑎𝑛+1)

≤
−
𝜆(𝜀)(𝑎𝑛+1).

Thus, we obtain

+
𝜆(𝜀)(𝑎𝑛+1) =

+
𝜆(𝜀)(𝑎𝑛) =

+
𝜆(𝜀)(𝑎),

and

−
𝜆(𝜀)(𝑎𝑛+1) =

−
𝜆(𝜀)(𝑎𝑛) =

−
𝜆(𝜀)(𝑎).

Similarly, the other parts of the proposition are proved. □

Definition 11. [34] An ordered semigroup 𝑆 is called Archimedean if, 
for any 𝑎, 𝑏 ∈ 𝑆, there exists a positive integer 𝑛 such that 𝑏𝑛 ∈ (𝑆𝑎𝑆] (or 
𝑎𝑛 ∈ (𝑆𝑏𝑆]). That is, for all 𝑎, 𝑏 ∈ 𝑆 there exists 𝑛 ∈𝑁 such that 𝑏𝑛 ≤ 𝑥𝑎𝑦

for some 𝑥, 𝑦 ∈ 𝑆.

In the following proposition, we give a characterization of Archimed-

ean ordered semigroups by their FBS semiprime ideals.

Proposition 3. Let 𝑆 be Archimedean. Then every FBS semiprime ideal 𝜆𝐴
over 𝑆 is a constant mapping.

Proof. Suppose that 𝜆𝐴 be an FBS semiprime ideal over 𝑆. Let 𝑎, 𝑏 ∈ 𝑆

and 𝜀 ∈ 𝐴. Since 𝑆 is Archimedean, so there exist elements 𝑥, 𝑦 in 𝑆
such that 𝑎𝑛 ≤ 𝑥𝑏𝑦 and 𝑏𝑛 ≤ 𝑥𝑎𝑦 for some 𝑛 ∈ ℕ. Then, by Proposition 2, 
we have

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑎𝑛) ≥

+
𝜆(𝜀)(𝑥𝑏𝑦) ≥

+
𝜆(𝜀)(𝑏),

and

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑎𝑛) ≤

−
𝜆(𝜀)(𝑥𝑏𝑦) ≤

−
𝜆(𝜀)(𝑏).

Similarly, we have

+
𝜆(𝜀)(𝑏) =

+
𝜆(𝜀)(𝑏𝑛) ≥

+
𝜆(𝜀)(𝑥𝑎𝑦) ≥

+
𝜆(𝜀)(𝑎),

and

−
𝜆(𝜀)(𝑏) =

−
𝜆(𝜀)(𝑏𝑛) ≤

−
𝜆(𝜀)(𝑥𝑎𝑦) ≤

−
𝜆(𝜀)(𝑎).

Thus, we obtain

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑏),

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑏).

Therefore, 𝜆𝐴 is constant. □

3. Characterizations of left (resp., right) regular ordered 
semigroups by fuzzy bipolar soft semiprimality

In this section, we characterize left regular (resp., right regular) 
ordered semigroups in terms of FBS semiprimality of their left (resp., 
right) ideals. An ordered semigroup 𝑆 is called left regular (resp., right 
regular) if, for every 𝑥 ∈ 𝑆, there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤ 𝑎𝑥2 (resp., 
𝑥 ≤ 𝑥2𝑎). Similarly, 𝑆 is called regular if, for any 𝑎 ∈ 𝑆, there exists 
𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑎𝑥𝑎 i.e., 𝑎 ∈ (𝑎𝑆𝑎] for every 𝑎 ∈ 𝑆 or 𝐴 ⊆ (𝐴𝑆𝐴] for 
every 𝐴 ⊆ 𝑆 [35, 36].

Lemma 1. Let 𝑃 be a nonempty subset of 𝑆. Then the following conditions 
are equivalent on 𝑆:

(1) 𝑃 is a left (resp., right, two-sided) ideal of 𝑆.

(2) The FBS characteristic function 𝑃
𝜒
𝐴

of 𝑃 is an FBS left (resp., right, 
two-sided) ideal over 𝑆.
4

Proof. First assume that Condition (1) holds, and 𝑃
𝜒
𝐴

be an FBS charac-

teristic function of 𝑃 . Let 𝜀 ∈ 𝐴 and 𝜇, 𝜈 ∈ 𝑆. If 𝜈 ∈ 𝑃 , then 𝜇𝜈 ∈ 𝑃 for 
all 𝜇 ∈ 𝑆. Thus, we have

+
𝜒
𝑃
(𝜀)(𝜇𝜈) = 1, −

𝜒
𝑃
(𝜀)(𝜇𝜈) = 0.

So, it follows that

+
𝜒
𝑃
(𝜀)(𝜇𝜈) ≥ +

𝜒
𝑃
(𝜀)(𝜈), −

𝜒
𝑃
(𝜀)(𝜇𝜈) ≤ −

𝜒
𝑃
(𝜀)(𝜈).

Let 𝜈 ∉ 𝑃 , then

+
𝜒
𝑃
(𝜀)(𝜈) = 0, −

𝜒
𝑃
(𝜀)(𝜈) = 1,

which implies that

+
𝜒
𝑃
(𝜀)(𝜇𝜈) ≥ +

𝜒
𝑃
(𝜀)(𝜈), −

𝜒
𝑃
(𝜀)(𝜇𝜈) ≤ −

𝜒
𝑃
(𝜀)(𝜈).

Now, let 𝜈 ∈ 𝑃 such that 𝑆 ∋ 𝜇 ≤ 𝜈. Then

+
𝜒
𝑃
(𝜀)(𝜈) = 1, −

𝜒
𝑃
(𝜀)(𝜈) = 0,

which implies that

+
𝜒
𝑃
(𝜀)(𝜈) ≥ +

𝜒
𝑃
(𝜀)(𝜇), −

𝜒
𝑃
(𝜀)(𝜈) ≤ −

𝜒
𝑃
(𝜀)(𝜇).

Consequently, 𝑃
𝜒
𝐴

is an FBS left ideal over 𝑆. Conversely, assume that 
Condition (2) holds. Let 𝜀 ∈𝐴, and let 𝜇, 𝜈 ∈ 𝑆 such that 𝜈 ∈ 𝑃 . Then

+
𝜒
𝑃
(𝜀)(𝜈) = 1, −

𝜒
𝑃
(𝜀)(𝜈) = 0.

Further, by the hypothesis, we have

+
𝜒
𝑃
(𝜀)(𝜇𝜈) ≥ +

𝜒
𝑃
(𝜀)(𝜈), −

𝜒
𝑃
(𝜀)(𝜇𝜈) ≤ −

𝜒
𝑃
(𝜀)(𝜈).

Thus, it follows that

+
𝜒
𝑃
(𝜀)(𝜇𝜈) = 1, −

𝜒
𝑃
(𝜀)(𝜇𝜈) = 0,

which implies that 𝜇𝜈 ∈ 𝑃 . Now, let 𝜎, 𝜏 ∈ 𝑆 such that 𝜎 ≤ 𝜏 . Suppose 
𝜏 ∈ 𝑃 . By the hypothesis 𝑃

𝜒
𝐴

is an FBS left ideal over 𝑆, thus, we have

+
𝜒
𝑃
(𝜀)(𝜎) ≥ +

𝜒
𝑃
(𝜀)(𝜏) = 1, −

𝜒
𝑃
(𝜀)(𝜎) ≤ −

𝜒
𝑃
(𝜀)(𝜏) = 0.

Thus, it follows that

+
𝜒
𝑃
(𝜀)(𝜎) = 1, −

𝜒
𝑃
(𝜀)(𝜎) = 0,

which implies that 𝜎 ∈ 𝑃 . Therefore, 𝑃 is a left ideal of 𝑆 . In the same 
way, the other parts of the lemma are proved. □

In the following, we characterize left regular ordered semigroups by 
the FBS semiprimality of their FBS left ideals.

Proposition 4. The following assertions are equivalent on 𝑆.

(1) 𝑆 is left regular.

(2) Every FBS left ideal over 𝑆 is FBS semiprime.

Proof. Let’s first assume that Assertion (1) holds. Suppose that 𝜆𝐴 be an 
FBS left ideal over 𝑆 and 𝜎 ∈ 𝑆. Then, 𝜎 ≤ 𝑥𝜎2 for some 𝑥 ∈ 𝑆 because 
𝑆 is left regular. So, for all 𝜀 ∈𝐴, we have

+
𝜆(𝜀)(𝜎) ≥

+
𝜆(𝜀)(𝑥𝜎2) ≥

+
𝜆(𝜀)(𝜎2),

and

−
𝜆(𝜀)(𝜎) ≤

−
𝜆(𝜀)(𝑥𝜎2) ≤

−
𝜆(𝜀)(𝜎2).

Thus 𝜆𝐴 is semiprime and that Assertion (2) holds. Conversely, assume 
that Assertion (2) holds and let 𝜎 ∈ 𝑆. Since 𝐿(𝜎2) = (𝜎2 ∪ 𝑆𝜎2

]
is a left 

ideal of 𝑆 generated by 𝜎2, thus, by Lemma 1, the FBS characteristic 
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function 𝐿(𝜎
2)

𝜒
𝐴

of 𝐿(𝜎2) is an FBS left ideal over 𝑆. Then, by the hypothesis, 
𝐿(𝜎2)
𝜒
𝐴

is FBS semiprime. Thus 𝐿(𝜎2) is, by Theorem 1, semiprime. Further, 
since 𝜎2 ∈ 𝐿(𝜎2), we have 𝑎 ∈ 𝐿(𝜎2) = (𝜎2 ∪ 𝑆𝜎2

]
. This implies that 𝑎 ≤

𝜎2 or 𝑎 ≤ 𝑥𝜎2 for some 𝑥 ∈ 𝑆. If 𝜎 ≤ 𝜎2, then 𝜎 ≤ 𝜎2 = 𝜎𝜎 ≤ 𝜎𝜎2 ∈ 𝑆𝜎2

which implies that 𝜎 ∈ (𝑆𝜎2
]
. Similarly, if 𝜎 ≤ 𝑥𝜎2, we obtain 𝜎 ∈ (𝑆𝜎2

]
. 

Thus, 𝑆 is left regular, and that Assertion (1) holds. □

As an application of Proposition 4, we present the following exam-

ple.

Example 2. Consider the ordered semigroup 𝑆 = {𝜏0, 𝜏1, 𝜏2, 𝜏3} with the 
multiplication “⋅” and the order relation “≤” given below:

⋅ 𝜏0 𝜏1 𝜏2 𝜏3
𝜏0 𝜏2 𝜏2 𝜏2 𝜏2
𝜏1 𝜏2 𝜏2 𝜏2 𝜏2
𝜏2 𝜏2 𝜏2 𝜏2 𝜏2
𝜏3 𝜏0 𝜏1 𝜏2 𝜏3

≤= {(𝜏0, 𝜏0), (𝜏0, 𝜏2), (𝜏1, 𝜏1), (𝜏1, 𝜏2), (𝜏2, 𝜏2), (𝜏3, 𝜏3)}.

One can check that (𝑆, ⋅, ≤) is a left regular ordered semigroup.

Now, let 𝐸 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5} be a set of parameters and 𝐴 =
{𝜀1, 𝜀2, 𝜀3} be its subset. Further, let 𝑓 ∶ 𝐴 → 𝐸 be an injective func-

tion such that 𝑓 (𝜀1) = 𝜀1, 𝑓 (𝜀2) = 𝜀4, 𝑓 (𝜀3) = 𝜀5.

Let’s define an FBS left ideal 𝛤𝐴 over 𝑆 as follows:

+
𝛤 (𝜀1)(𝑥) =

{
0.6 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.4 if 𝑥 = 𝜏3,

+
𝛤 (𝜀2)(𝑥) =

{
0.5 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.3 if 𝑥 = 𝜏3,

+
𝛤 (𝜀3)(𝑥) =

{
0.4 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.2 if 𝑥 = 𝜏3,

−
𝛤 (𝜀1)(𝑥) =

{
0.3 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.5 if 𝑥 = 𝜏3,

−
𝛤 (𝜀4)(𝑥) =

{
0.3 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.5 if 𝑥 = 𝜏3,

−
𝛤 (𝜀5)(𝑥) =

{
0.4 if 𝑥 ∈ {𝜏0, 𝜏1, 𝜏2},
0.5 if 𝑥 = 𝜏3.

Then, by virtue of Proposition 4, we have 𝛤𝐴 is FBS semiprime. Inde-

pendently, one can check that 𝛤𝐴 is FBS semiprime.

To prove our next theorem, we need the following result:

Lemma 2. [36] Let 𝜎 ∈ 𝑆. Then (𝑆𝜎2
]

(resp., (𝜎2𝑆
]

is a left (resp., right) 
ideal of 𝑆.

Theorem 3. The following assertions are equivalent on 𝑆.

(1) 𝑆 is left regular.

(2) Every left ideal of 𝑆 is semiprime.

(3) Every FBS left ideal 𝜆𝐴 over 𝑆 is FBS semiprime.

(4) If 𝜆𝐴 is an FBS left ideal over 𝑆, then, for all 𝜀 ∈ 𝐴 and 𝑎 ∈ 𝑆,

+
𝜆(𝑎) =

+
𝜆(𝑎2),

−
𝜆(𝑎) =

−
𝜆(𝑎2).

(5) 𝑎 ∈𝐿(𝑎2) for every 𝑎 ∈ 𝑆.

(6) 𝐿(𝑎) = 𝐿(𝑎2) for every 𝑎 ∈ 𝑆.

Proof. First assume (1) holds. In order to prove that Assertion (2) holds, 
let 𝐿 be a left ideal of 𝑆 . Suppose 𝑎2 ∈𝐿, for some 𝑎 ∈ 𝑆. Then, since 𝑆
is left regular, we have 𝑎 ∈ (𝑆𝑎2

]
⊆ (𝑆𝐿] ⊆ (𝐿] =𝐿. Thus 𝐿 is semiprime 
5

and that Assertion (1) implies (2). Now, assume that (2) holds. Let 𝜆𝐴
be an FBS left ideal over 𝑆 and 𝑎 ∈ 𝑆. By Lemma 2, the set (𝑆𝑎2

]
is 

a left ideal of 𝑆. Then, by the hypothesis, (𝑆𝑎2
]

is semiprime. Since 
𝑎4 ∈ (𝑆𝑎2

]
, we have

𝑎2 ∈ (𝑆𝑎2
]
⇒ 𝑎 ∈ (𝑆𝑎2

]
.

Then 𝑎 ≤ 𝑥𝑎2 for some 𝑥 ∈ 𝑆. Thus, for all 𝜀 ∈𝐴, we have

+
𝜆(𝜀)(𝑎) ≥

+
𝜆(𝜀)(𝑥𝑎2) ≥

+
𝜆(𝜀)(𝑎2),

and

−
𝜆(𝜀)(𝑎) ≤

−
𝜆(𝜀)(𝑥𝑎2) ≤

−
𝜆(𝜀)(𝑎2).

Therefore, 𝜆𝐴 is FBS semiprime and that Assertion (2) implies (3). Next, 
assume that (3) holds. Let 𝜆𝐴 be a FBS left ideal over 𝑆. Let 𝑎 ∈ 𝑆 and 
𝜀 ∈𝐴. Since, by the hypothesis, 𝜆𝐴 is FBS semiprime, then

+
𝜆(𝜀)(𝑎) ≥

+
𝜆(𝜀)(𝑎2) ≥

+
𝜆(𝜀)(𝑎),

and

−
𝜆(𝜀)(𝑎) ≤

−
𝜆(𝜀)(𝑎2) ≤

−
𝜆(𝜀)(𝑎).

Therefore, we obtain

+
𝜆(𝜀)(𝑎) =

+
𝜆(𝜀)(𝑎2),

−
𝜆(𝜀)(𝑎) =

−
𝜆(𝜀)(𝑎2).

Thus Assertion (3) implies (4). Now, assume that (4) holds. Let 𝑎 ∈ 𝑆

and 𝜀 ∈ 𝐴. Since 𝐿(𝑎2) is a left ideal of 𝑆, thus, by Lemma 1, the FBS 
characteristic function 𝐿(𝑎

2)
𝜒
𝐴

of 𝐿(𝑎2) is an FBS left ideal over 𝑆. Then, by 
the hypothesis, we have

+
𝜒
𝐿(𝑎2)

(𝜀)(𝑎) = +
𝜒
𝐿(𝑎2)

(𝜀)(𝑎2) = 1,
−
𝜒
𝐿(𝑎2)

(𝜀)(𝑎) = −
𝜒
𝐿(𝑎2)

(𝜀)(𝑎2) = 0.

This implies that 𝑎 ∈ 𝐿(𝑎2) and that Assertion (4) implies (5). Now, as-

sume that Assertion (5) holds. Let 𝑎 ∈ 𝑆. Then, we have

𝑎 ∈𝐿(𝑎2) = (𝑎2 ∪ 𝑆𝑎2
]
⊆ (𝑆𝑎] ⊆𝐿(𝑎) ⊆ 𝐿(𝑎2).

Thus, we obtain 𝐿(𝑎) = 𝐿(𝑎2) and that (5) implies (6). Finally, assume 
that (6) holds. Let 𝑎 ∈ 𝑆. Then, we have

𝑎 ∈𝐿(𝑎) =𝐿(𝑎2) = (𝑎2 ∪𝑆𝑎2
]
.

Further,

𝑎2 ∈ (𝑎2 ∪𝑆𝑎2
]
(𝑎] ⊆ (𝑎3 ∪𝑆𝑎3

]
⊆ (𝑆𝑎2

]
.

Thus, we have

𝑎 ∈ ( (𝑆𝑎2
]
∪ 𝑆𝑎2

]
⊆ ( (𝑆𝑎2

]]
= (𝑆𝑎2

]
.

Thus, 𝑆 is left regular and that Assertion (6) implies (1). The proof of 
the theorem is completed. □

In a similar fashion, in the following, right regular ordered semi-

groups are characterized by FBS semiprimality of their FBS right ideals.

Proposition 5. The following assertions are equivalent on 𝑆.

(1) 𝑆 is right regular.

(2) Every FBS right ideal over 𝑆 is FBS semiprime.

Proof. It is straightforward. □

As an application of Proposition 5, we display the following exam-

ple.
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Example 3. Consider the ordered semigroup 𝑆 = {𝜏0, 𝜏1, 𝜏2, 𝜏3} with the 
multiplication “⋅” and the order relation “≤” given below:

⋅ 𝜏0 𝜏1 𝜏2 𝜏3
𝜏0 𝜏0 𝜏0 𝜏0 𝜏0
𝜏1 𝜏0 𝜏1 𝜏1 𝜏3
𝜏2 𝜏0 𝜏1 𝜏1 𝜏3
𝜏3 𝜏0 𝜏1 𝜏1 𝜏3

≤= {(𝜏0, 𝜏0), (𝜏1, 𝜏1), (𝜏1, 𝜏3), (𝜏2, 𝜏2), (𝜏2, 𝜏3), (𝜏3, 𝜏3)}.

One can check that (𝑆, ⋅, ≤) is a right regular ordered semigroup.

Now, let 𝐸 =𝑍4 = {0, 1, 2, 3} be a set of parameters, 𝐴 = {0, 2} be its 
subset and 𝑓 ∶ 𝐴 → 𝐸 be an injective function given by 𝑓 (𝜀) = 𝜀−1, for 
all 𝜀 ∈𝐴. Let’s define an FBS right ideal 𝛤𝐴 over 𝑆 as follows:

+
𝛤 (0)(𝑥) =

{
0.4 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏3},
0.6 if 𝑥 = 𝜏0,

+
𝛤 (2)(𝑥) =

{
0.2 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏3},
0.5 if 𝑥 = 𝜏0,

−
𝛤 (0)(𝑥) =

{
0.5 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏3},
0.3 if 𝑥 = 𝜏0,

−
𝛤 (2)(𝑥) =

{
0.6 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏3},
0.3 if 𝑥 = 𝜏0.

Then, by Proposition 5, we have 𝛤𝐴 is FBS semiprime. One can check 
independently that 𝛤𝐴 is FBS semiprime.

The left-right dual of Theorem 3 holds which is formulated as fol-

lows:

Theorem 4. The following assertions are equivalent on 𝑆.

(1) 𝑆 is right regular.

(2) Every right ideal of 𝑆 is semiprime.

(3) Every FBS right 𝜆𝐴 over 𝑆 is FBS semiprime.

(4) If 𝜆𝐴 is a FBS right ideal over 𝑆, then, for all 𝜀 ∈𝐴 and 𝜎 ∈ 𝑆,

+
𝜆(𝜎) =

+
𝜆(𝜎2),

−
𝜆(𝜎) =

−
𝜆(𝜎2).

(5) 𝜎 ∈𝑅(𝜎2) for every 𝜎 ∈ 𝑆.

(6) 𝑅(𝜎) =𝑅(𝜎2) for every 𝜎 ∈ 𝑆.

4. Characterization of completely (resp., intra-regular) ordered 
semigroups by fuzzy bipolar soft semiprimality

In this section, we characterize completely regular (resp., intra-

regular) ordered semigroups in terms of FBS semiprime (left, right) 
ideals. An ordered semigroup 𝑆 is called completely regular if it is at the 
same time left regular, right regular and regular. Similarly, 𝑆 is called 
intra-regular if for every 𝑥 ∈ 𝑆 there exist 𝑎, 𝑏 ∈ 𝑆 such that 𝑥 ≤ 𝑎𝑥2𝑏

i.e., 𝑥 ∈ (𝑆𝑥2𝑆
]

or 𝐴 ⊆ (𝑆𝐴2𝑆
]

for all 𝐴 ⊆ 𝑆 [36, 37, 38].

Lemma 3. [36] An ordered semigroup 𝑆 is completely regular if and only 
if, for every 𝑎 ∈ 𝑆, we have 𝑎 ∈ (𝑎2𝑆𝑎2

]
.

In the following proposition, completely regular ordered semigroups 
are characterized by FBS semiprimality of their left (resp., right) ideals.

Proposition 6. Let 𝜆𝐴 be an FBS left (resp., right) ideal over 𝑆. If 𝑆 is 
completely regular, then 𝜆𝐴 is FBS semiprime.

Proof. Let 𝜆𝐴 be an FBS left ideal over 𝑆 and 𝜎 ∈ 𝑆. Then, since 𝑆 is 
completely regular, there exists an element 𝑥 in 𝑆 such that 𝜎 ≤ 𝜎2𝑥𝜎2. 
So, for all 𝜀 ∈𝐴, we have
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+
𝜆(𝜀)(𝜎) ≥

+
𝜆(𝜀)(𝜎2𝑥𝜎2) ≥

+
𝜆(𝜀)(𝑥𝜎2) ≥

+
𝜆(𝜀)(𝜎2),

and

−
𝜆(𝜀)(𝜎) ≤

−
𝜆(𝜀)(𝜎2𝑥𝜎2) ≤

−
𝜆(𝜀)(𝑥𝜎2) ≤

−
𝜆(𝜀)(𝜎2).

Thus 𝜆𝐴 is FBS semiprime. □

The combined effect of Proposition 6 is formulated as follows:

Proposition 7. Let 𝜆𝐴 be an FBS ideal over 𝑆. If 𝑆 is completely regular, 
then 𝜆𝐴 is FBS semiprime.

Similarly, the following proposition is established.

Proposition 8. Let 𝜆𝐴 be an FBS left (resp., right) ideal over 𝑆. If 𝑆 is 
completely regular, then < 𝑥, 𝜆𝐴 > is FBS semiprime.

The combined effect of Proposition 8 is formulated as follows:

Proposition 9. Let 𝜆𝐴 be an FBS ideal over 𝑆. If 𝑆 is completely regular, 
then < 𝑥, 𝜆𝐴 > is FBS semiprime, for all 𝑥 ∈ 𝑆.

As an explanation of Proposition 9, we incorporate the following 
example.

Example 4. Consider the ordered semigroup 𝑆 = {0, 𝑎, 𝑏, 𝑐, 𝑑} with the 
multiplication “⋅” and the order relation “≤” given below:

⋅ 0 𝑎 𝑏 𝑐 𝑑

0 0 0 0 0 0
𝑎 0 𝑎 𝑏 𝑏 𝑑

𝑏 0 𝑏 𝑏 𝑏 𝑏

𝑐 0 𝑏 𝑏 𝑏 𝑏

𝑑 0 𝑑 𝑏 𝑏 𝑑

≤= {(0, 0), (𝑎, 𝑎), (𝑎, 𝑑), (𝑏, 𝑏), (𝑐, 𝑐), (𝑐, 𝑏), (𝑑, 𝑑)}

One can check, by routine calculations, that 𝑆 is completely regular 
ordered semigroup.

Suppose 𝐴 =𝐸 = {𝜀1, 𝜀2, 𝜀3} be a set of parameters and 𝑓 ∶𝐴 →𝐴 be 
an identity function. Let 𝜆𝐴 be an FBS set over 𝑆 that is defined, for all 
𝑥 ∈ 𝑆, as follows:

+
𝜆(𝜀1)(𝑥) =

{
0.5 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.3 if 𝑥 ∈ {𝑎, 𝑑},

+
𝜆(𝜀2)(𝑥) =

{
0.6 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.4 if 𝑥 ∈ {𝑎, 𝑑},

+
𝜆(𝜀3)(𝑥) =

{
0.4 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.3 if 𝑥 ∈ {𝑎, 𝑑},

−
𝜆(𝜀1)(𝑥) =

{
0.4 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.6 if 𝑥 ∈ {𝑎, 𝑑},

−
𝜆(𝜀2)(𝑥) =

{
0.3 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.5 if 𝑥 ∈ {𝑎, 𝑑},

−
𝜆(𝜀3)(𝑥) =

{
0.4 if 𝑥 ∈ {0, 𝑏, 𝑐},
0.5 if 𝑥 ∈ {𝑎, 𝑑}.

Then 𝜆𝐴 is an FBS ideal over 𝑆 which is, by Proposition 7, FBS 
semiprime. Next, we define the FBS extension < 𝑦, 𝜆𝐴 > of 𝜆𝐴, for all 
𝑦 ∈ 𝑆. For this, let 𝑦 be any element in {0, 𝑏, 𝑐}. Then, < 𝑦, 𝜆𝐴 > is de-

fined, for all 𝑥 ∈ 𝑆, as follows:

< 𝑦,
+
𝜆 > (𝜀1)(𝑥) = 0.5, < 𝑦,

−
𝜆 > (𝜀1)(𝑥) = 0.4,
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< 𝑦,
+
𝜆 > (𝜀2)(𝑥) = 0.6, < 𝑦,

−
𝜆 > (𝜀2)(𝑥) = 0.3,

< 𝑦,
+
𝜆 > (𝜀3)(𝑥) = 0.4, < 𝑦,

−
𝜆 > (𝜀3)(𝑥) = 0.4.

Then, obviously, < 𝑦, 𝜆𝐴 > is FBS semiprime. Next, let 𝑦 be any element 
in {𝑎, 𝑑}. Then < 𝑦, 𝜆𝐴 > coincides with 𝜆𝐴. Since 𝜆𝐴 is FBS semiprime, 
then so is < 𝑦, 𝜆𝐴 >. Thus, for any 𝑦 ∈ 𝑆, we find that < 𝑦, 𝜆𝐴 > is FBS 
semiprime. Therefore, we conclude that Proposition 9 stands valid.

The following characterization of an intra-regular ordered semi-

group, in terms of semiprimality and fuzzy semiprimality, is due to 
Theorems 23 and 24 of N. Kehayopulu [39].

Lemma 4. Let 𝑆 be an ordered semigroup. Then

(1) 𝑆 is intra-regular if and only if every ideal of 𝑆 is semiprime.

(2) 𝑆 is intra-regular if and only if every fuzzy ideal of 𝑆 is fuzzy 
semiprime.

In connection with Lemma 4, we note that its Part (2) is the fuzzy 
analogue of its Part (1). Now, in the following, we will give a charac-

terization of intra-regular ordered semigroups by FBS semiprimality.

Theorem 5. The following conditions are equivalent on 𝑆:

(1) 𝑆 is intra-regular.

(2) Every FBS ideal 𝜆𝐴 over 𝑆 is FBS semiprime.

Proof. First assume that 𝑆 is intra-regular. Let 𝜆𝐴 be an FBS ideal over 
𝑆 and 𝜎 any element in 𝑆. Then, 𝜎 ≤ 𝑥𝜎2𝑦 for some 𝑥, 𝑦 ∈ 𝑆 because 𝑆
is intra-regular. Thus, for all 𝜀 ∈𝐴, we have

+
𝜆(𝜀)(𝜎) ≥

+
𝜆(𝜀)(𝑥𝜎2𝑦) ≥

+
𝜆(𝜀)(𝜎2𝑦) ≥

+
𝜆(𝜀)(𝜎2),

and

−
𝜆(𝜀)(𝜎) ≤

−
𝜆(𝜀)(𝑥𝜎2𝑦) ≤

−
𝜆(𝜀)(𝜎2𝑦) ≤

−
𝜆(𝜀)(𝜎2).

Thus Condition (1) implies (2). Conversely, assume that 𝜆𝐴 is an FBS 
ideal over 𝑆. We consider the ideal 𝐼(𝜎2) of 𝑆 generated by 𝜎2 i.e., the 
set

𝐼(𝜎2) = (𝜎2 ∪ 𝑆𝜎2 ∪ 𝜎2𝑆 ∪𝑆𝜎2𝑆
]
.

By Lemma 1, the FBS characteristic function 𝐼(𝜎
2)

𝜒
𝐴

of 𝐼(𝜎2) is an FBS ideal 

over 𝑆. Then, by the assumption, 𝐼(𝜎
2)

𝜒
𝐴

is FBS semiprime. So, for all 𝜀 ∈𝐴, 
we have

+
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) ≥ +
𝜒
𝐼(𝜎2)

(𝜀)(𝜎2),

and

−
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) ≤ −
𝜒
𝐼(𝜎2)

(𝜀)(𝜎2).

Since 𝜎2 ∈ 𝐼(𝜎2), thus, for all 𝜀 ∈𝐴, we have

+
𝜒
𝐼(𝜎2)

(𝜀)(𝜎2) = 1, −
𝜒
𝐼(𝑎2)

(𝜀)(𝜎2) = 0.

Thus, we get

+
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) = 1, −
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) = 0.

Consequently, 𝜎 ∈ 𝐼(𝜎2). If 𝜎 ≤ 𝜎2, then

𝜎 ≤ 𝜎𝜎 ≤ 𝜎2𝜎2 = 𝜎𝜎2𝜎 ∈ 𝑆𝜎2𝑆,

which implies that 𝜎 ∈ (𝑆𝜎2𝑆
]
. If 𝜎 ≤ 𝑥𝜎2, then

𝜎 ≤ 𝑥𝜎2 = 𝑥𝜎𝜎 ≤ 𝑥𝜎2𝜎 ∈ 𝑆𝜎2𝑆,
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which implies that 𝜎 ∈ (𝑆𝜎2𝑆
]
. Similarly, if 𝜎 ≤ 𝜎2𝑥 or 𝜎 ≤ 𝑥𝜎2𝑦, we 

obtain

𝜎 ∈ (𝑆𝜎2𝑆
]
.

Therefore, 𝑆 is intra-regular and that Condition (2) implies (1). The 
proof of the theorem is completed. □

As an application of Theorem 5, we present the following example.

Example 5. Consider the ordered semigroup 𝑆 with the multiplication 
“⋅” and the order relation “≤” given as in Example 1:

Then one can check, by simple calculations, that 𝑆 is intra-regular.

Let 𝐸 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6, 𝜀7} be a set of parameters and 𝐴 =
{𝜀2, 𝜀4, 𝜀6} be its subset. Let 𝑓 ∶ 𝐴 → 𝐸 be an injective function such 
that 𝑓 (𝜀2) = 𝜀3, 𝑓 (𝜀4) = 𝜀5, 𝑓 (𝜀6) = 𝜀7. Consider an FBS set 𝜆𝐴 over 𝑆
which is defined as follows:

+
𝜆(𝜀2)(𝑥) =

⎧⎪⎨⎪⎩
0.5 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.6 if 𝑥 = 𝜏0,

0.3 if 𝑥 = 𝜏3,

+
𝜆(𝜀4)(𝑥) =

⎧⎪⎨⎪⎩
0.4 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.5 if 𝑥 = 𝜏0,

0.3 if 𝑥 = 𝜏3,

+
𝜆(𝜀6)(𝑥) =

⎧⎪⎨⎪⎩
0.3 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.4 if 𝑥 = 𝜏0,

0.2 if 𝑥 = 𝜏3,

−
𝜆(𝜀3)(𝑥) =

⎧⎪⎨⎪⎩
0.4 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.2 if 𝑥 = 𝜏0,

0.5 if 𝑥 = 𝜏3,

−
𝜆(𝜀5)(𝑥) =

⎧⎪⎨⎪⎩
0.3 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.2 if 𝑥 = 𝜏0,

0.4 if 𝑥 = 𝜏3,

−
𝜆(𝜀7)(𝑥) =

⎧⎪⎨⎪⎩
0.5 if 𝑥 ∈ {𝜏1, 𝜏2, 𝜏4},
0.4 if 𝑥 = 𝜏0,

0.7 if 𝑥 = 𝜏3.

Then 𝜆𝐴 is an FBS ideal over 𝑆. By virtue of Theorem 5, we have 𝜆𝐴 is 
FBS semiprime. Independently, one can check that 𝜆𝐴 is FBS semiprime.

To prove our next theorem, we need the following result:

Lemma 5. [36] Let 𝑎 ∈ 𝑆. Then (𝑆𝑎2𝑆
]

is a two-sided ideal of 𝑆.

In the following, we give a characterization of intra-regular ordered 
semigroups by means of principal ideals, FBS ideals, and by semipri-

mality (resp., FBS semiprimality) of their ideals (resp., FBS ideals).

Theorem 6. The following conditions are equivalent on 𝑆.

1) 𝑆 is intra-regular.

2) If 𝜆𝐴 is an FBS ideal over 𝑆, then, for all 𝜀 ∈𝐴 and 𝜎 ∈ 𝑆,

+
𝜆(𝜀)(𝜎) =

+
𝜆(𝜀)(𝜎2),

+
𝜆(𝜀)(𝜎) =

+
𝜆(𝜀)(𝜎2).

3) 𝜎 ∈ 𝐼(𝜎2) for all 𝜎 ∈ 𝑆.

4) 𝐼(𝜎) = 𝐼(𝜎2) for all 𝜎 ∈ 𝑆.

5) Every ideal of 𝑆 is semiprime.

6) Every FBS ideal over 𝑆 is FBS semiprime.
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Proof. First, assume that 𝑆 is intra-regular. Let 𝜆𝐴 be an FBS ideal over 
𝑆 and 𝜎 ∈ 𝑆. Then, 𝜎 ≤ 𝑥𝜎2𝑦 for some 𝑥, 𝑦 ∈ 𝑆 because 𝑆 is intra-regular. 
So, for all 𝜀 ∈𝐴, we have

+
𝜆(𝜀)(𝜎) ≥

+
𝜆(𝜀)(𝑥𝜎2𝑦) ≥

+
𝜆(𝜀)(𝜎2𝑦) ≥

+
𝜆(𝜀)(𝜎2) ≥

+
𝜆(𝜀)(𝜎),

and

−
𝜆(𝜀)(𝜎) ≤

−
𝜆(𝜀)(𝑥𝜎2𝑦) ≤

−
𝜆(𝜀)(𝜎2𝑦) ≤

−
𝜆(𝜀)(𝜎2) ≤

−
𝜆(𝜀)(𝜎).

Thus Condition (1) implies (2). Now, assume Condition (2) holds. Let 
𝜎 ∈ 𝑆 and 𝜀 ∈ 𝐴. The set 𝐼(𝜎2) is an ideal of 𝑆. Thus, by Lemma 1, the 
FBS characteristic function 𝐼(𝜎

2)
𝜒
𝐴

of 𝐼(𝜎2) is an FBS ideal over 𝑆. Further, 
by the hypothesis, we have

+
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) = +
𝜒
𝐼(𝜎2)

(𝜀)(𝜎2) = 1,

and

−
𝜒
𝐼(𝜎2)

(𝜀)(𝜎) = −
𝜒
𝐼(𝜎2)

(𝜀)(𝜎2) = 0,

which implies that 𝜎 ∈ 𝐼(𝜎2). Hence, Condition (2) implies (3). Now, let 
Condition (3) holds. Let 𝜎 ∈ 𝑆. Then, since 𝜎 ∈ 𝐼(𝜎2), we have

𝐼(𝜎) ⊆ 𝐼(𝜎2)

= (𝜎2 ∪𝑆𝜎2 ∪ 𝜎2𝑆 ∪ 𝑆𝜎2𝑆
]

⊆ (𝑆𝜎 ∪ 𝜎𝑆 ∪ 𝑆𝜎𝑆] ⊆ 𝐼(𝜎).

Thus 𝐼(𝜎) = 𝐼(𝜎2) and that (3) implies (4). Now, assume Condition (4)
holds. Let 𝜎 ∈ 𝑆. Suppose 𝑃 be an ideal of 𝑆 such that 𝜎2 ∈ 𝑃 . Then, by 
the hypothesis, we have

𝜎 ∈ 𝐼(𝜎) = 𝐼(𝜎2) ⊆ 𝑃 ,

which implies that 𝑃 is semiprime and that Condition (4) implies (5). 
Next, assume that Condition (5) holds. Suppose 𝜀 ∈𝐴 and 𝜎 ∈ 𝑆. Let 𝜆𝐴
be an FBS ideal over 𝑆. By Lemma 5, the set (𝑆𝜎2𝑆

]
is an ideal of 𝑆

and, by the hypothesis, it is semiprime. Since 𝜎4 ∈ (𝑆𝜎2𝑆
]
, then

𝜎2 ∈ (𝑆𝜎2𝑆
]
⇒ 𝜎 ∈ (𝑆𝜎2𝑆

]
.

This means that 𝜎 ≤ 𝑥𝜎2𝑦 for some 𝑥, 𝑦 ∈ 𝑆. Further, since 𝜆𝐴 is an FBS 
ideal over 𝑆, we have

+
𝜆(𝜀)(𝜎) ≥

+
𝜆(𝜀)(𝑥𝜎2𝑦) ≥

+
𝜆(𝜀)(𝜎2),

and

−
𝜆(𝜀)(𝜎) ≥

−
𝜆(𝜀)(𝑥𝜎2𝑦) ≤

−
𝜆(𝜀)(𝜎2).

Therefore, 𝜆𝐴 is semiprime and that Condition (5) implies (6). Finally, 
let Condition (6) holds. Then 𝑆 is, by Theorem 5, intra-regular and that 
Condition (1) holds. The proof of the theorem is completed. □

To elaborate Theorem 6, we display the following example:

Example 6. Consider the ordered semigroup 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑓} with the 
multiplication “⋅” and the order relation “≤” given as follows:

⋅ 𝑎 𝑏 𝑐 𝑑 𝑓

𝑎 𝑏 𝑎 𝑎 𝑎 𝑎

𝑏 𝑎 𝑏 𝑏 𝑏 𝑏

𝑐 𝑎 𝑏 𝑏 𝑏 𝑏

𝑑 𝑎 𝑏 𝑏 𝑑 𝑑

𝑓 𝑎 𝑏 𝑐 𝑑 𝑓

≤= {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑐, 𝑏), (𝑑, 𝑑), (𝑓, 𝑓 ), (𝑓, 𝑑)}.
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Then 𝑆 is intra-regular ordered semigroup [37].

Let 𝐸 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5} be a set of parameters and 𝐴 = {𝜀1, 𝜀2} such 
that 𝑓 ∶ 𝐴 → 𝐸 be an injective function given by 𝑓 (𝜀1) = 𝜀3, 𝑓 (𝜀2) = 𝜀4. 
Further, let 𝜆𝐴 be an FBS ideal over 𝑆 defined as follows:

+
𝜆(𝜀1)(𝑥) =

{
0.5 if 𝑥 ∈ {𝑎, 𝑏, 𝑐},
0.3 if 𝑥 ∈ {𝑑,𝑓},

+
𝜆(𝜀2)(𝑥) =

{
0.6 if 𝑥 ∈ {𝑎, 𝑏, 𝑐},
0.4 if 𝑥 ∈ {𝑑,𝑓},

−
𝜆(𝜀3)(𝑥) =

{
0.4 if 𝑥 ∈ {𝑎, 𝑏, 𝑐},
0.6 if 𝑥 ∈ {𝑑,𝑓},

−
𝜆(𝜀4)(𝑥) =

{
0.3 if 𝑥 ∈ {𝑎, 𝑏, 𝑐},
0.5 if 𝑥 ∈ {𝑑,𝑓}.

Moreover, we define the following principal ideals of 𝑆:

𝐼(𝑎) = 𝐼(𝑎2) = {𝑎, 𝑏, 𝑐},

𝐼(𝑏) = 𝐼(𝑏2) = {𝑎, 𝑏, 𝑐},

𝐼(𝑐) = 𝐼(𝑐2) = {𝑎, 𝑏, 𝑐},

𝐼(𝑑) = 𝐼(𝑑2) = 𝑆,

𝐼(𝑓 ) = 𝐼(𝑓 2) = 𝑆.

Then, we note the following:

(1) 𝑆 is intra-regular.

(2) For all 𝜀 ∈𝐴 and 𝜎 ∈ 𝑆, we have

+
𝜆(𝜀)(𝜎) =

+
𝜆(𝜀)(𝜎2),

+
𝜆(𝜀)(𝜎) =

+
𝜆(𝜀)(𝜎2).

(3) 𝜎 ∈ 𝐼(𝜎2) for all 𝜎 ∈ 𝑆.

(4) 𝐼(𝜎) = 𝐼(𝜎2) for all 𝜎 ∈ 𝑆.

(5) The ideals of 𝑆 are {𝑎, 𝑏, 𝑐} and 𝑆, which are both semiprime.

(6) Finally, 𝜆𝐴 is FBS semiprime ideal over 𝑆.

The following propositions can be easily proved.

Proposition 10. Let 𝑆 be intra-regular and commutative and 𝜆𝐴 be an FBS 
ideal over 𝑆. Then < 𝑥, 𝜆𝐴 > is FBS semiprime, for all 𝑥 ∈ 𝑆.

Proposition 11. Let 𝜆𝐴 be an FBS bi-ideal over 𝑆. If 𝑆 is completely regu-

lar, then 𝜆𝐴 is FBS semiprime.

Proposition 12. Let 𝑆 be completely regular and commutative and 𝜆𝐴 be 
an FBS bi-ideal over 𝑆. Then < 𝑥, 𝜆𝐴 > is FBS semiprime, for all 𝑥 ∈ 𝑆.

Lemma 6. [36] The set (𝜎2𝑆𝜎2
]

is a bi-ideal of 𝑆 for every 𝜎 ∈ 𝑆.

Lemma 7. Let 𝜙 ≠ 𝑃 ⊆ 𝑆 . Then, the following assertions are equivalent.

(1) 𝑃 is a bi-ideal of 𝑆.

(2) The FBS characteristic function 𝑃
𝜒𝐴 of 𝑃 is an FBS bi-ideal over 𝑆.

Proof. It is straightforward. □

The following characterization of completely regular ordered semi-

groups, in terms of their principal bi-ideals, semiprimality of their 
bi-ideals and fuzzy semiprimality of their fuzzy bi-ideals, is due to The-

orem 10 of N. Kehayopulu [36].

Lemma 8. The following assertions are equivalent on 𝑆.

(1) 𝑆 is completely regular.
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(2) Every bi-ideal of 𝑆 is semiprime.

(3) Every fuzzy bi-ideal of 𝑆 is fuzzy semiprime.

(4) 𝑎 ∈ 𝐵(𝑎2) for every 𝑎 ∈ 𝑆.

(5) 𝐵(𝑎) = 𝐵(𝑎2) for every 𝑎 ∈ 𝑆.

Now, in the following, we will give a characterization of completely 
regular ordered semigroups by replacing fuzzy semiprimality of their 
bi-ideals by FBS semiprimality of their bi-ideals in Lemma 8. Thus, we 
establish the following theorem:

Theorem 7. The following assertions are equivalent on 𝑆.

(1) 𝑆 is completely regular.

(2) Every bi-ideal of 𝑆 is semiprime.

(3) Every FBS bi-ideal 𝜆𝐴 over 𝑆 is FBS semiprime.

(4) 𝑎 ∈ 𝐵(𝑎2) for every 𝑎 ∈ 𝑆.

(5) 𝐵(𝑎) = 𝐵(𝑎2) for every 𝑎 ∈ 𝑆.

Proof. First, assume that 𝑆 is completely regular. In order to prove that 
(2) holds, let 𝐵 be a bi-ideal of 𝑆. Suppose that 𝑎 ∈ 𝑆 such that 𝑎2 ∈ 𝐵. 
Since 𝑆 is completely regular, thus, by Lemma 3, we have

𝑎 ∈ (𝑎2𝑆𝑎2
]
⊆ (𝐵𝑆𝐵] ⊆ (𝐵] = 𝐵.

Thus 𝐵 is semiprime and that Condition (1) implies (2). Now, assume 
that (2) holds. In order to prove that (3) holds, let 𝜆𝐴 be an FBS bi-ideal 
over 𝑆 and 𝑎 ∈ 𝑆. By Lemma 6, the set (𝑎2𝑆𝑎2

]
is a bi-ideal of 𝑆. Then, 

by the hypothesis, (𝑎2𝑆𝑎2
]

is semiprime. Moreover, we have

(𝑎4)2 = 𝑎8 ∈ (𝑎2𝑆𝑎2
]
,

(𝑎2)2 = 𝑎4 ∈ (𝑎2𝑆𝑎2
]
,

𝑎2 ∈ (𝑎2𝑆𝑎2
]
,

which implies 𝑎 ∈ (𝑎2𝑆𝑎2
]
. This further implies that 𝑎 ≤ 𝑎2𝑥𝑎2, for some 

𝑥 ∈ 𝑆 . Then, since 𝜆𝐴 is an FBS bi-ideal over 𝑆, thus we have, for all 
𝜀 ∈𝐴,

+
𝜆(𝜀)(𝑎) ≥

+
𝜆(𝜀)(𝑎2𝑥𝑎2)

≥min{
+
𝜆(𝜀)(𝑎2),

+
𝜆(𝜀)(𝑎2)}

=
+
𝜆(𝜀)(𝑎2),

and

−
𝜆(𝜀)(𝑎) ≤

−
𝜆
𝐴
(𝜀)(𝑎2𝑥𝑎2)

≤max{
−
𝜆(𝜀)(𝑎2),

−
𝜆(𝜀)(𝑎2)}

=
−
𝜆(𝜀)(𝑎2).

Therefore, 𝜆𝐴 is FBS semiprime and that (2) implies (3). Next, assume 
that (3) holds. Let 𝜀 ∈ 𝐴 and 𝑎 ∈ 𝑆. Let’s consider the bi-ideal 𝐵(𝑎2) =
(𝑎2 ∪ 𝑎2𝑆𝑎2

]
of 𝑆 that is generated by 𝑎2. Then, by Lemma 7, the FBS 

characteristic function 𝐵(𝑎
2)

𝜒
𝐴

of 𝐵(𝑎2) is an FBS bi-ideal over 𝑆. Then, by 

the hypothesis, 𝐵(𝑎
2)

𝜒
𝐴

is FBS semiprime. So, we have

+
𝜒
𝐵(𝑎2)

(𝜀)(𝑎) ≥ +
𝜒
𝐵(𝑎2)

(𝜀)(𝑎2), −
𝜒
𝐵(𝑎2)

(𝜀)(𝑎) ≤ −
𝜒
𝐵(𝑎2)

(𝜀)(𝑎2),

and, since 𝑎2 ∈ 𝐵(𝑎2), we have

+
𝜒
𝐵(𝑎2)

(𝜀)(𝑎2) = 1, −
𝜒
𝐵(𝑎2)

(𝜀)(𝑎2) = 0.

Therefore, it follows that

+
𝜒
𝐵(𝑎2)

(𝜀)(𝑎) = 1, −
𝜒
𝐵(𝑎2)

(𝜀)(𝑎) = 0,

which implies that 𝑎 ∈ 𝐵(𝑎2) and that (3) implies (4). Further, assume 
that (4) holds and 𝑎 ∈ 𝑆. Then, by the hypothesis, we have
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𝑎 ∈𝐵(𝑎) ⊆ 𝐵(𝑎2) = (𝑎2 ∪ 𝑎2𝑆𝑎2
]
.

Next, we have

𝑎2 ∈ (𝑎2 ∪ 𝑎2𝑆𝑎2
]
(𝑎]

⊆ (𝑎2 ∪ 𝑎2𝑆𝑎2)𝑎
]

= (𝑎3 ∪ 𝑎2𝑆𝑎3
]

⊆ (𝑎𝑆𝑎] ⊆ (𝑎 ∪ 𝑎𝑆𝑎] = 𝐵(𝑎),

which implies that 𝐵(𝑎2) ⊆ 𝐵(𝑎). Thus, we obtain 𝐵(𝑎) = 𝐵(𝑎2) and that 
(4) implies (5). Finally, assume that (5) holds and 𝑎 ∈ 𝑆. So, by the 
hypothesis, we have

𝑎 ∈𝐵(𝑎) ⊆ 𝐵(𝑎2) = (𝑎2 ∪ 𝑎2𝑆𝑎2
]
.

If 𝑎 ≤ 𝑎2, then

𝑎𝑎 ≤ 𝑎2𝑎2 = 𝑎𝑎𝑎2 ≤ 𝑎2𝑎𝑎2.

Replacing 𝑎 by 𝑥, we obtain 𝑎 ≤ 𝑎2𝑥𝑎2. Thus, 𝑆 is completely regular 
and that (5) implies (1). Thus the theorem follows. □

5. The Cartesian product of fuzzy bipolar soft semiprime (resp., 
prime) ideals over ordered semigroups

In this section, we consider the Cartesian product of two FBS 
semiprime (resp., prime) ideals over 𝑆. We show that the Cartesian 
product of two FBS semiprime (resp., prime) ideals over 𝑆 is an FBS 
semiprime (resp., prime) ideal over 𝑆 ×𝑆.

Definition 12. Let 𝜆𝐴 and 𝛿𝐴 be FBS sets over 𝑆, and

𝑔 ∶𝐴 ×𝐴→ 𝑓 (𝐴) × 𝑓 (𝐴)

be an injective mapping defined by 𝑔(𝛼, 𝛽) = (𝑓 (𝛼), 𝑓 (𝛽)), for all (𝛼, 𝛽)
in 𝐴 × 𝐴. Then, the Cartesian product of 𝜆𝐴 and 𝛿𝐴 is an FBS set 𝛾𝛬
over 𝑆 × 𝑆, where 𝛬 = 𝐴 × 𝐴, which is defined in terms of its fuzzy 
approximate functions as follows:

+
𝛾(𝛼, 𝛽) =

+
𝜆(𝛼) ∧

+
𝛿(𝛽),

and

−
𝛾(𝛼, 𝛽) =

−
𝜆(𝛼) ∨

−
𝛿(𝛽),

for all (𝛼, 𝛽) ∈𝛬. We denote 𝛾𝛬 = 𝜆𝐴 × 𝛿𝐴, where +𝛾 =
+
𝜆 ×

+
𝛿 and −𝛾 =

−
𝜆 ×

−
𝛿. 

Here, the symbols ∧ and ∨ respectively represent fuzzy intersection and 
fuzzy union. Further, we note that

+
𝛾(𝛼, 𝛽)((𝑥, 𝑦)) = min{

+
𝜆(𝛼)(𝑥),

+
𝛿(𝛽)(𝑦)},

and

−
𝛾(𝛼, 𝛽)((𝑥, 𝑦)) = max{

−
𝜆(𝛼)(𝑥),

−
𝛿(𝛽)(𝑦)},

for all (𝛼, 𝛽) ∈𝛬 and (𝑥, 𝑦) ∈ 𝑆 × 𝑆.

Definition 13. Let 𝜆𝐴 and 𝛿𝐴 be FBS sets over 𝑆. For each (𝛼, 𝛽) ∈𝐴 ×𝐴

and the real numbers 𝑟 ∈ (0, 1], 𝑡 ∈ [0, 1), we denote by 
(𝑟,𝑡)

(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽) a 
subset of 𝑆 ×𝑆 defined as follows:

(𝑟,𝑡)
(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽) = {(𝑥, 𝑦) ∈ 𝑆 ×𝑆 ∶

+
𝜆(𝛼)(𝑥),

+
𝛿(𝛽)(𝑦) ≥ 𝑟,

−
𝜆(𝛼)(𝑥),

−
𝛿(𝛽)(𝑦) ≤ 𝑡}.

For any (𝛼, 𝛽) ∈ 𝐴 × 𝐴, the subset 
(𝑟,𝑡)

(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽) of 𝑆 × 𝑆 is called an 
(𝑟, 𝑡)-level subset of 𝜆𝐴 × 𝛿𝐴.

Proposition 13. Let 𝜆𝐴 and 𝛿𝐴 be FBS sets over 𝑆, and let 𝑟 ∈ (0, 1] and 
𝑡 ∈ [0, 1). Then, we have

(𝑟,𝑡)
(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽) =

(𝑟,𝑡)
𝜆𝐴(𝛼) ×

(𝑟,𝑡)
𝜆𝐴(𝛽).
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Proof. It is straightforward. □

Lemma 9. Let 𝜆𝐴 and 𝛿𝐴 be FBS left (resp., right, two-sided) ideals over 𝑆. 
Then 𝜆𝐴 × 𝛿𝐴 is an FBS left (resp., right, two-sided) ideal over 𝑆 ×𝑆.

Proof. It is straightforward. □

Proposition 14. Let 𝜆𝐴 and 𝛿𝐴 be FBS left (resp., right, two-sided) ideals 
over 𝑆. Then, the (𝑟, 𝑡)-level subset 

(𝑟,𝑡)
(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽)(≠ 𝜙) of 𝜆𝐴 × 𝛿𝐴 is a left 

(resp., right, two-sided) ideal of 𝑆×𝑆, for all 𝑟 ∈ (0, 1], 𝑡 ∈ [0, 1) and (𝛼, 𝛽) ∈
𝐴 ×𝐴.

Proof. Let 𝛾𝛬 = 𝜆𝐴 × 𝛿𝐴, where 𝛬 =𝐴 ×𝐴. Since 𝜆𝐴 and 𝛿𝐴 are FBS left 
ideals over 𝑆, thus, by Lemma 9, we have 𝛾𝛬 is an FBS left ideal over 
𝑆 × 𝑆. Now, for any 𝑟 ∈ (0, 1], 𝑡 ∈ [0, 1) and (𝛼, 𝛽) ∈ 𝛬, we show that the 
(𝑟, 𝑡)-level subset 

(𝑟,𝑡)
𝛾𝛬(𝛼, 𝛽)(≠ 𝜙) of 𝛾𝛬 is a left ideal of 𝑆 × 𝑆. For this, let 

(𝑎, 𝑏) ∈ 𝑆 × 𝑆 and (𝑐, 𝑑) ∈
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽). Then, we have

+
𝛾(𝛼, 𝛽)((𝑎, 𝑏)(𝑐, 𝑑)) ≥ +

𝛾(𝛼, 𝛽)((𝑐, 𝑑)) ≥ 𝑟,

and

−
𝛾(𝛼, 𝛽)((𝑎, 𝑏)(𝑐, 𝑑)) ≤ −

𝛾(𝛼, 𝛽)((𝑐, 𝑑)) ≤ 𝑡.

This implies that (𝑎, 𝑏)(𝑐, 𝑑) ∈
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽). Next, let (𝑒, 𝑓 ) and (𝑔, ℎ) be any 
elements in 𝑆 ×𝑆 such that (𝑒, 𝑓 ) ≤ (𝑔, ℎ) and that (𝑔, ℎ) ∈

(𝑟,𝑡)
𝛾𝛬(𝛼, 𝛽). Since 

𝛾𝛬 is a left ideal over 𝑆 × 𝑆, we have

+
𝛾(𝛼, 𝛽)((𝑒, 𝑓 )) ≥ +

𝛾(𝛼, 𝛽)((𝑔,ℎ)) ≥ 𝑟,

and

−
𝛾(𝛼, 𝛽)((𝑒, 𝑓 )) ≤ −

𝛾(𝛼, 𝛽)((𝑔,ℎ)) ≤ 𝑡,

which implies that (𝑒, 𝑓 ) ∈
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽). Therefore, 
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽) is a left ideal of 
𝑆 ×𝑆. The other parts of the proposition can be proved similarly. □

In the following theorem, we prove that the Cartesian product of 
two FBS semiprime ideals over 𝑆 is an FBS semiprime ideal over 𝑆 ×𝑆.

Theorem 8. Let 𝜆𝐴 and 𝛿𝐴 be FBS semiprime ideals over 𝑆. Then 𝜆𝐴 × 𝛿𝐴
is an FBS semiprime ideal over 𝑆 × 𝑆.

Proof. Let 𝛾𝛬 = 𝜆𝐴 × 𝛿𝐴, where 𝛬 =𝐴 ×𝐴. Then, by Lemma 9, we have 
𝛾𝛬 is an FBS ideal over 𝑆 ×𝑆. To finish the proof, we just need to show 
that 𝛾𝛬 is FBS semiprime. Since 𝜆𝐴 and 𝛿𝐴 are FBS semiprime, thus, for 
all (𝑎, 𝑏) ∈ 𝑆 × 𝑆 and (𝛼, 𝛽) ∈𝛬, we have

+
𝛾(𝛼, 𝛽)((𝑎, 𝑏)) = min{

+
𝜆(𝛼)(𝑎),

+
𝛿(𝛽)(𝑏)}

≥min{
+
𝜆(𝛼)(𝑎2),

+
𝛿(𝛽)(𝑏2)}

= +
𝛾(𝛼, 𝛽)(𝑎2, 𝑏2)

= +
𝛾(𝛼, 𝛽)(𝑎, 𝑏)2.

Similarly,

−
𝛾(𝛼, 𝛽)((𝑎, 𝑏)) = max{

−
𝜆(𝛼)(𝑎),

−
𝛿(𝛽)(𝑏)}

≤max{
−
𝜆(𝛼)(𝑎2),

−
𝛿(𝛽)(𝑏2)}

= −
𝛾(𝛼, 𝛽)(𝑎2, 𝑏2)

= −
𝛾(𝛼, 𝛽)(𝑎, 𝑏)2.

Therefore, 𝛾𝛬 is FBS semiprime. This completes the proof. □
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Proposition 15. Let 𝜆𝐴 and 𝛿𝐴 be FBS semiprime ideals over 𝑆. Then, 
for all 𝑟 ∈ (0, 1], 𝑡 ∈ [0, 1) and (𝛼, 𝛽) ∈ 𝐴 × 𝐴, the (𝑟, 𝑡)-level subset 

(𝑟,𝑡)
(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽)(≠ 𝜙) of 𝜆𝐴 × 𝛿𝐴 is a semiprime ideal of 𝑆 × 𝑆.

Proof. Let 𝛾𝛬 = 𝜆𝐴×𝛿𝐴, where 𝛬 =𝐴 ×𝐴. Then, by Theorem 8, we have 
𝛾𝛬 is an FBS semiprime ideal over 𝑆 ×𝑆. Further, by Proposition 14, we 
see that 

(𝑟,𝑡)
𝛾𝛬(𝛼, 𝛽) is an ideal of 𝑆 × 𝑆 for all 𝑟 ∈ (0, 1] and 𝑡 ∈ [0, 1). To 

finish the proof, we only need to show that 
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽) is semiprime. For 
this, let (𝑎, 𝑏) ∈ 𝑆 × 𝑆 such that (𝑎, 𝑏)2 ∈

(𝑟,𝑡)
𝛾𝛬(𝛼, 𝛽). Then, for all (𝛼, 𝛽) ∈ 𝛬, 

we have

+
𝛾(𝛼, 𝛽)((𝑎, 𝑏)) ≥ +

𝛾(𝛼, 𝛽)((𝑎, 𝑏)2) ≥ 𝑟,

and

−
𝛾(𝛼, 𝛽)((𝑎, 𝑏)) ≤ −

𝛾(𝛼, 𝛽)((𝑎, 𝑏)2) ≤ 𝑡.

This implies that (𝑎, 𝑏) ∈
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽). Therefore, 
(𝑟,𝑡)

𝛾𝛬(𝛼, 𝛽) is semiprime. This 
completes the proof. □

The following theorem characterizes the FBS primality of two FBS 
sets 𝜆𝐴 and 𝛿𝐴 over 𝑆 by the FBS primality of their Cartesian product 
𝜆𝐴 × 𝛿𝐴 over 𝑆 ×𝑆.

Theorem 9. Let 𝜆𝐴 and 𝛿𝐴 be FBS prime ideals over 𝑆. Then 𝜆𝐴 × 𝛿𝐴 is an 
FBS prime ideal over 𝑆 ×𝑆.

Proof. Let 𝛾𝛬 = 𝜆𝐴 × 𝛿𝐴, where 𝛬 = 𝐴 ×𝐴. Then 𝛾𝛬 is, by Lemma 9, an 
FBS ideal over 𝑆 × 𝑆. To finish the proof, we just need to show that 𝛾𝛬
is FBS prime. For this, let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑆 × 𝑆 and (𝛼, 𝛽) ∈𝛬. Then, since 
𝜆𝐴 and 𝛿𝐴 are FBS prime ideals over 𝑆, we have

+
𝛾(𝛼, 𝛽)((𝑎, 𝑏)(𝑐, 𝑑)) = +

𝛾(𝛼, 𝛽)((𝑎𝑐, 𝑏𝑑))

= min[
+
𝜆(𝛼)(𝑎𝑐),

+
𝛿(𝛽)(𝑏𝑑)]

= min[max(
+
𝜆(𝛼)(𝑎),

+
𝜆(𝛼)(𝑐)),max(

+
𝛿(𝛽)(𝑏),

+
𝛿(𝛽)(𝑑))]

= max[min(
+
𝜆(𝛼)(𝑎),

+
𝛿(𝛽)(𝑏)),min(

+
𝜆(𝛼)(𝑐),

+
𝛿(𝛽)(𝑑))]

= max[+𝛾(𝛼, 𝛽)((𝑎, 𝑏)), +𝛾(𝛼, 𝛽)((𝑐, 𝑑))].

Similarly,

−
𝛾(𝛼, 𝛽)((𝑎, 𝑏)(𝑐, 𝑑)) = −

𝛾(𝛼, 𝛽)((𝑎𝑐, 𝑏𝑑))

= max[
−
𝜆(𝛼)(𝑎𝑐),

−
𝛿(𝛽)(𝑏𝑑)]

= max[min(
−
𝜆(𝛼)(𝑎),

−
𝜆(𝛼)(𝑐)),min(

−
𝛿(𝛽)(𝑏),

−
𝛿(𝛽)(𝑑))]

= min[max(
−
𝜆(𝛼)(𝑎),

−
𝛿(𝛽)(𝑏)),max(

−
𝜆(𝛼)(𝑐),

−
𝛿(𝛽)(𝑑))]

= min[−𝛾(𝛼, 𝛽)((𝑎, 𝑏)), −𝛾(𝛼, 𝛽)((𝑐, 𝑑))].

Therefore, 𝛾𝛬 is FBS prime. This completes the proof. □

As an explanation of Theorem 9, we present the following example.

Example 7. Consider the ordered semigroup 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} with the 
multiplication “⋅” and the order relation “≤” given below:

⋅ 𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑏 𝑎 𝑎

𝑏 𝑏 𝑏 𝑏 𝑏

𝑐 𝑎 𝑏 𝑐 𝑐

𝑑 𝑎 𝑏 𝑐 𝑐

≤= {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑,𝑑)}.
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Suppose 𝐴 =𝐸 = {𝜀1, 𝜀2} be a set of parameters and 𝑓 ∶𝐴 →𝐴 be an 
identity function. Let 𝜆𝐴 and 𝛿𝐴 be FBS sets over 𝑆 that are defined, for 
all 𝑥 ∈ 𝑆, as follows:

+
𝜆(𝜀1)(𝑥) =

{
0.5 if 𝑥 ∈ {𝑎, 𝑏},
0.3 if 𝑥 ∈ {𝑐, 𝑑},

+
𝜆(𝜀2)(𝑥) =

{
0.6 if 𝑥 ∈ {𝑎, 𝑏},
0.4 if 𝑥 ∈ {𝑐, 𝑑},

−
𝜆(𝜀1)(𝑥) =

{
0.4 if 𝑥 ∈ {𝑎, 𝑏},
0.6 if 𝑥 ∈ {𝑐, 𝑑},

−
𝜆(𝜀2)(𝑥) =

{
0.3 if 𝑥 ∈ {𝑎, 𝑏},
0.5 if 𝑥 ∈ {𝑐, 𝑑},

and

+
𝛿(𝜀1)(𝑥) =

{
0.4 if 𝑥 ∈ {𝑎, 𝑏},
0.2 if 𝑥 ∈ {𝑐, 𝑑},

+
𝛿(𝜀2)(𝑥) =

{
0.5 if 𝑥 ∈ {𝑎, 𝑏},
0.4 if 𝑥 ∈ {𝑐, 𝑑},

−
𝛿(𝜀1)(𝑥) =

{
0.4 if 𝑥 ∈ {𝑎, 𝑏},
0.5 if 𝑥 ∈ {𝑐, 𝑑},

−
𝛿(𝜀2)(𝑥) =

{
0.3 if 𝑥 ∈ {𝑎, 𝑏},
0.5 if 𝑥 ∈ {𝑐, 𝑑}.

Clearly 𝜆𝐴 and 𝛿𝐴 are FBS prime ideals over 𝑆.

Now, let 𝛾𝛬 = 𝜆𝐴 × 𝛿𝐴, where 𝛬 = 𝐴 ×𝐴. Further, let 𝑔 ∶ 𝛬 → 𝑓 (𝐴) ×
𝑓 (𝐴) be an injective function such that 𝑔(𝜀𝑖, 𝜀𝑗 ) = (𝑓 (𝜀𝑖), 𝑓 (𝜀𝑗 )) for all 𝜀𝑖, 
𝜀𝑗 ∈𝛬, where 𝑖, 𝑗 = 1, 2. Then 𝛾𝛬 can be defined as follows:

+
𝛾(𝜀1, 𝜀1)((𝑎, 𝑎)) = 0.4, +

𝛾(𝜀1, 𝜀1)((𝑎, 𝑏)) = 0.4, +
𝛾(𝜀1, 𝜀1)((𝑎, 𝑐)) = 0.2,

+
𝛾(𝜀1, 𝜀1)((𝑎, 𝑑)) = 0.2, +

𝛾(𝜀1, 𝜀1)((𝑏, 𝑎)) = 0.4, +
𝛾(𝜀1, 𝜀1)((𝑏, 𝑏)) = 0.4,

+
𝛾(𝜀1, 𝜀1)((𝑏, 𝑐)) = 0.2, +

𝛾(𝜀1, 𝜀1)((𝑏, 𝑑)) = 0.2, +
𝛾(𝜀1, 𝜀1)((𝑐, 𝑎)) = 0.3,

+
𝛾(𝜀1, 𝜀1)((𝑐, 𝑏)) = 0.3, +

𝛾(𝜀1, 𝜀1)((𝑐, 𝑐)) = 0.2, +
𝛾(𝜀1, 𝜀1)((𝑐, 𝑑)) = 0.2,

+
𝛾(𝜀1, 𝜀1)((𝑑, 𝑎)) = 0.3, +

𝛾(𝜀1, 𝜀1)((𝑑, 𝑏)) = 0.3, +
𝛾(𝜀1, 𝜀1)((𝑑, 𝑐)) = 0.2,

+
𝛾(𝜀1, 𝜀1)((𝑑,𝑑)) = 0.2, +

𝛾(𝜀1, 𝜀2)((𝑎, 𝑎)) = 0.5, +
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)) = 0.5,

+
𝛾(𝜀1, 𝜀2)((𝑎, 𝑐)) = 0.4, +

𝛾(𝜀1, 𝜀2)((𝑎, 𝑑)) = 0.4, +
𝛾(𝜀1, 𝜀2)((𝑏, 𝑎)) = 0.5,

+
𝛾(𝜀1, 𝜀2)((𝑏, 𝑏)) = 0.5, +

𝛾(𝜀1, 𝜀2)((𝑏, 𝑐)) = 0.4, +
𝛾(𝜀1, 𝜀2)((𝑏, 𝑑)) = 0.4,

+
𝛾(𝜀1, 𝜀2)((𝑐, 𝑎)) = 0.3, +

𝛾(𝜀1, 𝜀2)((𝑐, 𝑏)) = 0.3, +
𝛾(𝜀1, 𝜀2)((𝑐, 𝑐)) = 0.3,

+
𝛾(𝜀1, 𝜀2)((𝑐, 𝑑)) = 0.3, +

𝛾(𝜀1, 𝜀2)((𝑑, 𝑎)) = 0.3, +
𝛾(𝜀1, 𝜀2)((𝑑, 𝑏)) = 0.3,

+
𝛾(𝜀1, 𝜀2)((𝑑, 𝑐)) = 0.3, +

𝛾(𝜀1, 𝜀2)((𝑑,𝑑)) = 0.3, +
𝛾(𝜀2, 𝜀1)((𝑎, 𝑎)) = 0.4,

+
𝛾(𝜀2, 𝜀1)((𝑎, 𝑏)) = 0.4, +

𝛾(𝜀2, 𝜀1)((𝑎, 𝑐)) = 0.2, +
𝛾(𝜀2, 𝜀1)((𝑎, 𝑑)) = 0.2,

+
𝛾(𝜀2, 𝜀1)((𝑏, 𝑎)) = 0.4, +

𝛾(𝜀2, 𝜀1)((𝑏, 𝑏)) = 0.4, +
𝛾(𝜀2, 𝜀1)((𝑏, 𝑐)) = 0.2,

+
𝛾(𝜀2, 𝜀1)((𝑏, 𝑑)) = 0.2, +

𝛾(𝜀2, 𝜀1)((𝑐, 𝑎)) = 0.4, +
𝛾(𝜀2, 𝜀1)((𝑐, 𝑏)) = 0.4,

+
𝛾(𝜀2, 𝜀1)((𝑐, 𝑐)) = 0.2, +

𝛾(𝜀2, 𝜀1)((𝑐, 𝑑)) = 0.2, +
𝛾(𝜀2, 𝜀1)((𝑑, 𝑎)) = 0.4,

+
𝛾(𝜀2, 𝜀1)((𝑑, 𝑏)) = 0.4, +

𝛾(𝜀2, 𝜀1)((𝑑, 𝑐)) = 0.2, +
𝛾(𝜀2, 𝜀1)((𝑑,𝑑)) = 0.2,

+
𝛾(𝜀2, 𝜀2)((𝑎, 𝑎)) = 0.5, +

𝛾(𝜀2, 𝜀2)((𝑎, 𝑏)) = 0.5, +
𝛾(𝜀2, 𝜀2)((𝑎, 𝑐)) = 0.4,

+
𝛾(𝜀2, 𝜀2)((𝑎, 𝑑)) = 0.4, +

𝛾(𝜀2, 𝜀2)((𝑏, 𝑎)) = 0.5, +
𝛾(𝜀2, 𝜀2)((𝑏, 𝑏)) = 0.5,

+
𝛾(𝜀2, 𝜀2)((𝑏, 𝑐)) = 0.4, +

𝛾(𝜀2, 𝜀2)((𝑏, 𝑑)) = 0.4, +
𝛾(𝜀2, 𝜀2)((𝑐, 𝑎)) = 0.4,

+
𝛾(𝜀2, 𝜀2)((𝑐, 𝑏)) = 0.4, +

𝛾(𝜀2, 𝜀2)((𝑐, 𝑐)) = 0.4, +
𝛾(𝜀2, 𝜀2)((𝑐, 𝑑)) = 0.4,

+
𝛾(𝜀2, 𝜀2)((𝑑, 𝑎)) = 0.4, +

𝛾(𝜀2, 𝜀2)((𝑑, 𝑏)) = 0.4, +
𝛾(𝜀2, 𝜀2)((𝑑, 𝑐)) = 0.4,

+
𝛾(𝜀2, 𝜀2)((𝑑,𝑑)) = 0.4.

Similarly,
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−
𝛾(𝜀1, 𝜀1)((𝑎, 𝑎)) = 0.4, −

𝛾(𝜀1, 𝜀1)((𝑎, 𝑏)) = 0.4, −
𝛾(𝜀1, 𝜀1)((𝑎, 𝑐)) = 0.5,

−
𝛾(𝜀1, 𝜀1)((𝑎, 𝑑)) = 0.5, −

𝛾(𝜀1, 𝜀1)((𝑏, 𝑎)) = 0.4, −
𝛾(𝜀1, 𝜀1)((𝑏, 𝑏)) = 0.4,

−
𝛾(𝜀1, 𝜀1)((𝑏, 𝑐)) = 0.5, −

𝛾(𝜀1, 𝜀1)((𝑏, 𝑑)) = 0.5, −
𝛾(𝜀1, 𝜀1)((𝑐, 𝑎)) = 0.6,

−
𝛾(𝜀1, 𝜀1)((𝑐, 𝑏)) = 0.6, −

𝛾(𝜀1, 𝜀1)((𝑐, 𝑐)) = 0.6, −
𝛾(𝜀1, 𝜀1)((𝑐, 𝑑)) = 0.6,

−
𝛾(𝜀1, 𝜀1)((𝑑, 𝑎)) = 0.6, −

𝛾(𝜀1, 𝜀1)((𝑑, 𝑏)) = 0.6, −
𝛾(𝜀1, 𝜀1)((𝑑, 𝑐)) = 0.6,

−
𝛾(𝜀1, 𝜀1)((𝑑,𝑑)) = 0.6, −

𝛾(𝜀1, 𝜀2)((𝑎, 𝑎)) = 0.4, −
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)) = 0.4,

−
𝛾(𝜀1, 𝜀2)((𝑎, 𝑐)) = 0.5, −

𝛾(𝜀1, 𝜀2)((𝑎, 𝑑)) = 0.5, −
𝛾(𝜀1, 𝜀2)((𝑏, 𝑎)) = 0.4,

−
𝛾(𝜀1, 𝜀2)((𝑏, 𝑏)) = 0.4, −

𝛾(𝜀1, 𝜀2)((𝑏, 𝑐)) = 0.5, −
𝛾(𝜀1, 𝜀2)((𝑏, 𝑑)) = 0.5,

−
𝛾(𝜀1, 𝜀2)((𝑐, 𝑎)) = 0.6, −

𝛾(𝜀1, 𝜀2)((𝑐, 𝑏)) = 0.6, −
𝛾(𝜀1, 𝜀2)((𝑐, 𝑐)) = 0.6,

−
𝛾(𝜀1, 𝜀2)((𝑐, 𝑑)) = 0.6, −

𝛾(𝜀1, 𝜀2)((𝑑, 𝑎)) = 0.6, −
𝛾(𝜀1, 𝜀2)((𝑑, 𝑏)) = 0.6,

−
𝛾(𝜀1, 𝜀2)((𝑑, 𝑐)) = 0.6, −

𝛾(𝜀1, 𝜀2)((𝑑,𝑑)) = 0.6, −
𝛾(𝜀2, 𝜀1)((𝑎, 𝑎)) = 0.4,

−
𝛾(𝜀2, 𝜀1)((𝑎, 𝑏)) = 0.4, −

𝛾(𝜀2, 𝜀1)((𝑎, 𝑐)) = 0.5, −
𝛾(𝜀2, 𝜀1)((𝑎, 𝑑)) = 0.5,

−
𝛾(𝜀2, 𝜀1)((𝑏, 𝑎)) = 0.4, −

𝛾(𝜀2, 𝜀1)((𝑏, 𝑏)) = 0.4, −
𝛾(𝜀2, 𝜀1)((𝑏, 𝑐)) = 0.5,

−
𝛾(𝜀2, 𝜀1)((𝑏, 𝑑)) = 0.5, −

𝛾(𝜀2, 𝜀1)((𝑐, 𝑎)) = 0.5, −
𝛾(𝜀2, 𝜀1)((𝑐, 𝑏)) = 0.5,

−
𝛾(𝜀2, 𝜀1)((𝑐, 𝑐)) = 0.5, −

𝛾(𝜀2, 𝜀1)((𝑐, 𝑑)) = 0.5, −
𝛾(𝜀2, 𝜀1)((𝑑, 𝑎)) = 0.5,

−
𝛾(𝜀2, 𝜀1)((𝑑, 𝑏)) = 0.5, −

𝛾(𝜀2, 𝜀1)((𝑑, 𝑐)) = 0.5, −
𝛾(𝜀2, 𝜀1)((𝑑,𝑑)) = 0.5,

−
𝛾(𝜀2, 𝜀2)((𝑎, 𝑎)) = 0.3, −

𝛾(𝜀2, 𝜀2)((𝑎, 𝑏)) = 0.3, −
𝛾(𝜀2, 𝜀2)((𝑎, 𝑐)) = 0.5,

−
𝛾(𝜀2, 𝜀2)((𝑎, 𝑑)) = 0.5, −

𝛾(𝜀2, 𝜀2)((𝑏, 𝑎)) = 0.3, −
𝛾(𝜀2, 𝜀2)((𝑏, 𝑏)) = 0.3,

−
𝛾(𝜀2, 𝜀2)((𝑏, 𝑐)) = 0.5, −

𝛾(𝜀2, 𝜀2)((𝑏, 𝑑)) = 0.5, −
𝛾(𝜀2, 𝜀2)((𝑐, 𝑎)) = 0.5,

−
𝛾(𝜀2, 𝜀2)((𝑐, 𝑏)) = 0.5, −

𝛾(𝜀2, 𝜀2)((𝑐, 𝑐)) = 0.5, −
𝛾(𝜀2, 𝜀2)((𝑐, 𝑑)) = 0.5,

−
𝛾(𝜀2, 𝜀2)((𝑑, 𝑎)) = 0.5, −

𝛾(𝜀2, 𝜀2)((𝑑, 𝑏)) = 0.5, −
𝛾(𝜀2, 𝜀2)((𝑑, 𝑐)) = 0.5,

−
𝛾(𝜀2, 𝜀2)((𝑑,𝑑)) = 0.5.

One can check that 𝛾𝛬 is an FBS ideal over 𝑆 × 𝑆. Likewise, the FBS 
semiprimality of 𝛾𝛬 can be verified. For example, for any elements (𝑎, 𝑏), 
(𝑐, 𝑑) ∈ 𝑆 ×𝑆 and (𝜀1, 𝜀2) ∈𝛬, we have

+
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)(𝑐, 𝑑)) =

+
𝛾(𝜀1, 𝜀2)((𝑎𝑐, 𝑏𝑑))

= min{
+
𝜆(𝜀1)(𝑎𝑐),

+
𝛿(𝜀2)(𝑏𝑑)}

= min{
+
𝜆(𝜀1)(𝑎),

+
𝛿(𝜀2)(𝑏)}

= 0.5.

Moreover, we have

+
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)) = min{

+
𝜆(𝜀1)(𝑎),

+
𝛿(𝜀2)(𝑏)}

= min{0.5,0.5} = 0.5,

and

+
𝛾(𝜀1, 𝜀2)((𝑐, 𝑑)) = min{

+
𝜆(𝜀1)(𝑐),

+
𝛿(𝜀2)(𝑑)}

= min{0.3,0.4} = 0.3.

Thus, it follows that

+
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)(𝑐, 𝑑)) = max{+𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)),

+
𝛾(𝜀1, 𝜀2)((𝑐, 𝑑))}.

Similarly,

−
𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)(𝑐, 𝑑)) = min{−𝛾(𝜀1, 𝜀2)((𝑎, 𝑏)),

−
𝛾(𝜀1, 𝜀2)((𝑐, 𝑑))}.

In the following proposition, we characterize the Cartesian product 
𝜆𝐴 × 𝛿𝐴 (over 𝑆 × 𝑆) of two FBS prime ideals 𝜆𝐴 and 𝛿𝐴 (over 𝑆) by its 
(𝑟, 𝑡)-level set.

Proposition 16. Let 𝜆𝐴 and 𝛿𝐴 be FBS prime ideals over 𝑆 . Then, for all 
𝑟 ∈ (0, 1], 𝑡 ∈ [0, 1) and (𝛼, 𝛽) ∈ 𝐴 × 𝐴, the (𝑟, 𝑡)-level subset 

(𝑟,𝑡)
(𝜆𝐴 × 𝛿𝐴)(𝛼, 𝛽)

(if it is nonempty) of 𝜆𝐴 × 𝛿𝐴 is a prime ideal of 𝑆 × 𝑆.

Proof. It is straightforward. □
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6. Conclusion

In this article, the notion of FBS semiprimality in ordered semi-

groups is introduced. Some properties of the concept are investigated on 
left (resp., right, intra-, completely) regular and Archimedean ordered 
semigroups. It is revealed that if 𝑆 is completely regular, then every FBS 
ideal 𝜆𝐴 over 𝑆 is FBS semiprime. Furthermore, the Cartesian product of 
FBS semiprime (resp., prime) ideals over ordered semigroups is studied. 
It is exposed that the Cartesian product 𝜆𝐴 ×𝛿𝐴 of FBS semiprime (resp., 
prime) ideals 𝜆𝐴 and 𝛿𝐴 over 𝑆 is an FBS semiprime (resp., prime) ideal 
over 𝑆 ×𝑆. It is worth to mention that the concept of FBS semiprimality 
can be extended to other classes of FBS ideals over ordered semigroups, 
for example, FBS interior and FBS quasi-ideals.
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