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 20 
Abstract 21 
 22 
The interaction between genetic variants and environmental stressors is key to understanding the 23 
mechanisms underlying neurological diseases. In this study, we used human brain organoids to explore 24 
how varying oxygen levels expose context-dependent gene regulatory effects. By subjecting a genetically 25 
diverse panel of 21 brain organoids to hypoxic and hyperoxic conditions, we identified thousands of gene 26 
regulatory changes that are undetectable under baseline conditions, with 1,745 trait-associated genes 27 
showing regulatory effects only in response to oxygen stress. To capture more nuanced transcriptional 28 
patterns, we employed topic modeling, which revealed context-specific gene regulation linked to dynamic 29 
cellular processes and environmental responses, offering a deeper understanding of how gene regulation 30 
is modulated in the brain. These findings underscore the importance of genotype-environment interactions 31 
in genetic studies of neurological disorders and provide new insights into the hidden regulatory 32 
mechanisms influenced by environmental factors in the brain. 33 
 34 
 35 
Introduction  36 
 37 
Understanding how gene regulatory variants function across different cellular and environmental contexts 38 
is essential for interpreting genetic associations with disease. Gene-by-environment (GxE) interactions 39 
occur when genetic variants influence how individuals respond to specific environmental exposures, 40 
leading to inter-individual differences in phenotypes, including variability in disease susceptibility. This 41 
concept is particularly important in complex diseases, where individuals with different genetic 42 
backgrounds may exhibit varying risk profiles for conditions such as neuropsychiatric disorders [1,2]. For 43 
instance, environmental factors such as stress [3–5], oxygen deprivation [6,7], or infection [8–13] can 44 
trigger disease-relevant gene regulatory effects that remain hidden in static, steady-state conditions. 45 
 46 
Gene regulatory catalogs like GTEx (Genotype-Tissue Expression project [14]) provide valuable insights 47 
into how genetic variants affect gene expression across various tissues in steady-state conditions. 48 
However, the majority of disease-associated loci remain unexplained, likely due to their regulatory effects 49 
being specific to certain cell types or environmental contexts that have not been fully explored [15,16]. 50 
This gap is particularly pronounced in the brain, where the complex interplay between different cell types 51 
and environmental stressors can contribute to the onset and progression of neurological and psychiatric 52 
diseases [17–22].  53 
 54 
Brain cells, especially neurons, are highly sensitive to environmental perturbations like hypoxia (oxygen 55 
deprivation), given the brain’s high metabolic demand and susceptibility to oxidative damage [23]. 56 
Hypoxia is a well-known neurological risk factor throughout life, arising from conditions such as sleep 57 
apnea, high altitude, respiratory infections, and premature birth [24–28]. Hypoxic exposure has profound 58 
effects on cognitive function, white matter integrity, and increase the risk for neurodegeneration and 59 
psychiatric disorders [29–47]. Despite the importance of oxygen homeostasis and hypoxia to brain 60 
function, we lack comprehensive insight into how different brain cell types respond to these 61 
environmental stressors at the gene regulatory level, which limits our ability to interpret genetic 62 
associations with neurological traits [47–50]. 63 
 64 
In this study, we used human brain organoids to investigate the transcriptional responses of diverse brain 65 
cell types to oxygen perturbation across 21 individuals. By applying single-cell RNA sequencing, we 66 
captured gene expression data both under baseline conditions and after exposure to varying oxygen levels. 67 
Through whole-genome sequencing of each donor, we identified genetic contributions to these responses, 68 
revealing dynamic gene regulatory effects with significant relevance to neurological and psychiatric 69 
disease susceptibility. This approach goes beyond characterizing gene regulatory variation in static, post-70 
mortem tissue and opens new avenues for studying GxE interactions in a controlled, in vitro setting. 71 
 72 
Results 73 
 74 
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We differentiated brain organoids from the iPSCs of 21 unrelated Yoruba individuals from Ibadan, 75 
Nigeria [51] (see Methods). We performed oxygen manipulation experiments in two batches of 7-16 76 
individuals, with two individuals replicated across batches to allow us to control and account for batch 77 
effects (Figure 1a). Specifically, following seven weeks of growth at atmospheric oxygen levels (21% 78 
O2), organoids were adapted to 10% O2 to mimic the physiologic environment experienced by brain cells 79 
in vivo. After one week of culture at 10% O2, organoids were either maintained at physiologic oxygen 80 
(baseline/normoxia), transferred to low oxygen (1% O2; hypoxia), or transferred to high oxygen (21% O2; 81 
hyperoxia) for 24 hours. Following the treatments, we dissociated organoids in the presence of 82 
transcriptional inhibitors and multiplexed equal proportions of each sample in preparation for single-cell 83 
RNA-sequencing, targeting 3,000 cells per individual and oxygen condition, and a depth of 20,000 reads 84 
per cell. After demultiplexing and quality control, we retained data from 170,841 cells (normoxia: 52,671, 85 
hypoxia: 57,788, hyperoxia: 60,382; median 5,666 UMI counts per cell).   86 
 87 
Brain organoids comprise diverse cortical and non-cortical cell types 88 
 89 
We first sought to characterize the cell type composition of brain organoids maintained at baseline 90 
oxygen levels. We annotated cell clusters using fetal brain reference data and known marker genes 91 
[52,53], finding a variety of cortical cell types, including radial glial progenitors, intermediate 92 
progenitors, excitatory neurons, and inhibitory neurons (Figure 1b, S1, Methods). We also identified a 93 
substantial cluster of neurons with non-cortical identities, including thalamic and midbrain inhibitory 94 
neurons and GNRH+ cells (Figure 1b, S1, Methods). Out of 20 high-confidence cell types, 10 are present 95 
in over half of the individuals, with a median of 11 cell types detected per individual (Figure 1c).  96 
 97 
We used propeller [54] to assess differences in cell type proportions across treatment conditions, and 98 
found that organoid composition was largely unaltered by oxygen manipulation (Figure S2a, Table S1). 99 
Moreover, the cell type composition of an additional set of control organoids which we maintained at 100 
atmospheric oxygen levels for the duration of the experiment did not differ substantially from what we 101 
observed in the treatment conditions (Figure S1b). We observed differences in cell type composition 102 
across individuals, with the rarer cell types (such as midbrain dopaminergic-like cells, mature 103 
oligodendrocytes, vascular leptomeningeal cells, and Cajal-Retzius cells) present in only a minority of 104 
samples (Figure 1, S1e). However, across treatments, the cell type composition of organoids from the 105 
same individuals generally remained similar (with the exception of NA19144; Figure S2a), suggesting 106 
that the treatments did not have a marked effect on cellular composition.  107 
 108 
Since the treatments did not seem to result in noticeable differences in cell composition, we focused again 109 
on the differences in cell composition across individuals. We found no effect of sex or iPSC passage 110 
number on cell type proportions, but we observed that certain rare cell types – including 111 
oligodendrocytes, inhibitory neuron subtypes (midbrain, thalamic, and SST+), and midbrain 112 
dopaminergic-like cells – differed in proportion across individuals from different collection batches 113 
(Table S1). To assess the extent of confounding by batch, we merged biologically similar clusters to 114 
generate a set of 10 coarse annotations representing the principal cell types in our data (Figure S1d, 115 
Methods). When we examined cell type proportions among coarsely-defined clusters, the batch effect 116 
disappeared, suggesting that principal cortical cell types were largely stable across experiments. Still, we 117 
performed all subsequent analyses using both annotations to assess potential bias caused by over 118 
clustering (Methods), and to ensure that the two approaches produce similar outcomes. In what follows, 119 
we report findings from the more interpretable fine-grained annotation set (results from the coarse 120 
clustering approach are provided in Figure S1d, S1e, S2d-e, S4a, S4b, S5b-f).  121 
 122 
Shared transcriptional response patterns reveal cell-type-specific vulnerabilities to hypoxia 123 
 124 
To identify differentially expressed (DE) genes between baseline and either hypoxic or hyperoxic 125 
conditions, we applied a linear mixed model to pseudobulk expression data for each cell type and 126 
treatment condition[55]. We identified a total of 10,230 DE genes in response to hypoxia, ranging from 127 
91 to 5,590 genes per cell type (FDR<0.05, S Table S2). Similarly, we identified 10,425 hyperoxia-128 
responsive genes, ranging from 17 to 6,102 genes per cell type (FDR<0.05, S Table S2). In at least one 129 
(any) cell type, 2,703 hypoxia-responsive genes (and correspondingly, 2,855 hyperoxia-responsive genes) 130 
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exhibited a greater than 1.5-fold change in expression compared to baseline. As expected, we detected far 131 
more DE genes in abundant cell types (Figure S2c), within which 76-92% of hypoxia-evoked 132 
transcriptional effects and 84-93% of hyperoxia-evoked transcriptional effects were modest (smaller than 133 
1.5-fold).  134 
 135 
We were intrigued by the large differences in the numbers of DE genes across cell types, an observation 136 
that cannot be fully explained by cell abundance (Figure S3). To explore this further, we analyzed the 137 
data using multivariate adaptive shrinkage (mash) [56], to account for incomplete power and assess the 138 
similarity of transcriptional responses across treatment conditions and cell types. By combining power 139 
across cell types, we were able to detect weak DE effects that emerge in multiple cell types and, 140 
importantly, accurately identify condition- and cell-type-specific DE genes.  141 
 142 
As expected, we observed similar oxygen response patterns among related cell types (Figure 2a). Even 143 
using mash, we found that more than half of the oxygen-responsive genes we identified (68% of hypoxia-144 
responsive genes and 63% of hyperoxia-responsive genes, FDR<0.05, effect size >1.5-fold) were DE in 145 
fewer than three cell types, consistent with the idea that oxygen homeostasis mechanisms are tuned to the 146 
needs of distinct brain cell types [57]. We also observed a tendency for DE genes with large effects to be 147 
more cell-type-specific than DE genes with smaller effects (Figure S2b), an observation that is counter-148 
intuitive with respect to power considerations.  149 
 150 
Most cell types exhibited a modest positive correlation between the transcriptional responses to hypoxia 151 
and hyperoxia (Figure 2a, S2), and many gene families related to general response to stress were 152 
enriched among DE genes in both treatment conditions. For example, all oxygen-treated cell types are 153 
enriched for DE genes with roles in cellular metabolism and inflammation, and most are enriched for DE 154 
genes involved in cell proliferation and apoptosis (Figure 2b). Reassuringly, hypoxia, specifically, also 155 
induced a well-recognized core regulatory program across all cell types, including the upregulation of 156 
hypoxia-inducible factor (HIF) target genes [58–60].  157 
 158 
As our observations pointed to a general stress response following the treatments, we sought to 159 
characterize the proportion of single cells expressing regulatory signatures of stress in baseline and 160 
treatment conditions, so we can specifically focus on the response to the treatments. To parse cell type 161 
heterogeneity in the transcriptional response to oxygen perturbation, and to differentiate between stressed 162 
and unstressed cells, we identified gene sets that capture robust and general responses to each treatment 163 
condition (Table S3, Methods). We leveraged these gene sets in a granular filtering approach [61] to 164 
classify cells as either stressed or unstressed, and then repeated our differential expression analysis after 165 
censoring the stressed cells. We found that although stressed cells contribute disproportionately to the 166 
treatment expression response, they do not account for it entirely: in cell types with a higher proportion 167 
(12-36%) of stress-censored cells, the number of DE genes (FDR<0.05, fold-change>1.5) decreased by as 168 
much as 64% relative to randomly censored data (Figure S4d).  169 
 170 
Cell types that include an increased fraction of stressed cells following exposure to hypoxia or hyperoxia 171 
may be especially sensitive to oxygen perturbation. We calculated the change in the proportion of stressed 172 
cells between baseline and treatment conditions to assess cell-type-specific sensitivity within brain 173 
organoids. We found that intermediate progenitors, immature neurons, and radial glia are particularly 174 
responsive to both hypoxia and hyperoxia (Figure 2c, S4).  175 
 176 
The observation of large differences in cell-type sensitivity to changes in oxygen may be significant and 177 
help us better understand disease mechanisms. It is possible, however, that cell-type-specific sensitivity to 178 
the treatments could be explained by variation in organoid spatial structure. To examine this, we used 179 
antibody markers to map eight major cell types in cryosections obtained from the same organoids we used 180 
for sequencing (Methods). We then quantified the accessibility of each cell type to exogenous oxygen by 181 
measuring the distance from immunostained cells to the organoid periphery and compared the distance 182 
distribution across cell types. While different cell types were distributed at various depths within each 183 
organoid, variation between organoids was comparable to the differences observed between cell types 184 
(Figure 2d; ANOVA F-test of organoid-level medians, p=0.342). On the whole, the most oxygen-185 
sensitive cell types were localized neither more superficially nor more deeply than other cell types. Thus, 186 
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cell type-specific sensitivity to oxygen perturbation appears to be driven primarily by cellular identity, 187 
rather than cell position within the organoids.   188 
 189 
 190 
 191 
Context-specific responses to oxygen perturbation  192 
 193 
We observed that oxygen perturbation induced widespread transcriptional effects, many of which were 194 
shared among subsets of cells within and between cell types. Perturbed cells continued to express cell-195 
type-specific markers, simultaneously maintaining their respective identities while adopting a more 196 
general signature of oxidative stress (Figure S4c). This suggests that discrete cell types may fail to 197 
capture continuous contextual responses, including signatures shared by developmentally related or 198 
physically proximal cells. In an effort to capture the subtler transcriptional patterns in our data, we used 199 
topic modeling to decompose cellular transcriptomes into 15 groups (topics) that capture distinct sources 200 
of transcriptional variation (Methods).  201 
 202 
Several topics largely recapitulate discrete cell type classifications, as expected, consistent with the notion 203 
that cell identity is the primary source of transcriptional heterogeneity in our data (Figure 2e). Other 204 
topics, such as topic 7, recapitulate properties that were already known to us, such as the collection of DE 205 
genes that we previously used to identify hypoxia-stressed cells (Figure S3d). We also identified topics 206 
that captured dynamic cellular processes and developmental states. Still, several topics revealed new 207 
patterns: topic 4 is shared by dividing radial glia and dividing intermediate progenitors and is distinct 208 
from separate topics that tightly correlate with each of these cell identities in isolation. Indeed, topic 4 is 209 
defined by elevated expression of genes involved in DNA replication and cell division, including MKI67, 210 
TOP2A, and centrosomal proteins (Figure S3d), capturing shared aspects of the dividing cell 211 
environment across different cell types. In turn, topic 3 shows modest loading in cortical hem progenitors 212 
and higher loading in choroid plexus cells, reflecting their shared developmental origins: signals from the 213 
cortical hem influence the differentiation and patterning of cells at the boundary of the cerebral cortex and 214 
hippocampus, including those forming the choroid plexus [62]. Altogether, topic modeling allowed us to 215 
recapture functional relationships and shared states that were concealed in our analysis of discrete, 216 
mutually-exclusive cell type clusters, providing us with an enriched view of brain organoid dynamics.  217 
 218 
Transcriptional responses to oxygen perturbation are genetically regulated 219 
 220 
Having detected thousands of genes that are differentially expressed in response to oxygen perturbation, 221 
we sought to uncover potential genetic sources for inter-individual variation in treatment response. We 222 
aggregated single-cell gene expression data into pseudobulk groups defined by their unique combination 223 
of donor, cell type, and treatment condition. After excluding groups comprising fewer than 20 cells, we 224 
removed cell types that had fewer than seven individuals in each treatment condition (Methods). For each 225 
of the 14 remaining cell types, we separately mapped cis eQTLs under hypoxic, hyperoxic, and baseline 226 
conditions, including gene expression principal components as model covariates to account for the effects 227 
of sex, batch, and latent confounding factors (Methods). We expected most eQTLs to be shared across 228 
treatment conditions – indeed, our DE analysis indicates that most genes are robust to oxygen 229 
perturbation. We therefore used mash to weigh evidence for SNP-gene associations across all three 230 
treatment conditions, considering each cell type in turn. As we and others have found, this approach 231 
improves power to detect individually weak signals that emerge consistently in multiple experimental 232 
contexts [63–65].   233 
 234 
Across 14 cell types, we tested a total of 9,478 genes and found 36,778 cis eQTLs in 8,320 genes, with a 235 
median of four eQTLs per eGene (local false sign rate < 0.05).  Among these, we identified 14,358 236 
standard eQTLs (in 5,952 eGenes), in which the eQTL effect size is of similar size and direction across all 237 
treatment conditions (we used a conservative 2.5-fold cutoff to define similar effect sizes across treatment 238 
conditions, as we consider shared effects to be the null; Table S4).  We also identified 22,420 oxygen-239 
response eQTLs in 7,338 genes, namely eQTLs that have significantly different effect sizes between 240 
treatment conditions. Note that the sum of eGenes associated with at least one standard eQTL and those 241 
associated with at least one oxygen-responsive eQTLs is larger than 8,320, because eGenes are often 242 
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associated with more than a single eQTL across cell types, and often with both standard and eQTL 243 
oxygen-responsive eQTLs in different cell types 244 
 245 
Oxygen-responsive eQTLs included 3,687 loci associated with distinct effects in the hypoxia condition 246 
(in at least one cell type), 3,603 loci associated with distinct effects in hyperoxia, and 2,935 loci 247 
associated with a difference between the baseline normoxia and both treatments (Figure 3a).  Of 248 
particular note, across cell types, 15,045 oxygen response eQTLs are not associated with a statistically 249 
significant eQTL in the baseline (normoxia) condition. The genetic effect of these loci on gene regulation 250 
in the different cell types can only be detected under the stress conditions imposed by the change in 251 
oxygen levels. Consistent with this, oxygen-responsive eQTLs – particularly those not found under 252 
normoxia – are associated with the expression of genes that are less likely to have eQTL effects in 253 
cerebral cortex tissues in GTEx (one-sided paired Wilcoxon test, P = 0.007; Figure 3c, Figure S5a). 254 
 255 
Context-dependent genetic regulation  256 
 257 
In the analysis of gene expression levels, topic modeling allowed us to place cells along continuous axes 258 
of variation that are not predicated upon marker gene or reference annotations. We reasoned that topics 259 
could also be deployed to identify genetic regulatory effects that emerge in contexts defined more 260 
precisely than is possible using the discrete categories of cell type and treatment. To explore the effects of 261 
cis eQTLs in an expanded set of precisely-defined cellular contexts, we tested for interactions between 262 
eQTLs and topics. Rather than individually testing each eQTL-topic interaction, we used CellRegMap 263 
[66] to jointly test all linear combinations of topics, improving our power to detect a wide range of 264 
genotype-context interactions.  265 
 266 
We identified 289 genes with a topic-interacting eQTL. To infer the relevant cellular context for each 267 
eQTL, we assessed the correlation between its estimated effect and the loading for each topic. When 268 
possible, we checked to ensure our interpretation was corroborated by results from our analysis of discrete 269 
cell types and treatment conditions. For example, topic 15 describes cortical hem and glial progenitor 270 
cells. Out of the top 12 eGenes associated with topic 15 (Pearson correlation > 0.6), 10 were identified as 271 
eGenes exclusively in cortical hem or glial progenitor cells using our pseudobulk approach. Also, among 272 
the top 12 eGenes is the cholesterol transporter ABCA1 (r = 0.77), which showed modest eQTL effects in 273 
our pseudobulk analyses of cortical hem cells, glial progenitors, radial glia, and intermediate progenitors 274 
(Figure 4a). Of note, radial glia are the precursors to both glial progenitors and intermediate progenitors. 275 
Concordantly, our topic-based approach revealed a modest correlation between ABCA1 and topic 6 276 
(r=0.26), which is defined primarily by radial glia.  277 
 278 
Using the topic eQTL analysis we found 218 eGenes whose regulatory effects were significantly 279 
correlated with topic 7, which is associated with hypoxic stress (p<0.05, Bonferroni correction). 280 
Unexpectedly, 118 of these eGenes did not have hypoxia-specific eQTLs in our standard cell-type 281 
specific analysis, including WDR45B and CD44, which were more strongly correlated with topic 7 than 282 
any other topic. This is an example of the additional insight we can gain by using topics instead of 283 
discrete cell identities. WDR45B is a member of the WIPI protein family of autophagosomal proteins, and 284 
WDR45B mutations have been linked to numerous severe neurodevelopmental disorders [67]. CD44 is a 285 
known regulatory target of HIF1 and interacts with HIF2 to modify local tissue responses to hypoxia 286 
[68,69]. While we identified multiple eQTLs for WDR45B using the standard analysis, they were either 287 
oxygen-insensitive or responsive specifically to hyperoxia. We also identified eQTLs for CD44 that were 288 
oxygen-responsive, but not to hypoxia specifically. Taken together, these results highlight the utility of 289 
decomposing complex cellular states into constituent programs for the analysis of gene-by-environment 290 
interactions.    291 
 292 
Context-dependent eQTLs help to interpret the effects of disease-associated loci  293 
 294 
The use of brain organoids allowed us to identify context-specific gene regulatory effects that are 295 
underrepresented in standard eQTL studies of post-mortem tissues (Figure 3c, Figure S5a). We reasoned 296 
that oxygen-responsive eQTLs could help to explain uncharacterized genetic associations with disease – 297 
particularly if the eQTL effects were undetectable at baseline. To explore this possibility, we examined 298 
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the overlap of eGenes with GWAS loci assembled from 402 brain-relevant traits in each cell type 299 
(Methods). Across cell types, eGenes with response eQTLs that were latent at baseline (median 258.5 per 300 
cell type, 1,745 total) included a comparable number of disease-associated genes as standard eGenes 301 
detected at baseline (median 215 per cell type, 1,411 total; two-sided paired Wilcoxon test p=0.194; 302 
Figure 4b). Focusing on the 4,713 novel eGenes that were not represented in GTEx cerebral cortex 303 
tissues, we found an average of 158 disease-associated eGenes per cell type (total 1,014) to overlap 304 
oxygen-response eQTLs that were latent at baseline. Finally, of the 218 eGenes that interact with hypoxia 305 
(i.e., topic 7), 55 correspond to a GWAS gene, including 31 genes that are not eGenes in GTEx cortical 306 
tissue. Thus, mapping eQTLs in oxygen-treated brain organoids allowed us to uncover novel, disease-307 
relevant effects that could not be detected in primary cortical tissues.   308 
 309 
Next, we asked whether context-specific eQTLs could revise previous interpretation of disease-associated 310 
SNPs. Focusing on oxygen-responsive lead eQTL SNPs that were associated with brain traits in GWAS, 311 
we identified 146 associations (corresponding to 76 genes) in which eQTL mapping implicated a different 312 
target gene than the original GWAS report or a simple nearest-gene heuristic. For example, we identified 313 
a hyperoxia-specific association between rs2008012 and the expression of H3F3B in immature excitatory 314 
neurons and an oxygen-insensitive effect in dividing intermediate progenitors (Figure 4c, Figure S5g). 315 
rs2008012 is associated with variation in uncinate fasciculus white matter, which connects the limbic 316 
system to the brain’s frontal lobes [70].  This SNP has been described as an eQTL for ten different genes, 317 
principally in blood, with brain data pointing to effects on expression of TRIM47, TRIM65, WBP2, and 318 
ACOX1 [71–73].  While both coding and regulatory mutations in H3F3B are known to cause severe 319 
neurodevelopmental phenotypes, our data suggest that subtle, context-specific regulation of H3F3B 320 
expression during development may also contribute to microstructural brain features.   321 
 322 
Most genes have been associated with at least one regulatory eQTL. However, protein-coding mutations 323 
are relatively rare. We reasoned that genes harboring rare deleterious coding mutations might also be 324 
regulated by common variants – albeit with subtler phenotypic effects. To determine whether context-325 
specific eQTLs can be used to connect common GWAS variants with rare disease-causing mutations, we 326 
assembled results from five large exome studies of neurological or psychiatric traits, finding 1,672 genes 327 
with rare variants that are associated with at least one disease or developmental condition (Methods). Out 328 
of these 1,672 genes, 905 are eGenes in at least one cell type or condition in our data, and 349 have a 329 
significant GWAS association (Figure 4d).  We identified 37 cases (corresponding to 22 genes) in which 330 
the lead SNP was significantly associated with a brain-related GWAS trait (Table S5).  For example, 331 
damaging missense mutations in ATP2A2 confer risk for bipolar disorder (OR 10.4) [74]. In subtypes of 332 
radial glia and mature neurons, we identified a novel eQTL for ATP2A2 (rs4766428) that is strongly 333 
associated with cognitive ability, risk of schizophrenia, and risk of anorexia nervosa [75–78].  Similarly, a 334 
radial glial eQTL (rs9611486) for EP300—rare variants of which have been associated with autism, 335 
developmental delay, and Rubinstein-Taybi syndrome 2—is a risk SNP for anxiety symptoms [79,80].  336 
Importantly, nearly half of the associations found in this comparison were not detected under baseline 337 
oxygen conditions, highlighting the importance of examining diverse cell types and perturbed states in 338 
order to identify trait-relevant regulatory effects.   339 
 340 
Discussion 341 
 342 
In this study, we measured cell-type-specific responses to oxygen stress in a genetically diverse panel of 343 
brain organoids. Oxygen perturbation induced a robust transcriptional response across all assayed cell 344 
types, which included a common oxygen stress response signature as well as cell-type-specific changes. 345 
Leveraging the genetic and cellular heterogeneity present in our organoid panel, we identified thousands 346 
of dynamic, oxygen-responsive eQTLs, many of which have effects that are undetectable at baseline and 347 
therefore are absent in data collected from post-mortem cortical tissues. Moreover, the use of topic 348 
modeling allowed us to identify genetic effects that transcend categorical notions of cellular identity to 349 
regulate cell division, differentiation, and other continuous processes. By collecting functional data from 350 
biological contexts that are difficult to access in vivo, we were able to characterize the putative regulatory 351 
role of hundreds of GWAS loci, many of which had never been associated with an eQTL. Our results 352 
show that repurposing organoids for gene-environment interaction studies is a valuable and increasingly 353 
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tractable approach that complements population genomic studies of primary tissues, and may be 354 
particularly valuable for studies of neurological and psychiatric diseases.   355 
 356 
Our organoid differentiation approach included a small molecule cocktail designed to promote dorsal 357 
telencephalic patterning, which we selected to mitigate the between-organoid variability previously 358 
observed in un-patterned cortical organoids [81]. We nonetheless found substantial differences among 359 
organoids derived from different donor cell lines, with some cell types present in only a minority of 360 
samples. As expected, this cell type heterogeneity resulted in incomplete power to map eQTLs across cell 361 
types, reflecting the trade-off between cell type resolution and abundance inherent to single-cell data 362 
analysis. At the same time, this heterogeneity allowed us to measure gene regulation in biological 363 
contexts that have never before been examined at the population level.  364 
 365 
Though all cell types in our study responded to hypoxia, intermediate progenitor cells were among the 366 
most sensitive to hypoxic challenge. Interestingly, immature neurons showed increased expression of the 367 
intermediate progenitor cell marker TBR2/EOMES following 24-hour hypoxia exposure, possibly 368 
indicating a rapid transition from intermediate progenitor to neuronal identity. Paşca et al. demonstrated 369 
that a 48-hour hypoxic challenge led to an unfolded protein response (UPR)-dependent depletion of 370 
TBR2+ intermediate progenitors, which underwent an apparently precocious developmental transition to 371 
CTIP2+ neurons [82]. Although we observed minimal induction of transcriptional markers of UPR and 372 
found only modest changes in the overall abundance of intermediate progenitor cells, our results are 373 
consistent with these findings, and suggest that the effects of hypoxia on intermediate progenitor cell 374 
development are visible even after a shorter exposure period.  It is also possible that a sustained 48-hour 375 
shift from 21% to <1% oxygen induces a stronger effect with greater dependence on the UPR than our 376 
paradigm, which includes a period of adaptation to physiologic oxygen and a shorter hypoxic treatment. 377 
In either case, our data suggest that intermediate progenitor cells are especially labile in the face of 378 
fluctuating environmental oxygen, and may play an outsized role in linking transient oxygen stress to 379 
brain phenotypes [48,82]. 380 
 381 
We characterized gene regulatory variation in the context of normoxia, hypoxia, and hyperoxia. Though 382 
acute hypoxia-induced brain injury is relatively rare, transient fluctuations in brain oxygen availability are 383 
common, suggesting that the gene regulatory effects in this study may be pervasive in the population. For 384 
example, sleep apnea, in which repeated episodes of oxygen desaturation and restoration conspire to 385 
produce persistent oxidative stress, is estimated to affect nearly a billion people worldwide [83].  Recent 386 
studies using in vivo oxygen biosensors have also observed regions of local tissue hypoxia in rodent 387 
brains, both at rest and during demanding tasks [84,85]. While the significance of these minute-to-minute 388 
environmental fluctuations are not yet clear, their existence raises the possibility that hypoxia-evoked 389 
transcriptional changes may be ongoing features of the brain under normal conditions.  Our results imply 390 
that these conditions elicit a host of gene expression changes with varying consequences across the 391 
population, and that those differences may in turn affect complex brain-related traits.   392 
 393 
Our study focused on just three experimental conditions. By extending the topic modeling framework to a 394 
wider range of treatments, future studies could determine how many of the dynamic eQTLs we 395 
discovered can also be identified in the presence of other in vitro stressors. Recent technical advances, 396 
including supplementing organoids with non-neuronal cell types [86] and in vivo implantation [87–89], 397 
promise to dramatically expand the scope of disease-relevant interactions that can be captured in brain 398 
organoids and further extend the approach employed here. We expect that future studies of regulatory 399 
variation in these contexts will help prioritize targets for in vivo experimental manipulation.  400 
 401 
 402 
Methods 403 
 404 
Stem cell culture and organoid formation 405 
We generated brain organoids using 21 iPSC lines (12 male, 9 female) that belong to an extensively 406 
characterized panel of iPSCs derived from Yoruba individuals from Ibadan, Nigeria (YRI) [51].  407 
Stem cells were maintained on Matrigel-coated plates and fed with StemFlex media (Gibco) 408 
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supplemented with penicillin and streptomycin.  Cells were passaged at least twice before organoid 409 
formation using 0.5 mM EDTA in PBS and seeded on new plates in the presence of CEPT [90].   410 
 411 
Organoids were formed using a protocol modified from published methods [81,91–93].  Cells were 412 
dissociated using 0.5 mM EDTA in PBS and passed through a 40 µm filter, then aggregated by 413 
centrifugation in 96-well ultralow attachment round-bottom plates (Nunclon), with 10,000 cells per 414 
well in 100 µL of StemFlex medium with penicillin/streptomycin, 5 µM XAV, and CEPT.  After 16-415 
hour overnight incubation, medium was replaced with E6 medium supplemented with 100 nM 416 
LDN193189 (Cayman), 5 µM XAV939 (Cayman), 10 µM SB431542 (Cayman), 1X MEM non-417 
essential amino acids (Gibco), and penicillin/streptomycin. Cell aggregates were fed with this 418 
medium every other day for seven days; XAV939 was removed from the medium after the fifth day.  419 
Aggregates were then fed with DMEM/F12 (Gibco) supplemented with N2 (1%, R&D Systems, 420 
AR009), Glutamax (1%, Gibco), chemically-defined lipid concentrate (1%, Gibco), heparin (1 421 
µg/mL, Sigma), and penicillin/streptomycin every other day for four days.  Organoids were then 422 
embedded in Matrigel droplets and transferred to ultralow attachment six-well plates (Nunclon) in 423 
1:1 DMEM/F12:Neurobasal medium (Gibco) with chemically-defined lipid concentrate (1%), N2 424 
supplement (0.5%), MEM NEAA (0.5%), Glutamax (1%), beta-mercaptoethanol, N21 without 425 
vitamin A (1%, R&D Systems AR012), insulin (2 µg/mL, Gibco), and penicillin/streptomycin.  426 
Organoids received this medium every other day for seven days, transferring to an orbital shaker on 427 
the fifth day (16 days after formation).  After this point, the N21 supplement was replaced with N21 428 
with vitamin A (1%, R&D Systems AR008) and organoids were fed three times per week.  After 429 
three weeks in maintenance culture, organoids were gradually transitioned to BrainPhys-based 430 
medium, in which DMEM/F12/Neurobasal base medium was replaced with BrainPhys medium 431 
(StemCell Technologies).  BrainPhys-based medium was introduced in 25% increments into the 432 
DMEM/F12/Neurobasal base medium over the course of four feedings.  BrainPhys medium was 433 
originally optimized for monolayer culture[94] and contains 2.5 mM glucose, a little more than 10% 434 
of the concentration in a 1:1 mixture of DMEM/F12:Neurobasal and similar to or lower than human 435 
cerebrospinal fluid.  The glucose concentration in our BrainPhys-based medium was supplemented to 436 
10 mM (ThermoFisher, A2494001), just under half the concentration of DMEM/F12/Neurobasal-437 
based medium.  Organoids were maintained for four additional weeks in BrainPhys-based medium 438 
before sample collection for a total of eight weeks of maturation.   439 
 440 
Low- and high-oxygen treatment 441 
Organoids were collected in two batches.  One week prior to sample collection, organoids were 442 
adapted to 10% oxygen (5% CO2, nitrogen balance) in a HeraCell 150i incubator (ThermoFisher).  443 
During this period, medium was equilibrated to 10% oxygen prior to feeding, and organoids were fed 444 
24 hours before oxygen stress treatment.  At the start of the experiment, plates of organoids (6-8 445 
organoids per iPSC line per condition) were transferred to incubators maintained at 1% oxygen (5% 446 
CO2, nitrogen balance) or room oxygen (5% CO2) or left at control conditions.  Oxygen 447 
concentrations were verified with a probe-based oxygen meter (Apogee Instruments, MO-200), and 448 
rapid equilibration of cell culture medium to ambient oxygen levels was confirmed in separate pilot 449 
experiments using a PreSens Fibox3 dissolved oxygen measurement device.  After 24 hours, 450 
organoids were collected for single-cell dissociation. 451 
 452 
Single-cell RNA-sequencing sample preparation and processing 453 
Organoids were processed using a combination of enzymatic and mechanical dissociation.  Organoid 454 
medium was replaced with 1 mL papain solution (20 U/mL in EBSS, Worthington LK003150) with 455 
DNase I (100 U/mL, Worthington) supplemented with actinomycin D (5 µg/mL, Sigma A9415) and 456 
TTX (1 µM, Tocris 1069) and organoids were rapidly sheared with a pair of needles.  Enzymatic 457 
digestion proceeded in the incubator, with continuous shaking, for 30 minutes.  Organoids were 458 
pipetted twice with a 7-8 mm fire-polished Pasteur pipet, then returned to the incubator for an 459 
additional 10 minutes of enzymatic digestion.  Samples were gently triturated four times each with 460 
fire-polished Pasteur pipets of decreasing widths (8, 6, and 3 mm) and heavy debris was allowed to 461 
settle.  Samples were transferred to tubes with 2 mL inhibitor solution (3.75 mg/mL ovomucoid, 3.75 462 
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mg/mL albumin, 100 U/mL DNaseI, Worthington LK003150) and spun for 5 minutes at 200 g.  463 
Pellets were resuspended in cold Neurobasal medium with 0.5% BSA and actinomycin D and 464 
counted using a Countess II automated cell counter (Thermo) with Trypan blue.  Cells from different 465 
individuals were pooled to equal concentrations, yielding three combined samples (control, low-466 
oxygen, high-oxygen), spun down, resuspended in cold Neurobasal medium with actinomycin D, 467 
filtered with a 40 µm filter (Flowmi), and counted using a hemacytometer.  Samples were loaded 468 
onto a 10x HT chip (10x Genomics) for single-cell encapsulation according to the manufacturer’s 469 
instructions, targeting approximately 3,000 cells per individual per treatment condition.  Sequencing 470 
libraries were prepared using the 10x Genomics 3’ HT kit v3.1, according to the manufacturer’s 471 
instructions, in a single batch, and libraries were sequenced according to 10x Genomics 472 
specifications, targeting a minimum of 20,000 reads per cell, on an Illumina NovaSeq 6000 473 
instrument at the University of Chicago Genomics Core Facility (RRID:SCR_019196).   474 
 475 
Single-cell RNA-sequencing data processing and annotation 476 
Sequencing data were processed using the cellranger pipeline (v7.0.0) for read alignment (GRCh38) 477 
and cell detection.  Samples were demultiplexed using Vireo [95] with imputed genotype information 478 
from the HapMap Project and 1000 Genomes Project, and droplets assigned to multiple individuals 479 
or with low-confidence assignments (singlet probability <0.95) were excluded.  All subsequent cell 480 
filtering and annotation was performed using Seurat (v4.4.0) [96].  Cells were further filtered to 481 
exclude those with greater than 10% mitochondrial read content, fewer than 2,500 UMIs, or more 482 
than 20,000 UMIs, resulting in 170,841 retained cells (control = 52,671; hypoxia=57,788; 483 
hyperoxia=60,382).  Data were normalized using SCTransform and integrated across batch and 484 
individual using Harmony [97] to minimize inter-individual differences in cell type annotation.  All 485 
subsequent analyses made use of UMI counts, rather than transformed or fitted expression values. 486 
 487 
Cells were annotated using a combination of reference mapping and clustering.  First, cells were 488 
mapped to two published fetal single-cell datasets [52,53] using the MapQuery function in Seurat, 489 
excluding cell types absent in our organoids (microglia, endothelium, pericytes, erythrocytes), to 490 
obtain initial annotations for each cell.  While most organoid cell types exhibited reasonably high 491 
concordance with fetal cell types, certain early and transitional cells could not be unambiguously 492 
annotated using the fetal reference data.  To retain the information provided by these cells, which 493 
may be particularly valuable in the context of our in vitro experimental framework, a secondary 494 
unsupervised clustering approach was used.  Dimensionality reduction and clustering were 495 
performed using Seurat, excluding cell cycle genes (cc.genes in Seurat) from the variable feature set 496 
to avoid spuriously co-clustering dividing radial glia and intermediate progenitor cells.  A high 497 
clustering resolution was selected which produced more clusters than the fetal references and beyond 498 
which further increases did not yield interpretable changes in clusters (resolution 0.6).  Clusters were 499 
then annotated based on the consensus of the fetal reference assignments of their constituent cells, or, 500 
in the case of discrepancy, additional marker gene expression, resulting in 20 cell type classes, 501 
including both “principal” cell types of the developing cerebral cortex and subtypes of neurons with 502 
regional or neuropeptide expression signatures.  As fine cell type classification risks insufficient cell 503 
numbers in each group for some downstream analyses, a secondary, coarser set of annotations was 504 
created by grouping similar cell types (e.g., different inhibitory neuron subtypes) into 10 coarser 505 
classes (Figure S1d). 506 
 507 
Changes in cell type abundance in response to oxygen manipulation were assessed using propeller 508 
[54].  Linear mixed models were estimated for both fine- and coarse-level annotations, using the 509 
treatment condition as a predictor and the parental iPSC line as a blocking variable.  To further 510 
characterize sources of variation in cell type composition, additional experimental factors (collection 511 
batch, sex, iPSC passage number), were included in the model, although we note that only two iPSC 512 
lines allow direct comparisons across batches by repeated measures. 513 
 514 
Differential expression analysis 515 
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To identify genes differentially expressed between treatment conditions, we relied on well-516 
established methods for analyzing bulk RNA-sequencing data.  Single-cell transcriptomes were 517 
summed to pseudobulk samples, each of which corresponded to one combination of individual, 518 
treatment condition, cell type, and collection batch.  Oligodendrocytes and midbrain dopaminergic 519 
neurons excluded from analysis for lack of sufficient sample sizes.   520 
 521 
Before fitting expression models, principal component analysis was used to identify important 522 
covariates contributing to gene expression variation.  Sample variation was strongly driven by the 523 
number of cells contributing to a pseudobulk sample up to 10 cells/pseudobulk sample, with a 524 
weaker effect persisting up to 20 cells/pseudobulk sample.  For differential expression testing, 525 
pseudobulk samples derived from fewer than 20 cells were excluded.  Pseudobulk data were TMM-526 
normalized and genes were filtered using the filterByExpr function in the edgeR package, using 527 
treatment condition as the primary comparison group.  A separate linear mixed model was estimated 528 
for each cell type using dream [55], with treatment condition modeled as a fixed effect and batch and 529 
parental iPSC line as random effects.  530 
 531 
For assessing the contribution of stress-responsive cells to differential expression results, we re-ran 532 
our analysis on two datasets.  In the first, we removed stress-annotated cells from each cell type 533 
before running differential expression analysis (see below).  As removing cells will decrease power 534 
to detect differential expression, we generated a second dataset in which we randomly removed an 535 
equivalent number of cells of each cell type as in our stress-censored data.  We compared the ratio of 536 
differentially expressed genes in the two datasets in each cell type as a measure of the transcriptional 537 
response driven by cells identified as stressed.   538 
 539 
Accurately assessing patterns of gene regulation shared across different cell types and contexts is 540 
complicated by incomplete power.  In order to characterize patterns of sharing across different cell 541 
types and treatments, we used the mashr package [56] to estimate posterior effect sizes and 542 
significance, with the udr package used in place of the default extreme deconvolution algorithm 543 
[https://stephenslab.github.io/udr/index.html].  Genes were considered significantly differentially 544 
expressed with a posterior local false sign rate (lfsr) less than 0.05, and differential expression effects 545 
were considered shared if their posterior log fold-change estimates were within a factor of 2.5 of each 546 
other.   547 
 548 
Enrichment analysis of DE genes  549 
Differentially expressed genes were analyzed for enrichment of functionally defined categories 550 
using the fgsea package [98].  For each differential expression posterior mean and standard 551 
deviation estimate obtained from mash, a t-statistic was calculated and used as the ranking 552 
statistic for fgsea.  The Hallmark gene sets [99] were obtained from MSigDB and used as the test 553 
set of pathways for all cell types and treatment comparisons.   554 
 555 
Stressed cell identification 556 
Cells were classified as stressed by adapting the Gruffi framework [61], which scores local 557 
neighborhoods of cells using positive- and negative-selection gene lists.  The default Gruffi gene lists 558 
include gene ontology terms for glycolysis and endoplasmic reticulum stress.  The ER stress score 559 
did not correlate with hypoxic treatment in our data, and neither score correlated with high-oxygen 560 
exposure.  As an alternative, custom gene lists were identified by mash as being upregulated by 561 
treatment across all fine-classified cell types (minimum two-fold change for low-oxygen treatment, 562 
minimum 1.5-fold change for high-oxygen treatment), with similar responsiveness to treatment 563 
across cell types (maximum log fold-change no more than 5 times the median log fold-change), 564 
yielding a hypoxia treatment score based on 66 genes and a hyperoxia treatment score based on 7 565 
non-overlapping genes (Table S3).  These genes all have known roles in stress response, redox 566 
handling, or the HIF pathway.  After cell neighborhood scoring, classification was performed using 567 
Gruffi, using the custom gene lists as positive selection features and the default negative selection 568 
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(gliogenesis-related genes) gene list.  Cells were classified as hypoxia-responsive, hyperoxia-569 
responsive, or as double-responsive, meaning they were classified by Gruffi as “stressed” using both 570 
gene lists.  Only 223 cells were characterized as “double-responsive,” all of which were annotated as 571 
VLMC.  Sensitivity to treatment was calculated as the fractional change in the proportion of any cell 572 
type classified as responsive compared to the normoxia condition.   573 
 574 
Immunofluorescent labeling and imaging 575 
Organoids were washed with cold PBS and fixed with 4% paraformaldehyde (Electron Microscopy 576 
Sciences) in PBS at 4˚C for 45 minutes.  Organoids were then washed three times with cold PBS and 577 
cryoprotected overnight in a 30% sucrose solution before being snap frozen in OCT (Fisher).  Serial 578 
cryosections (14 µm) were collected in replicate slide sets spanning the thickness of the organoid.  579 
Sections were washed with PBS and blocked with 10% NDS (Jackson) and 0.3% Triton X-100 580 
(Sigma) in PBS for one hour at room temperature.  Antibodies were diluted as follows in PBS with 581 
2% NDS and 0.1% Triton X-100 for staining overnight at 4˚C:  HOPX (rabbit, 1:500, Proteintech, 582 
RRID AB_10693525), S100B (guinea pig, 1:500, Synaptic Systems, RRID AB_2620025), MKI67 583 
(mouse, 1:500, Cell Signaling RRID AB_2797703), RELN (mouse, 3 µg/mL, DSHB RRID 584 
AB_1157892), GABA (rabbit, 1:500, GeneTex RRID AB_11173015), EOMES (rabbit, 1:500, 585 
GeneTex RRID AB_2887210), BCL11B (rat, 1:200, BioLegend RRID AB_10896795), SATB2 586 
(mouse, 1:100, Fitzgerald AB_10809039), SOX2 (rabbit, 1:500, Synaptic Systems RRID 587 
AB_2620099), NES (mouse, 1:500, Santa Cruz RRID AB_1126569), GFAP (mouse, 3 µg/mL, 588 
DSHB N206A/8).  Sections were washed four times with PBS-T (PBS with 0.05% Tween-20) and 589 
once with PBS, then incubated for two hours at room temperature with donkey secondary antibodies 590 
diluted in PBS with 2% NDS and 0.1% Triton X-100 as follows:  anti-rabbit Alexa Fluor 488 (1:500, 591 
Invitrogen, RRID AB_141607), anti-guinea pig Alexa Fluor 647 (1:300, Jackson, RRID 592 
AB_2340476), anti-mouse Cy3 (1:300, Jackson, RRID AB_2340813), anti-rat Alexa Fluor 647 593 
(1:300, Jackson, RRID AB_2340694), anti-mouse Alexa Fluor 647 (1:300, Jackson, RRID 594 
AB_2340862).  Sections were washed four times in PBS-T, rinsed with water, and mounted with 595 
Fluoromount G with DAPI (Invitrogen).  Slides were imaged on an Olympus VS200 Research Slide 596 
Scanner with a Hamamatsu ORca-Fusion Camera at the University of Chicago Integrated Light 597 
Microscopy Core facility, using the DAPI channel for focal mapping.   598 
 599 
Image analysis 600 
For each series of organoid cryosections, the largest section was considered to be the most medial 601 
and was retained for further analysis.  Image segmentation and intensity measurements were 602 
performed using the QuPath (v0.4.3) software package with the Stardist extension [100,101].  The 603 
perimeter of each section was defined using a custom pixel classifier.  Cells were detected using the 604 
Stardist fluorescence cell detection script (dsb2018_heavy_augment.pb), with detection threshold 605 
and resolution (pixelSize) parameters changed (from default 0.5 to 0.3) to better suit our images.  For 606 
each identified nucleus, we obtained mean fluorescence intensities and the linear distance to the 607 
nearest section edge.  Cells were classified as positive for each antibody marker using a per-section 608 
threshold (1-2 standard deviations above the mean across all nuclei within the section) determined 609 
for each antibody channel.  Cell types were defined conservatively from antibody markers as follows:  610 
“dividing progenitors” were defined as MKI67+/S100B-/HOPX-; “radial glia” were defined as 611 
HOPX+/S100B- , MKI67+/S100B-/HOPX+, or SOX2+/S100B+/NES-; “Cajal-Retzius cells” were 612 
defined as RELN+/GABA-/BCL11B-; “intermediate progenitors” were defined as EOMES+/SATB2-613 
/BCL11B-; “immature excitatory neurons” were defined as BCL11B+/SATB2-; “mature excitatory 614 
neurons” were defined as SATB2+;  “inhibitory neurons” were defined as GABA+ (including 615 
GABA+/RELN+ and GABA+/BCL11B+); “glia” were defined as S100B+/HOPX-/MKI67-, 616 
S100B+/SOX2+/NES+, or GFAP+, consistent with marker combinations seen in our transcriptomic 617 
dataset.  Note that these markers do not fully label all cells within a given cell type, and do not 618 
collectively cover all cell types observed by single-cell RNA-seq, but instead were chosen to localize 619 
identifiable groups of cells.   620 
 621 
Topic modeling  622 
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Topic modeling offers an alternative to fixed-category classification of cell states, allowing for 623 
cells to be described quantitatively by multiple gene expression programs.  To alleviate the 624 
computational burden of topic model estimation and downstream analysis, single-cell data were 625 
first aggregated into 10,707 “pseudocells” by first clustering at high resolution (resolution=20) 626 
and then splitting each cluster of related cells by parental cell line and treatment condition.  The 627 
fastTopics package [102,103] was used to fit models with a range of topics (k=10-40), and the 628 
most parsimonious model that still retained a clear hypoxia-associated topic was selected.  629 
Models were estimated by Poisson non-negative matrix factorization (fit_poisson_nmf) of the 630 
pseudocell count data using 400 expectation-maximization steps, followed by 200 stochastic 631 
coordinate descent steps.  A multinomial topic model was obtained using the poisson2multinom 632 
command.  Individual topics were analyzed by grade-of-membership differential expression 633 
analysis [104], comparing topic-specific DE results to cell type- or treatment-specific marker 634 
genes.   635 
 636 
Cis eQTL analysis 637 
Cis eQTLs were identified separately for each combination of cell type and oxygen treatment 638 
condition using methods originally developed for bulk RNA-seq analysis.  We obtained pseudobulk 639 
expression measurements by summing UMI counts for all protein-coding genes across cells grouped 640 
by parental iPSC line, treatment, and cell type, excluding pseudobulk samples derived from fewer 641 
than 20 cells.  Cell types present in fewer than 7 individuals after pseudobulk filtering were excluded 642 
from subsequent analysis.  Samples for each combination of cell type and oxygen exposure condition 643 
were TMM-normalized and expressed as log CPM values using the edgeR package [105].  Genes 644 
were filtered using the filterByExpr function in the edgeR package, with parameters 645 
min.count.cpm=6, min.prop.expr=0.5, and min.total.count=30, and the bottom quartile of genes 646 
ranked by standard deviation was omitted.  Expression values were centered and scaled across 647 
individuals for each gene and, for each gene, rank-normalized across individuals [106].  QTL testing 648 
was performed using MatrixEQTL [107].  Genotype data were filtered to include variants with minor 649 
allele frequencies greater than 0.1 and Hardy-Weinberg equilibrium p-values greater than 10-6 using 650 
vcftools, and all variants within 50 kb of a gene’s transcription start site were tested for association.  651 
Gene expression principal components, obtained using the prcomp function in R, were used as 652 
covariates.  The number of gene expression principal component covariates was chosen for each cell 653 
type and treatment so as to explain more variance in our data than in a random permutation of the 654 
data [108].   655 
 656 
Most genetic effects on gene expression are expected to be shared across conditions.  To increase our 657 
ability to detect subtle eQTL effects, mash was used to compare the strongest variant-gene 658 
associations across treatment conditions independently within each cell type.  Note that this approach 659 
does not allow us to make rigorous statements about sharing across different cell types, but rather 660 
across treatment conditions within a single cell type.  MatrixEQTL output was reformatted, and input 661 
data structures were created using the fastqtl2mash tool [56].  Because samples from different 662 
treatment conditions derive from the same parental cell lines, we the correlation structure was first 663 
estimated using mashr’s expectation-maximization tool.   Posterior eQTL effects were considered 664 
shared across two (or more) conditions if the variant-gene pair was significant (i.e., local false sign 665 
rate < 0.05) in at least one of the conditions and the posterior effect size estimates differed by a factor 666 
of less than 2.5.  Conversely, eQTL effects were considered oxygen-responsive if they were not 667 
shared in at least one oxygen condition.   668 
 669 
Topic-interacting cis eQTLs 670 
Cis eQTLs that interact with cellular context were identified using CellRegMap [66].  The 671 
cellular environment for each pseudocell was defined by the 15-topic model estimated using 672 
fastTopics.  Genetic similarity among pseudocells was obtained from Plink [109], and 673 
normalized gene expression counts for each pseudocell were used as input for CellRegMap.  674 
Because of the substantial computational cost of a genome-wide scan for interaction effects, tests 675 
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were restricted to eGenes initially identified in the standard pseudobulk eQTL framework, 676 
testing SNPs with equal or stronger evidence of association as the mash lead SNP in any 677 
condition.  Significant CellRegMap results were defined by applying a q-value threshold of 0.1 678 
to the Bonferroni-corrected p-values.   679 
 680 
 681 
Comparison to disease genes 682 
Disease-associated genes and variants were obtained from various sources (see Tables S5 and S6).  683 
For results obtained from the GWAS Catalog [110], intergenic variants were assigned to the gene 684 
reported in the initial study or, when no gene was reported, to the nearest gene.  Traits were filtered 685 
to include at least 15 associations and no more than 500 associations, and associations were further 686 
filtered to consider only genome-wide significant results (p<5x10-8).  Of the resulting 2989 traits, 402 687 
were categorized as having neurological or psychiatric relevance and the remaining were considered 688 
to be “off-target” traits (Table S6).  For gene-level analyses, we compared eGenes (genes with 689 
significant eQTL effects after mash) to trait-associated genes.  For variant-level comparisons, we 690 
used the lead variant used by mash, which is the variant with the strongest association in any of the 691 
three treatment conditions used as input.   692 
 693 
For comparisons with genes harboring rare variants, we obtained gene lists from the SCHEMA 694 
[111], SFARI (syndromic and category 1 genes) [79], Epi25 [112], BipEx [74], and Deciphering 695 
Developmental Disorders [113] projects.  We filtered these gene lists using the measures of 696 
significance available for each dataset to obtain a list of 1,672 unique genes (Table S5). 697 
 698 
For comparisons with GTEx eGenes, we combined the eGenes found in “Brain Cortex” and “Brain 699 
Frontal Cortex” tissue in the GTEx v8 data release.  For wider comparisons to assess the novelty and 700 
tissue distribution of example eQTLs, we queried the OpenTargets Genetics [71,72] database and 701 
results from the CommonMind Consortium [73].  702 
 703 
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Figure Legends 1113 
 1114 
Figure 1.  A panel of brain organoids yields diverse cell types across individuals.  (a) Workflow 1115 
of data collection.  Brain organoids were first differentiated (see Methods) and adapted to 1116 
physiological oxygen before 24-hour exposure to high, low, or control oxygen levels. Data 1117 
shown in this figure are taken from the 10% “normoxia” condition.  (b) UMAP representation of 1118 
organoid single-cell transcriptomes highlighting principal cell types obtained across all 1119 
individuals in our iPSC panel in the normoxia condition.  (c) Proportion of cells from each 1120 
parental cell line by annotation, with colors corresponding to the UMAP shown in (b). 1121 
 1122 
Figure 2.  Transcriptional responses of brain organoids to oxygen changes.  (a) Fraction of 1123 
shared differential expression effects between cell types and conditions.  Sharing was assessed 1124 
from MASH posterior estimates of significance and effect sizes (see Methods and Figure S2).  1125 
(b) Enrichment of gene annotations among differentially expressed genes across cell types and 1126 
conditions.  Annotations are taken from the MSigDB Hallmark gene sets, with enrichments 1127 
calculated by fgsea.  (c) Fractional change in hypoxia-stressed fraction of each cell type after 1128 
hypoxia exposure (coarse cell classification).  Cells were classified as hypoxia-stressed or 1129 
hyperoxia-stressed by Gruffi using a gene set derived from treatment responses shared across all 1130 
cell types.  See also Figure S4.  (d) Distribution of cell distances to organoid perimeters 1131 
measured after immunofluorescent labeling.  “Unlabeled” measurements are derived from DAPI-1132 
labeled nuclei with no immunofluorescent label.  Black dots represent sample means.  Note that 1133 
“Dividing Cells” encompass both dividing radial glia and dividing intermediate progenitors.  (e) 1134 
Average topic loading for each cell type and treatment condition.  Topic 7 tracks hypoxia 1135 
exposure, while other topics reflect processes found in one or several cell types. 1136 
 1137 
Figure 3.  Discovery of treatment context-specific eQTL effects across cell types.  (a) Number 1138 
of eGenes identified in each cell type, classified as “standard” (blue) or oxygen-responsive (red) 1139 
according to contexts in which effect sizes differ by less than 2.5-fold.  For each category of 1140 
oxygen-responsive eGenes, shared effects are indicated by orange lines and the condition with a 1141 
uniquely different eQTL effect is bolded (N = normoxia, lo = hypoxia, hi = hyperoxia).  Total 1142 
eQTLs of each category are indicated by stars (right axis).  (b)  Number of eGenes identified in 1143 
each cell type, classified by sharing across oxygen treatment conditions and detection in 1144 
normoxia condition.   Light and dark shades of red and blue categories, respectively, sum to the 1145 
blue and red categories shown in (a).  (c) Fraction of eGenes identified in this study that are 1146 
classified as eGenes in GTEx cerebral cortex tissues (see Methods).  Treatment context-specific 1147 
eGenes that were not detected in control conditions were less likely to be found in GTEx 1148 
(p=0.0067, one-sided paired Wilcoxon test of oxygen-insensitive category against oxygen-1149 
responsive/undetected in normoxia category).   1150 
 1151 
Figure 4.  Organoid eQTLs can help interpret human disease genetics. (a) Example topic-1152 
interacting eQTLs.  ABCA1 expression is correlated with the inferred cell environment, as 1153 
defined by linear combinations of topics, and this effect is largely driven by cortical hem and 1154 
glial progenitor topic 15 in a genotype-dependent manner.  The WDR45B eQTL effect is largely 1155 
explained by hypoxia-associated topic 7.  Each point corresponds to a single pseudocell used for 1156 
CellRegMap topic interaction QTL mapping.  (b) Number of eGenes in each cell type which are 1157 
the nearest gene to a genome-wide significant GWAS finding among 402 brain-related traits.  (c) 1158 
Example of a cell type- and treatment-specific regulatory association matching a significant 1159 
GWAS variant.  (d) Number of eGenes in each cell type and discovery condition for which rare 1160 
loss-of-function alleles have been associated with disease (see Methods).   1161 
 1162 
Figure S1.  Characterization of organoid cell type composition.  (a) Marker gene expression in 1163 
each cell type annotated in Figure 1.  (b) Organoids maintained at atmospheric (21%) or 1164 
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physiological (10%) oxygen for 1 week prior to collection show similar patterns of cell type 1165 
composition. (c) Two samples were collected twice from distinct organoid formation batches.  1166 
Although principal cell types are present in similar proportions, batches differ in the abundance 1167 
of inhibitory neurons (gray), VLMC (lime green), mature excitatory neurons, and unclassified 1168 
other neurons (blue).  (d) Correspondence between “fine” and “coarse” classification of cell 1169 
types.  (e) Number of individuals retained per cell type after pseudobulk filtering, and number of 1170 
cell types retained per individual, in the normoxia condition (representative of all sample 1171 
collection conditions).  Dashed lines indicate medians.    1172 
 1173 
Figure S2.  Differential expression after oxygen manipulation.  (a) Composition of organoid 1174 
samples across individuals and treatment conditions.  Note that control condition data are 1175 
identical to those shown in Figure 1.  (b) Shared fraction across cell types and conditions for 1176 
genes with expression changes >1.5-fold.  (c) Proportion of tested genes in each cell type that 1177 
were differentially expressed (FDR<0.05, light colors; FDR<0.05 and fold-change>1.5, dark 1178 
colors).  The number of genes tested in each comparison is plotted as a line (right axis).  (d)  1179 
Differential expression results for coarsely classified cells, as shown in (c).  (e) Proportion of 1180 
differential expression effects (FDR<0.05, left; FDR<0.05 and fold-change>1.5, right) shared 1181 
between cell types and treatment conditions in coarsely classified cells, analogous to Figures 2a 1182 
and S2b.    1183 
 1184 
Figure S3.  Cell abundance explains some, but not all, differences in differential expression 1185 
results between cell types.  (a) Total number of differentially expressed genes (FDR<0.05) in 1186 
each cell type increases with cell type abundance, and corresponding number of individuals in 1187 
differential expression comparison.  (b) The effect shown in (a) is not driven by differences in 1188 
transcriptome size or numbers of genes tested across cell types.  Note that even among cell types 1189 
of similar abundance, differential expression detection rate varies by almost twofold.  (c) Results 1190 
as shown in (a), excluding small differential expression effects (<1.5-fold change).  Note that 1191 
excess DE genes discovered in abundant cell types largely show small effect sizes.  (d) Volcano 1192 
plots of grade-of-membership differential expression testing of three topics, corresponding to 1193 
Figure 2e.  Choroid plexus markers are highlighted for topic 3, dividing cell markers are 1194 
highlighted in topic 4, and cell type-shared hypoxia-response genes are highlighted in topic 7. 1195 
 1196 
Figure S4.  Stressed cell identification and responses to treatment.  (a) Fractional change in cell 1197 
proportions classified as hypoxia-stressed and hyperoxia-stressed after high-oxygen treatment in 1198 
coarsely classified cells.  Note that elevated environmental oxygen reduces the fraction of cells 1199 
classified as hypoxia-stressed.  (b)  Fractional change in cell proportions classified as hypoxia-1200 
stressed and hyperoxia-stressed after low- or high-oxygen treatment using fine-grained cell type 1201 
classifications.  (c) Canonical cell type markers are maintained in stressed cells.  Cells classified 1202 
as “stressed” retain key markers of their identities. (d) Stress-responsive cells account for many, 1203 
but not all, of the DE genes (FDR<0.05 and fold-change>1.5) induced by hypoxia in the most 1204 
responsive cell types.  Censoring stressed cells reduces DE genes more than randomly censoring 1205 
matched proportions of cells for indicated cell types.   1206 
 1207 
Figure S5.  Oxygen-responsive eGenes are less abundant in GTEx and include large numbers of 1208 
GWAS genes.  (a) Fractions of eGenes in each category classified as eGenes in GTEx cerebral 1209 
cortex tissues.  Oxygen-responsive eGenes boxed in red are less likely to be present in GTEx 1210 
compared to eGenes boxed in blue (p=0.0083, one-sided paired Wilcoxon test).  (b) Results as 1211 
shown in (a) for eGenes identified from coarsely classified cell types (p=0.0039, one-sided 1212 
paired Wilcoxon test). (c) Number of eGenes identified in each coarsely classified cell type, 1213 
analogous to Figure 3a.  (d) Number of eGenes identified in each coarsely classified cell type, 1214 
analogous to Figure 3b.  (e) Fractions of eGenes, identified in coarsely classified cell types, in 1215 
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each category classified as eGenes in GTEx cerebral cortex tissues, analogous to Figure 3c 1216 
(p=0.055, one-sided paired Wilcoxon test of oxygen-insensitive category [blue] against oxygen-1217 
responsive/undetected in normoxia category [dark red]).  (f) Number of eGenes in each coarsely 1218 
classified cell type which are the nearest gene to a genome-wide significant GWAS finding 1219 
among 402 brain-related traits, analogous to Figure 4b.  (g) Non-dynamic (“standard”) eQTL 1220 
effect of rs2008012 in dividing intermediate progenitor cells.  This eQTL has an oxygen-1221 
responsive effect in immature neurons (Figure 4c).    1222 
Table S1.  Results from propeller testing of oxygen treatment, sex, collection batch, and iPSC 1223 
passage number on cell type proportions. 1224 
 1225 
Table S2. Results from differential expression testing using dream.   1226 
 1227 
Table S3.  Gene lists used for identifying oxygen-responsive cells. 1228 
 1229 
Table S4.  Results of eQTL mapping and mash analysis.   1230 
 1231 
Table S5.  Rare variant genes used for analysis of eQTL results and rare variant gene-eQTL-1232 
GWAS phenotype triads. 1233 
 1234 
Table S6.  GWAS study accession identifiers (GWAS Catalog) used for analysis of eQTL 1235 
results. 1236 
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