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ABSTRACT

RNA sequencing has become an important method
to perform hypothesis-free characterization of
global gene expression. One of the limitations of
RNA sequencing is that most sequence reads rep-
resent highly expressed transcripts, whereas low
level transcripts are challenging to detect. To
combine the benefits of traditional expression
arrays with the advantages of RNA sequencing, we
have used whole exome enrichment prior to
sequencing of total RNA. We show that whole
exome capture can be successfully applied to
cDNA to study the transcriptional landscape in
human tissues. By introducing the exome enrich-
ment step, we are able to identify transcripts
present at very low levels, which are below the
level of detection in conventional RNA sequencing.
Although the enrichment increases the ability to
detect presence of transcripts, it also lowers the
accuracy of quantification of expression levels.
Our results yield a large number of novel exons
and splice isoforms, suggesting that conventional
RNA sequencing methods only detect a small
fraction of the full transcript diversity. We propose
that whole exome enrichment of RNA is a suitable
strategy for genome-wide discovery of novel tran-
scripts, alternative splice variants and fusion genes.

INTRODUCTION

The introduction of high-throughput genome wide
approaches to study transcription has revealed a signifi-
cant diversity and complexity of transcription. Tiling
arrays were used to discover that a large fraction of the
human genome is transcribed at low levels (1-4) . Arrays
targeted at splice junctions have provided further insight

into the diversity of transcripts and indicate that many
isoforms are specific to certain cell types or developmental
stages. Recently, the ability to use high-throughput
technologies to sequence RNA (RNA-seq) has further
expanded our understanding of the human transcriptome
(1,4,5). The unprecedented levels of sensitivity and low
background of deep RNA-seq compared with other
methods (6,7), enable the identification and characteriza-
tion of previously unannotated gene structures, exons and
alternative splice isoforms (8–12). At the same time, the
apparent differences between expression array results and
RNA-seq data have initiated a discussion regarding the
true nature and function of low level pervasive transcrip-
tion (13,14). To a large extent, these differences may be
explained by the fact that arrays are targeting specific
subsets of the total pool of RNA, whereas RNA-seq
targets all transcripts. Despite the fact that the introduc-
tion of RNA-seq has offered a deeper insight into the
complexity of the transcriptome, the catalogue of all
expressed transcripts is still far from complete. Several
studies have highlighted that while large amounts of
reads map to intergenic and intronic regions (15,16), po-
tentially indicative of new exons or functional RNA, a
large fraction of sequence reads are also used up by
highly expressed transcripts, thereby lowering the ability
to detect other transcripts present at low levels (15,16).
One way to increase the ability to detect rare transcripts

is to use target enrichment. This approach has previously
been used on RNA for specific subsets of genes (17) and
was recently combined with deep sequencing to reveal a
large number of novel transcripts for select regions of the
genome (18). In this study, we aimed to utilize the
increased sensitivity of targeted enrichment in combin-
ation with genome wide assessment of transcription by
using whole exome capture of RNA followed by massively
parallel sequencing, hypothesizing that we may improve
detection of low-level transcripts genome wide. We
compare our results with conventional RNA sequencing
of the same samples. Our data support that exome RNA
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capture sequencing (ExomeRNAseq) improves detection
of splice junctions and rare transcripts, but is less quan-
titative, as compared with total RNA sequencing
(TotalRNAseq). Our data support that ExomeRNAseq
is an advantageous strategy for RNA based genome-wide
transcript discovery and may prove to be an efficient
strategy for RNA-based clinical diagnostics.

MATERIALS AND METHODS

Preparation of cDNA

Total RNA for all samples was purchased from Biochain.
Starting with 1 mg of total RNA, cDNA was synthesized
with the SMARTer Pico PCR cDNA Synthesis kit
(Clontech) according to manufacturer’s recommenda-
tions. The resulting first strand cDNA from each RNA
sample was then amplified with the Advantage2 PCR kit
(Clontech) using 18 polymerase chain reaction (PCR)
cycles. 3.5 mg of double-stranded cDNA was used for
library preparation.

Capture and sequencing

The cDNA was sheared using a Covaris instrument
(Covaris, Inc.). Fragment libraries were created from the
sheared samples using AB Library Builder System and
captured using the Agilent SureSelect 50Mb exome en-
richment kit, according to the manufacturer’s protocols.
Exome capture was conducted by hybridizing the cDNA
libraries with biotinylated RNA baits for 24 hr followed
by extraction using streptavidin-coated magnetic beads.
Captured cDNA was then amplified followed by
emulsion PCR using EZ Bead System and sequenced
using SOLiD4. Each sample was sequenced on 1/3 of a
slide, producing between 98 261 580 and 148 056 068
fifty base-pair reads per library. Total RNA sequencing
for the same samples was performed as part of a previous
study (16).

Sequencing and mapping

Mapping of the reads from all five cDNA libraries and the
five total RNA libraries were conducted using version
1.3.1 of Bioscope (Applied Biosystems) and version 1.3.3
of TopHat (19), using default settings for color space
reads. All reads were aligned to the hg19 assembly
version (GRCh37) of the human genome and the
prebuilt color-space index of the hg19 genome assembly
(TopHat) was acquired from the TopHat homepage
(http://tophat.cbcb.umd.edu/). The poly(A) dataset
(SRA accession SRX056683) was downloaded from the
Short Read Archive (SRA) and mapped using TopHat.

Gene expression

Gene expression was estimated based on reads per
kilobase per million mapped reads (RPKM) (20) over
RefSeq transcripts (downloaded from the UCSC
Genome Browser). The RPKM was calculated for the
exonic regions of each transcript. To establish a cut-off
for expressed transcripts, RefSeq annotations were
compared with background RPKM values as follows.

To create the distribution of expression representing
background, regions of a length between 120 and 240 bp
were randomly distributed in regions of the genome not
covered by any RefSeq transcripts, UCSC known genes,
ENSEMBL gene predictions or UCSC spliced expressed
sequence tags (ESTs). Centromeric and telomeric regions
were also excluded. For each sample and each transcript in
RefSeq a random transcript was created using as many
random regions as there were exons in the transcript.
The RPKM was then calculated for each of these
random transcripts. The random transcript distribution
constructed for each sample was then compared with the
RefSeq transcript distribution of that sample. The cutoff
was then set so that 98% of the random transcripts
(representing background) were removed. To correct for
difference in read count between the TotalRNAseq and
ExomeRNAseq samples, aligned reads were randomly
drawn from the ExomeRNAseq sample to a create
dataset with equal number of aligned reads as in the cor-
responding TotalRNAseq dataset.

Identification of differentially expressed transcripts

Cufflinks Cuffcompare version 1.1.0 (http://cufflinks.cbcb
.umd.edu) was used to calculate the difference in expres-
sion between all samples in a pair wise comparison.
Corresponding ExomeRNAseq and TotalRNAseq
sample pairs were then compared as follows. Transcripts
determined not to be expressed in either sample were
excluded from all four samples. The remaining transcripts
were then tested for differential expression using
Cuffcompare and transcripts determined to be differen-
tially expressed were counted for each pair. Presented
results correspond to comparison between frontal cortex
and liver.

Splice junction analysis

TopHat was used to calculate the number of splice junc-
tions in each tissue (TotalRNAseq and ExomeRNAseq),
as well as for the poly(A) dataset. Novel junctions were
defined by comparison with the UCSC ‘known genes’
(downloaded from UCSC Genome Browser) and each
detected junction not annotated among the known genes
were considered novel. To estimate the false positive rate
of novel junctions, they were compared with the spliced
ESTs track (downloaded from the UCSC Genome
Browser). The junctions corresponding to an annotation
in the spliced ESTs track were counted as a validation of a
novel junction. Further categorization of the splice junc-
tions was made using in-house Perl scripts, defining each
junction-end not overlapping an exon as a marker for a
novel exon. A subset of novel junctions was then chosen
for validation on the basis that they were located in
sequences amenable to standard PCR primer design.

PCR and sequencing

Novel exons and splice isoforms were validated using
PCR. The PCR was performed with initial denaturation
at 95�C for 10 min followed by 35 cycles of (95�C for 15 s,
60�C for 30 s and 72�C for 30 s). The reaction contained
5 ng human fetal frontal cortex single stranded cDNA,
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0.4 mM for each primer (Supplementary Table S1) and
12.5 ml of Maxima Hot Start Taq DNA Polymerase
(Fermentas) in a total volume of 25 ml. The PCR
products were subsequently analysed on 2% agarose gel.
The products were confirmed by Sanger sequenced using
standard protocols. Single-stranded cDNA, used in the
PCR and quantitative real-time PCR (qRTPCR) reac-
tions, was synthesized from 1 mg of total RNA using
SMARTer Pico PCR cDNA Synthesis Kit (Clontech)
according to the manufacturer recommendations.

Quantitative real-time PCR

qRTPCR was used to measure the relative expression of
the newly identified alternatively spliced exons in human
fetal frontal cortex cDNA. The qRTPCR was performed
with Stratagene Mx3000P in 96-well plates. The reaction
was carried out with initial denaturation at 95�C for
10 min followed by 40 cycles of denaturation at 95�C
for 15 s, primer annealing at 58�C for 30 s and extension
at 72�C for 30 s followed by dissociation curves step. The
qRTPCR contained 12.5 ng single stranded cDNA,
0.4 mM for each primer (Supplementary Table S1) and
12.5 ml Maxima SYBR Green/ROX qPCR Master Mix
(Fermentas) in 25 ml reactions. All samples were amplified
in triplicate and the mean values were used to calculate the
expression level of each target. The relative expression
levels in the samples were determined using the corres-
ponding standard curve for each primer pair. Expression
levels were normalized to the level of b-actin. Raw data
were analysed using MxPro software (Stratagene).

RESULTS

Sequencing and expression analysis

Target enrichment of exome sequences was performed in
solution with the Agilent SureSelect 50Mb kit to capture
cDNA targets. RNA from four different human tissues
was used for the experiments (adult liver, adult cortex,
fetal liver and fetal cortex), with fetal cortex prepared
and run in duplicate (independent capture, library and
sequencing) to evaluate reproducibility. Captured targets
were sequenced using SOLiD4, generating on average
73 million mapped reads per tissue. For evaluating the
results, we used the RefSeq transcripts and calculated
the RPKM (20) for each transcript in each tissue. We
first tested the reproducibility of the method by comparing
the RPKM values for corresponding transcripts in the
replicate experiment (Figure 1A). The results are highly
correlated (Pearson correlation=0.99), indicating that
the experimental procedure is consistent and reproducible.
When comparing RPKM values for corresponding tran-
scripts between ExomeRNAseq and TotalRNAseq from
the same RNA sample only a weak correlation could be
seen (Supplementary Figure S1A). We further investigated
these differences by exploring the sequence read distribu-
tions. In addition to ExomeRNAseq and TotalRNAseq, a
Poly(A) selected RNA-seq dataset produced using the
same sequencing method was downloaded from the
Short Read Archive and included in the comparison. We
plotted the fraction of reads mapping to exonic, UTR,

intronic and intergenic regions to explore the distribution
of coverage of the genome. The result shows that a signifi-
cantly larger fraction of the reads fall into exons in the
ExomeRNAseq samples, as compared with the two other
RNA-seq approaches (Figure 1B).
To determine a cut-off to define expressed genes, we

created a random transcript distribution by creating
exon-sized regions corresponding to each RefSeq tran-
script, which were then distributed in non-coding parts
of the genome (representing background). We then
defined all genes that had an RPKM higher than the
98th percentile of the random transcript distribution as
expressed (Supplementary Figure S1B). The results show
that ExomeRNAseq yields a substantially larger number
of expressed transcripts than TotalRNAseq (30 949 vs.
26 206 transcripts, see Figure 1C), indicating that many
transcripts expressed at a low level can be readily
detected using the capture strategy. The results are
similar in all tissues and remain highly significant after
correcting for different read counts in the datasets
(Supplementary Figure S2). We also compared the distri-
bution of the 20% lowest expressed transcripts in
TotalRNAseq with the expression of the same transcripts
in ExomeRNAseq, and vice versa, and conclude that tran-
scripts with low expression levels in TotalRNAseq gener-
ally show higher expression in the ExomeRNAseq data
(Supplementary Figure S1C). A smaller number of tran-
scripts are detected in total RNA but not in the capture
data (n=1708), and these represent transcripts that lack
capture probes (14%), have a low number of probes, or
regions where no target was captured despite the presence
of probes (something that also evident for some probes in
standard DNA-based exome sequencing). To further in-
vestigate the quantitative properties of ExomeRNAseq,
we used Cufflinks (21) to identify RefSeq transcripts that
were differentially expressed between tissues. We find that
the fraction of differentially expressed transcripts is
similar in ExomeRNAseq and TotalRNAseq, but with a
larger absolute number of differentially expressed genes
identified in the capture data (Supplementary Figure S3).
To further test the quantitative ability of

ExomeRNAseq, we performed qRTPCR on fetal frontal
cortex single stranded cDNA to measure the relative ex-
pression of exonic regions selected from twelve different
genes. Five of the selected regions exhibited differential
expression between ExomeRNAseq and TotalRNAseq
and seven were chosen in an unbiased manner. The
qRTPCR showed a better correlation with expression
values from TotalRNAseq, and we conclude that this
may be partially explained by differential capture effi-
ciency between probes in the exome capture (Figure 1D).

Splice junction discovery

Discovery and detection of novel transcript isoforms and
alternative splicing events are vital for expanding our
knowledge of the transcriptome. As our result shows
that a higher fraction of the ExomeRNAseq reads map
to exons, we next sought to identify splice junctions and
novel exons in the capture data. We used TopHat (19) and
SplitSeek (22) on our sequencing results to identify splice
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junctions in each sample and found similar results with
both algorithms (data not shown). On average, 100 000
junctions were identified in the ExomeRNAseq samples,
compared with an average of 25 000 junctions in the
TotalRNAseq samples. To account for all relevant tech-
nologies, we investigated a dataset based on poly(A)-
RNAseq (SOLiD4 sequencing of neural progenitor

cells). The poly(A) dataset yielded more junctions
(�44 000) than TotalRNAseq, but substantially fewer
than our ExomeRNAseq approach (Figure 2A). As the
number of mapped reads was slightly different between
samples, the fraction of reads spanning splice junctions
was calculated to compare samples (Figure 2B). In accord-
ance with the significantly higher fraction of reads

Figure 1. Sequencing and expression analysis. (A) Plot showing the correlation of RPKM values for each transcript in the two independent replicate
experiments (adult cortex) from the same starting material. The results show a very high correlation (R=0.99), indicating that the protocol is stable
and results are reproducible. (B) A bar graph showing the fraction of the reads mapping to intronic, exonic, intergenic and UTR regions for each
RNA-seq dataset. The results indicate that ExomeRNAseq have the highest fraction of reads mapped to exonic regions. (C) A Venn diagram
showing the number of genes expressed in adult cortex tissue using ExomeRNAseq (blue) and TotalRNAseq (green). The overlap of the circles
represents genes shown to be expressed using both sequencing approaches. (D) Graphs showing the expression measured by TotalRNAseq,
ExomeRNAseq and qRTPCR. For clarity, the values of each technology were normalized using the highest values measured by that approach.
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mapping to exonic regions (Figure 1B) and better ability
to detect low level transcripts, ExomeRNAseq results
show a significantly larger fraction of spliced reads than
any other investigated method.

To investigate the nature and novelty of the splice junc-
tions identified, we downloaded annotations for known
genes from UCSC (23) (containing more annotated
splice junctions than RefSeq) and compared these with
the junctions identified in each of the samples. The junc-
tions were divided into two different categories, known
and novel, where those assigned as ‘known’ match a
splice junction reported in the known genes track. As
expected, the ExomeRNAseq had a greater abundance
of novel splice junctions compared with the other
RNA-seq approaches. To assess the impact of sequencing
depth on splice junction discovery in TotalRNAseq, we
resequenced the fetal frontal cortex sample, producing
four times more reads than the previous TotalRNAseq
datasets. However, the deeper sequencing of
TotalRNAseq led to a marginal increase in splice
junction detection (totaling 25 575 junctions), indicating
that an extreme depth of coverage would be required to
have similar power to detect splice junctions as we show
with ExomeRNAseq.

Novel splice junction detection
In total, we identify an average of 22 432 and 3036 novel
splice junctions in the ExomeRNAseq and TotalRNAseq
data, respectively. Our definition of ‘‘novel’’ is that the
splice junctions are not part of current mRNA annotations
in the ‘‘known genes’’ track at UCSC. All novel splice junc-
tions were further categorized into those bridging known
exons in the same transcripts, connecting a known and a
novel exon, connecting two non-exon regions, or linking
independent transcripts (Figure 2C). The novel isoforms
identified by the different RNA-seq approaches show a
similar distribution between these categories.
The large number of novel splice junctions identified

could be due either to a large number of false positive
junctions or that there are indeed a considerable number
of hitherto unannotated isoforms in the human transcrip-
tome. To further assess the false positive rate, we
determined the number of novel splice isoforms that
match junctions reported in the EST data (downloaded
from UCSC). Even though the ExomeRNAseq had a sub-
stantially larger number of novel splice junctions
compared with TotalRNAseq, we find the fraction of
junctions overlapping spliced ESTs to be similar,
indicating that there is no increase in false positive splice

Figure 1. Continued.
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junctions in the capture data (Supplementary Figure S4).
To experimentally validate novel splice junctions, we
grouped our findings into four categories: novel alterna-
tive splice isoforms, novel 50 exons, novel exons located

within genes and novel 30 exons (Figure 3A). Three splice
junctions and six novel exons were selected from different
genes for validation using PCR. All PCRs were analysed
by gel electrophoresis, and further confirmed by Sanger

Figure 2. Splice junction discovery (A) Total number of splice junctions identified in each sample in ExomeRNAseq and TotalRNAseq. For
comparison, the number of splice junctions identified in a publicly available poly(A)-RNAseq performed with the same sequencing platform is
included. (B) Bar graph showing the fraction of splice junction reads. The two bars plotted for each tissue shows the fraction (in orange) of spliced
reads detected in ExomeRNAseq and TotalRNAseq, respectively. (C) The number and distribution of novel splice junctions in the data. The
distributions plotted show different types of novel splice junctions including those bridging known exons in same transcripts (Novel Junctions),
those connecting a known and a novel exon (NovelExons), those connecting two non-exon regions (Novel/Novel), and junctions linking independent
transcripts (Transcript/Transcript).
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Figure 3. Identification and validation of novel exons and splice junctions. (A) A schematic illustration for the workflow used for identification and
validation of novel exons and splice isoforms. Examples from each category including novel 5’ exon (case 1), novel internal exon (case 2), novel splice
isoform (case 3) and novel 30 exon (case 4) were chosen for experimental validation. Novel exons and alternative transcripts were identified using
TopHat, and validated using PCR and Sanger sequencing. The horizontal arrows indicate the primers used for experimental validation. (B) Novel
alternative splice isoforms were validated for five different genes. The lower panel shows the expected PCR products of the transcripts from frontal
cortex cDNA. The top panel shows (qRTPCR) results representing relative RNA levels of the known (K) and novel (N) splice isoforms. The results
indicate that the novel splice isoforms are expressed at lower level than the previously known isoforms for each transcript, highlighting the strength
of ExomeRNAseq to detect rare transcripts. The qRTPCR values are based on three independent experiments (error bars show±sd). qRTPCR
values were normalized to the level of b-actin. (C) PCR was used to validate cases of novel exons. In total, six exons were amplified (two located
upstream, two downstream and two within genes) from fetal frontal cortex cDNA. Amplicons corresponding to the expected size of the novel exons
were detected on 2% agarose gel. The schematic illustrations on the right side of the gel pictures show the name of the validated genes (italics),
location of the novel exons in the transcripts (dashed rectangles) and the location of the primers used in the PCR (arrows). Dashed lines represent
intergenic regions surrounding the transcripts.
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sequencing. The three splice variants were also
investigated using qRTPCR and our data show that the
expression levels of the novel isoforms were all lower as
compared with established alternative transcripts for the
same gene (Figure 3B and C). These data further support
the increased power of ExomeRNAseq to detect and
identify transcripts present at low levels that may escape
detection by conventional RNA-seq approaches.

Tissue-specific splice isoforms
Many alternative splice isoforms are specific to certain
tissues or developmental stages. To further investigate
tissue-specific expression and splicing, the number of
shared splice junctions in pair-wise comparison of the
tissues was calculated. The results show that �65–70%
of the splice junctions identified are shared between at
least two tissues. As might be expected, the fetal and
adult frontal cortex show the highest number of shared
splice junctions (Supplementary Figure S5). Surprisingly,
the same pattern was not found for the two liver samples
sequenced. The result showed instead that adult liver had
the fewest number of shared junctions with the other
sequenced tissues, reflecting that this was the tissue
where the smallest number of junctions was found.
When comparing the novel splice junctions in the same
way, the fetal and adult cortex still shared the highest
number of junctions.

SNP discovery

To evaluate the possibility of using ExomeRNAseq as a
method for identification of coding variation, we
compared single nucleotide variant (SNV) calling in the
data from ExomeRNAseq and TotalRNAseq. The
number of coding SNVs found in the ExomeRNAseq
data (average 9106 variants per sample) greatly exceeded
the number identified in TotalRNAseq data (average 1919
SNVs per sample) (Supplementary Figure S6A). To
further investigate the accuracy of the SNV calls, the
results were compared with known variants reported in
NCBI’s database dbSNP (Supplementary Figure S6B).
The results show that while approximately four times as
many variants were identified in the ExomeRNAseq, the
overlap with dbSNP is higher in the TotalRNAseq
(average 91% vs. 83% in the capture data). There are
several potential explanations for a higher accuracy in
SNV calls from the TotalRNAseq data. One reason may
be that the distribution of read coverage over exons may
be different after target enrichment, with lower coverage
at the edges of exons as compared with TotalRNAseq. To
explore the possibility of a position bias in the
ExomeRNAseq data, the relative exonic position of each
SNV was plotted (See Supplementary Figure S6C). The
result indicates that there is no strong tendency for
non-dbSNP variants to accumulate near edges of exons.

DISCUSSION

We show for the first time that whole exome capture can
be applied to cDNA for efficient detection of transcripts
and alternative splice variants. Our data support and

extends on results of more targeted studies (18), showing
a significantly increased power to detect transcripts
present at very low level. There are several potential
research and diagnostic applications for whole exome
capture. One advantage of the approach is the ability to
discover new exons. We find evidence for multiple previ-
ously unannotated exons, with the largest number
identified in fetal frontal cortex. The majority of these
map within existing gene annotations (n=4515) making
them by far the most over-represented group, as compared
with novel 50 or 30 exons (n=495 and 477, respectively).
Previous studies have shown that a large fraction of
sequence reads from poly(A)-RNAseq map to intronic
regions (15,16). The fact that so many of the novel
exons we find map to introns may explain a significant
portion of those intronic reads. A consequence of novel
exons that extend existing gene models is that a larger
fraction of the genome will be covered by genes than pre-
viously thought. Again, this may explain a significant
portion of sequence reads mapping to intergenic regions.

We find a large number of previously unannotated al-
ternative splice variants, based on splice junctions between
known exons (on average 13 032 per tissue). We also note
that many genes have multiple alternative 30- UTRs,
although many of these occur at different places within
existing 30-UTR annotations. This seems to be a
common feature of many genes that is currently not well
annotated. Our validation data show that the majority of
new alternative splice isoforms that we detect are ex-
pressed at low levels, explaining why they have not been
reported previously. Overall, recent data from us and
others (15,16) indicate that there are many low level tran-
scripts that are not captured by current array or sequence-
based methods.

There are some limitations to the ExomeRNAseq
approach. Not all transcripts are represented in the
existing commercial exome enrichment kits, and not all
probes are efficient at capturing their targets. In
addition, a drawback of RNA capture is that the ability
to accurately quantify gene expression is significantly
lowered compared with conventional RNA-seq strategies.
This is mainly due to the differential efficiency of capture
probes to hybridize to their targets. We attempted to
correct for this by using results from DNA exome
capture based on the same probes, where we know that
the number of targets is two for most probes. Normalizing
against the DNA coverage of the same probes seems to
work well for some genes, but has only minor effect on the
global correlation between TotalRNAseq and
ExomeRNAseq (data not shown). One problem with
this approach is that it normalizes also for other factors
that affect coverage, such as mappability, and because the
normalization is applied only to ExomeRNAseq and not
TotalRNAseq, it may in some cases skew the results
further. It is possible that additional correction that
includes mappability scores could help improve the situ-
ation further, but the main conclusion from our results is
that quantification accuracy is inevitably lowered after
target enrichment.

There are several applications for which ExomeRNAseq
may be beneficial compared with current approaches. The
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ability to detect junctions present at low levels opens up for
the possibility to use ExomeRNAseq for genome wide dis-
covery of translocations causing novel fusion transcripts in
solid tumors. Translocations are challenging to detect in
DNA tumor samples, and detection is further complicated
by the fact that samples often represent a mix of tumor and
normal cells so that only a fraction of the cells carry the
rearrangement. We propose that RNA capture may be a
way to approach these challenges.

Based on the fact that we identify a large number of new
exons, we propose that ExomeRNAseq may be an excel-
lent approach for cross-species comparisons. It was
recently shown that exome capture on DNA can efficiently
be used to map variation across primates (24,25), and it
should work equally well for RNA based capture. Since
we show that we can find a large number of coding
variants in the data, exome enrichment at the level of
RNA can be used both for annotation of gene models
and identification of variation.

Our data support previous findings that our under-
standing of transcription and post-transcriptional regula-
tion is limited, and that current approaches are only
finding a fraction of the transcript diversity. Our results
suggest that very deep sequencing of captured or enriched
portions of the transcriptome may be the best way
towards uncovering the complete spectrum of transcript
diversity in any given cell type or tissue.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Figures 1–6 and Supplementary Table 1.
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