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Hydrogen sulfide (H2S) modulates many biological processes, including ageing. Initially
considered a hazardous toxic gas, it is now recognised that H2S is produced endogen-
ously across taxa and is a key mediator of processes that promote longevity and improve
late-life health. In this review, we consider the key developments in our understanding of
this gaseous signalling molecule in the context of health and disease, discuss potential
mechanisms through which H2S can influence processes central to ageing and highlight
the emergence of novel H2S-based therapeutics. We also consider the major challenges
that may potentially hinder the development of such therapies.

Biological generation of hydrogen sulfide (H2S)
Endogenous production
Enzymatic production of H2S in mammalian tissues requires sulfur-containing amino acids (SAAs),
specifically methionine and cysteine, as substrates [1,2]. Methionine cannot be synthesised de novo in
mammals and must be consumed in the diet. In contrast, cysteine can be synthesised from methionine
via conversion to homocysteine and is also consumed through diet. Homocysteine conversion into
cysteine is referred to as the transsulfuration pathway (first described in the context of plant metabol-
ism, in which cysteine is converted to homocysteine [3]). From cysteine, H2S is produced by two dis-
tinct canonical enzymatic pathways: directly through the activity of two pyridoxal-50-phosphate
(PLP)-dependent enzymes, cystathionine-gamma-lyase (CSE, or CGL) and cystathionine-beta-synthase
(CBS), or indirectly through stepwise conversion into 3-mercaptopyruvate by L-cysteine:2-oxoglutarate
aminotransferase (CAT) and then H2S by 3-mercaptopyruvate sulfurtransferase (MPST, or TUM1)
[4]. The latter pathway is referred to the PLP-independent pathway as although CAT is
PLP-dependent, MPST is not. These pathways are further distinguished by their sub-cellular localisa-
tion. CSE and CBS operate predominately within the cytosol, although both can translocate to the
mitochondria under certain stress conditions [5]. For instance, CSE translocates to mitochondria
during hypoxia, promoting H2S production within mitochondria and subsequently increasing ATP
production [6]. Human MPST exists in two distinct isoforms, TUM1-Iso1 which is exclusively found
within the cytosol and TUM1-Iso2, a splice variant encoding an additional 20 amino acid
mitochondrial-targeting sequence [7]. The specific activity of mitochondrial MPST is two to three
times higher than cytosolic MPST in rat liver [8]. While the pathways described above exclusively use
the L-enantiomer of cysteine as a substrate, Kimura et al. [9] discovered a PLP-independent pathway
for the production of H2S from D-cysteine (mainly in the cerebellum and kidney homogenates)
through the action of MPST and D-amino acid oxidase in mitochondria and peroxisomes, respectively.
While L-cysteine is the predominant, naturally occurring enantiomer of cysteine, common food pro-
cessing practices rapidly racemise L-cysteine through heat and alkaline treatments, resulting in up to
44% conversion to D-cysteine [9]. The biologically relevant extent of this D-cysteine pathway remains
unclear but presents an interesting alternative to the canonical mammalian production of H2S.

Version of Record published:
6 October 2021

Received: 7 July 2021
Revised: 16 August 2021
Accepted: 18 August 2021

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 3485

Biochemical Journal (2021) 478 3485–3504
https://doi.org/10.1042/BCJ20210517

http://orcid.org/0000-0002-8727-0593
https://creativecommons.org/licenses/by/4.0/


Endogenous disposal
Supraphysiological concentrations of H2S can be toxic, so efficient removal of H2S is performed by a suite of
mitochondrial enzymes, collectively termed the sulfide oxidation unit (SOU) [10]. It has been shown that SOU
actively catabolises H2S when intracellular concentrations exceed 10 nM in intact cells, with more restrictive
thresholds observed in proximity to mitochondria [11]. However, determining a precise definition of supraphy-
siological H2S levels remains challenging due to limitations in detection methods and tissue and species specifi-
city [12]. While the precise order of events and sulfur species involved in H2S oxidation are still unclear, the
disposal of H2S consists of a series of oxidative reactions coupled to components of the electron transport
chain within the mitochondria, ultimately yielding sulfate which is excreted in the urine. The first step in this
pathway is the oxidation of H2S by the flavoprotein sulfur:quinone oxidoreductase (SQR) [13] catalytic cycle
whereby the flavin cofactor is cyclically reduced by H2S and oxidised by ubiquinone, with coenzyme Q acting
as an electron acceptor. It is through coenzyme Q that H2S metabolism is coupled to ATP generation by oxida-
tive phosphorylation, making H2S a rare example of an inorganic compound capable of fuelling mammalian
oxidative phosphorylation [14]. The product of this enzymatic cycle is the generation of SQR-persulfide inter-
mediates, which are transferred primarily to glutathione (GSH) in human tissues, generating glutathione persul-
fide (GSSH) [15]. SQR is also capable of catabolising H2S to produce thiosulfate from sulfite, although low
tissue levels of sulfite makes it unclear whether this reaction accounts for a substantial proportion of physio-
logical SQR activity in mammals, despite orders of magnitude greater reactivity with persulfidated SQR com-
pared with GSH [16,17]. GSSH is oxidised by ethylmalonic encephalopathy 1 (ETHE1) or thiosulfate
sulfurtransferase (TST) to form sulfite or thiosulfate, respectively. ETHE1 is a sulfur dioxygenase, consuming
O2 and water as substrates to oxidise H2S [18]. TST may then reversibly convert thiosulfate to sulfite which is
irreversibly oxidised into sulfate by sulfite oxidase (SUOX). Both sulfate and thiosulfate are removed via the cir-
culatory system and then ultimately excreted in the urine [19]. Overall, disposal of 1 H2S molecule requires the
consumption of 0.75 O2 molecules; 0.5 by ETHE1 and 0.25 by Complex III [10]. The enzymatic generation of
H2S from SAAs and its subsequent removal are detailed in Figure 1. Of note, as mature red blood cells (RBCs)
typically lack mitochondria, they utilise a methaemoglobin pathway for the disposal of H2S by conversion of
H2S into thiosulfate and polysulfides [20]. It remains an open question as to whether the methaemoglobin
pathway for H2S oxidation found within RBCs is utilised in other tissues in mammals.

Bacterial production
Putrefaction of decaying organic matter in anaerobic conditions results in the production of H2S [21]. This is
due to the action of a wide range of sulfate-reducing bacteria (SRB) which utilise sulfate as a terminal electron
acceptor for respiration, with the concomitant production of H2S [22]. There is a wide range of such SRB
within the microbiome of the human colon, primarily of the genus Desulfovibrio in the class d-Proteobacteria
[23]. Endogenous production of H2S in bacteria is catalysed by orthologs of CSE, CBS, and MPST [24]. The
interactions between groups of bacteria are complex and poorly understood. SRB use a wide range of substrates
including lactate, hydrogen, short-chain fatty acids, and amino acids, which places them in direct competition
with other bacterial species such as hydrogenotrophic bacteria, methanogens, and acetogens. However, SRB
appears to dominate the use of hydrogen in the microbiome as they are capable of catabolizing hydrogen at
concentrations far lower than other hydrogenotrophic species [25]. It is currently difficult to directly measure
the proportion of H2S produced by bacteria compared with endogenous enzymatic production in tissues.
Germ-free mice have 50% less measurable H2S in faecal samples compared with control mice and are capable
of altering SRB-activity to compensate for the impairment in enzymatic H2S production following a
PLP-deficient diet [26]. H2S gas produced by the microbiome in the gut can enter proximal human tissues or
the bloodstream [27]. For instance, high levels of SRB-derived H2S inhibits butyrate oxidation, the major
source of energy production in intestinal colonocytes [28]. Furthermore, there is evidence that bacterial-derived
H2S can reduce arterial blood pressure in rats [29], and contradictory evidence points to either a therapeutic or
causative role of H2S in inflammatory bowel disease and colorectal cancer [30]. Additionally, there is potential
for diet to influence the relative abundance of SRB, as diet has been shown to modify microbiome composition
in general [31]. However, no significant effect of short-term adoption of diets either enriched for or deficient in
SAAs was observed on relative SRB populations in stool samples from healthy human volunteers [32]; future
studies employing longer-term dietary interventions and greater statistical power are required to further clarify
this question. Finally, it has been proposed that bacterial production of H2S protects the bacteria against
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oxidative stress and may contribute to antibacterial resistance [33]. For example, Shatalin et al. [33] developed
novel small molecule inhibitors of bacterial CSE and found these inhibitors improved antibiotic potency
against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and in mice, supporting the theory that
endogenous production of H2S in bacteria might contribute to antibacterial resistance. We believe research
using germ-free mice is one approach that may help provide more information regarding the relevance of
SRB-derived H2S in whole-animal metabolism and physiology.

Signalling modalities of H2S
Post-translational modification (persulfidation)
Protein modification by H2S is a reversible post-translational modification that can occur on any cysteine
residue. Overall, the thiol group (R-SH) present in cysteine is indirectly changed to a persulfide group

Figure 1. Substrate, intermediates and enzymes involved in the endogenous production and disposal of H2S.

The blue region represents the cytosol, the orange region represents the matrix of a mitochondrion. The transsulfuration

pathway cycles methionine into homocysteine first followed by enzymatic conversion of homocysteine into cysteine. From

cysteine H2S is generated in the cytosol by CSE and CSE. H2S can also be generated within mitochondria by the action of

MPST on 3-MP, a metabolite of cysteine. H2S can freely permeate membranes including the mitochondrial membranes. H2S

disposal is carried out in mitochondria by several enzymes that comprise the sulfide oxidation unit (SOU). The precise

mechanism of the SOU remains a subject of active research, the species and steps shown here represent just one proposed

mechanism. Ultimately H2S is oxidised into sulfate which is subsequently excreted in the urine. MAT, Methionine

adenosyl-transferase; ATP, Adenosine triphosphate; PPi, Inorganic pyrophosphate; X, Methyl group acceptor; MT,

Methyltransferase; SAHH, S-adenosyl homocysteine hydrolase; BHMT, Betaine-Homocysteine S-methyltransferase; N3-Methyl

THF, Trimethylglycine betaine; THF, Betaine; CBS, Cystathionine-β-synthase; CSE, Cystathionine-γ-lyase; NH3, Amine; a-KB,

alpha ketobutyrate; PLP, pyridoxal 50-phosphate; Vit B6, Vitamin B6; GOT, Glutamic-Oxaloacetic Transaminase; a-KG, alpha

ketoglutarate; 3-MP, 3-Mercaptopyruvate; MPST, 3-Mercaptopyruvate Sulfurtransferase; SQR, Sulfur-Quinone oxidoreductase;

Qox, Oxidised coenzyme Q; Qred, Reduced coenzyme Q; G-S-SH, Glutathione persulfide; ETHE1, Ethylmalonic

encephalopathy 1 protein; TST, Thiosulfate Sulfurtransferase; SUOX, Sulfite Oxidase; Cox, Oxidised cytochrome C; Cred,

Reduced cytochrome C.
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(R-S-SH), a process known as persulfidation or sulfhydration. The thiol group must first be oxidised to form
thiol derivatives such as sulfenic acid (R-SOH), a disulfide (R-S-S-R), or S-nitrosothiol (R-SNO), which can
then react with H2S to create a persulfidated protein residue. A schematic showing the various thiol derivatives
H2S can react with and their subsequent products are shown in Figure 2, adapted from [34]. Persulfides are
highly reactive, with a neucleophilic terminal sulfur atom and an electrophilic inner sulfane sulfur atom [35].
Persulfidation of cysteine residues causes conformational changes in protein structure that alter protein activity
such as the regulation of Kelch-like ECH-associated protein 1 (Keap1), which has well-characterised conform-
ational regulation through alterations of cysteine residues [36,37]. Keap1 is the major inhibitor of the nuclear
factor erythroid 2-related factor 2 (NRF2)-mediated antioxidant response mechanism. In vitro approaches have
shown alteration of cysteine residues on Keap1 following exposure to H2S leading to inactivation of KEAP1,
but currently, there is no agreement on the precise residue(s) persulfidated in this process [36,37]. Another
established persulfidation target is the Kir6.1 subunit of KATP channels which confers cardioprotective effects
when activated by H2S [38]. An extensive review of the chemistry of persulfides, their molecular targets, and
role in various tissues and diseases was compiled by Filipovic and colleagues in 2017 [39]. Persulfides decay
under biologically relevant conditions, which poses a challenge in the identification, measurement, and charac-
terisation of persulfidated species in biological contexts. The half-life of Cys-S-SH is ∼35 min at 37°C [40].
Spontaneous removal of persulfides is caused by a disproportionation reaction between two persulfides to form
many sulfur-containing species including: elemental sulfur, thiols, polysulfanes, and/or H2S [40–42]. Additional

Figure 2. Formation of protein persulfides by H2S.

(A) Modification of cysteine residues by H2S. H2S cannot directly modify thiol groups (i.e. cysteine residues). The thiol group must

first be must first be oxidised into a disulfide (disulfide bond formation), sulfenic acid (S-Sulfenylation), glutathiolated cysteine

(S-Glutathiolation), or a S-Nitroso Cysteine (S-Nitrosation). From these oxidised thiol groups H2S can react to form persilfides,

thiols, and a variety of by-products dependent on the type of oxidised thiol it is reacting with. The sulfur atom from the H2S

molecule is highlighted in orange to show where in the product it incorporates. (B) Persulfidation is a reversible post-translational

modification and can be readily removed by the action of glutathione and thioredoxin. ROS, Reactive oxygen species; GSH,

Glutathione; NO, Nitric oxide; NOH, Nitroxyl; SNOH, Thionitrous acid; GSSH, Glutathione persulfide; Trx-S−, Thioredoxin.
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processes that can break down persulfides include homolysis by heat or light and enzymatic removal by the
thioredoxin system. Given these constraints, it is difficult to achieve a full understanding of the dynamics of
protein persulfidation as most methods take a ‘snap-shot’ of global persulfidation at one time. Despite these
limitations, our understanding of the extent of protein modification by persulfidation, collectively termed the
persulfidome, is growing. In Arabidopsis thaliana, for example, 5% of the proteome was found to be persulfi-
dated using modified tag-switching protocol that employed methylsufonylbenzothiazole (MSBT) to block both
thiol and persulfide groups within the sample [43]. This was then followed by the addition of CN-biotin which
does not react with MSBT adducts of thiol origin and therefore allows for streptavidin-based pull-down of per-
sulfidated proteins [43]. Additionally, proteomic studies in wild-type mice have found 10–25% of hepatic pro-
teins to be persulfidated under physiological homeostasis [44]. Comprehensive work by Zivanovic et al. [45]
showed that a high degree of hepatic protein persulfidation is associated with an extended lifespan, augmented
by dietary restriction (DR), and diminished with age; these trends were conserved across model organisms.
Bithi et al. [46] described tissue-specific changes in the persulfidome of mice exposed to 50% DR and in mice
homozygous null for CSE. As persulfidation can in principle occur on any cysteine residue, and is a highly
dynamic, reversible post-translational modification, there is enormous scope for H2S to modify proteins in a
variety of biological settings.

Binding with metal centres
H2S is capable of binding to multiple metal ions, the most direct signalling modality in its repertoire. Upon
binding, the coordination, charge, and oxidation states of the metal ion may be altered [47]. Such reactions
become biologically relevant in the context of metalloproteins which contain metal centres in their quaternary
structure. Metalloproteins represent a significant percentage of all mammalian proteins, with recent estimates
suggesting that approximately 6600 human proteins are metalloproteins [48], or approximately a third of all
protein products. H2S reaction with haemoproteins is well established, particularly with ferric haemoglobins
but also metmyoglobins, methaemoglobins, and peroxidases [49]. In fact, the much-discussed toxicity of H2S is
a result of its highly efficient inhibition of cytochrome c oxidase (COX, also known as Complex IV in the elec-
tron transport chain). COX is a dimer formed of subunits that include two heme, two copper, one magnesium,
and one zinc centre [50]. Inhibition of COX by H2S occurs in a biphasic manner under a complex series of
reactions with the haem and copper centres, forming intermediates that are currently unresolved [51].
Furthermore, H2S inhibits angiotensin-converting enzyme by binding to a zinc atom at the active site, with
dose-dependent inhibition of this enzyme demonstrated in protein lysates from human endothelial cells [52].
Interestingly, binding with haem centres in haemoglobin may be the major H2S clearance pathway in RBCs
[20]. It is established that RBCs do produce endogenous H2S, primarily through MPST, but as they lack mito-
chondria in most mammals they do not possess the canonical clearance mechanisms (see section Endogenous
disposal). Unchecked, H2S production in the trillions of RBCs within the circulation would inevitably result in
a lethal build-up of H2S. However, it appears that a cycle of reactions between H2S species and haemoglobin
results in the oxidation of H2S into reactive sulfur species (RSS) such as thiosulfate and hydropolysulfides [20].
A similar process appears to occur between H2S and myoglobin in cardiac and skeletal muscle [53].

Interaction with other gasotransmitters
H2S is not alone as a gasotransmitter. Other compounds with similar properties are carbon monoxide (CO) and
nitric oxide (NO). These gases are also toxic at high concentrations, are produced endogenously, and can freely
permeate plasma membranes to exert biological effects. All three gasotransmitters are highly reactive producing
various metabolites that are collectively termed RSS, reactive oxygen species (ROS), and reactive nitrogen species
(RNS). It has become clear that these reactive chemical species can react with metabolites and derivatives of the
other gasotransmitter molecules to form a densely interconnected web of products sometimes collectively termed
the reactive species interactome. For instance; H2S, NO and their derivatives react to form a family of nitrothiol
compounds, resulting in modulation of signalling pathways [54]. Furthermore, each gasotransmitter is capable of
regulating the production of the other two gasotransmitters (Figure 3). H2S stimulates NO production through
transcriptional, translational, and post-translational interventions in the NO synthesis pathway, with reports of
both elevation and suppression of NO production [55]. The mechanism by which H2S elevates CO production is
still an area of active research but appears to involve activation of the Nrf2-mediated response (see section
Post-translational modification (persulfidation)) up-regulating heme oxygenase isoforms which generate CO [56].
These chemical species and intermediates are highly dynamic which makes measuring and understanding the
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exact processes involved in H2S-NO-CO cross-talk challenging. What is clear is that such cross-talk is an import-
ant signalling modality across a diverse range of organisms, influencing plant growth and ripening for example
[57,58]. In mammals, the dynamics and functions of H2S-NO-CO cross-talk are best understood in the cardiovas-
cular system where they exert control over inflammation, angiogenesis, vasodilation, and protection from
ischaemia-reperfusion injury (IRI) [59,60]. An interesting case study in the complexity of gasotransmitter cross-
talk is demonstrated by the regulation of the activity of soluble guanylate cyclase (sGC), a hemeprotein. Overall,
the three gasotransmitters all increase sGC activity but the biochemistry involved in this outcome are distinct.
NO is an exceptionally strong activator of sGC, augmenting sGC activity over 100-fold [61]; in contrast, CO is a
far weaker activator of sGC [62]. Due to this disparity in potency and binding strength, NO and CO compete for
dominance in their interaction with sGC: when NO concentrations are low CO is the predominant activator of
sGC; but when NO concentrations are high CO actually inhibits NO-induced elevation of sGC activity [60].
Distinct from this, H2S does not directly activate sGC but instead has been shown to reduce the heme moiety
from Fe3+ to Fe2+ in human recombinant sGC. CO and NO only interact with Fe2+ sGC, thus H2S facilitates the
activity of the other two gases by increasing the available pool of Fe2+ sGC [63]. Thus, all three gases work to
elevate sGC activity but there is considerable nuance in how this is achieved. The remainder of this review will
focus on the effects of just one gasotransmitter, H2S, in health, disease, and ageing. However, in light of the intri-
cate and overlapping effects of all three gasotransmitters, we must be mindful of the possibility that any effects
attributed to H2S may in reality belong to the unity of all three gasotransmitters.

H2s and ageing
Role of H2S in normative ageing
Exploration of the processes that underlie ageing is most easily understood under the guidance of the hallmarks of
ageing [64], a landmark review that proposed nine discrete categories of biological processes that are conserved in
organismal ageing. A recent review by Perridon et al. [4] considered the impact of H2S on each of these hallmarks
in turn and collected evidence showing direct, H2S-mediated protection from all ageing hallmarks except for telo-
mere attrition, for which no studies had been published. This review will not aim to repeat the work previously
published but instead assess subsequent publications concerning the effect of H2S on specific tissue ageing. Whilst
it is probable that the dynamics of H2S production and activity are altered throughout age in most tissues of the
body, recent papers have focussed on a few select organ systems including the heart, brain, and kidneys.

Cardiovascular ageing
The typical progression of cardiovascular ageing is initiated by endothelial dysfunction, leading to vascular dys-
function, increased severity of atherosclerosis, and subsequently cardiovascular diseases (CVDs) including

Figure 3. Known interactions between H2S, CO, and NO signalling pathways.

Each gasotransmitter is capable of regulating the other two. Pointed arrows represent a stimulatory effect. Flat-headed arrows

indicate an inhibitory effect. H2S, Hydrogen sulfide; NO, Nitric oxide; CO, Carbon monoxide; CBS, Cystathionine-β-synthase;

CSE, Cystathionine-γ-lyase; MPST, 3-Mercaptopyruvate sulfurtransferase; eNOS, Endothelial NO synthase; HO, Heme

oxygenase; sGC, Soluble guanylyl cyclase; PKG, Protein kinase G; cGMP, Cyclic guanosine monophosphate.
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stroke, hypertension, and coronary heart disease [65]. Key molecular mechanisms that drive this pathological
progression are under the influence of H2S including: signalling through Nrf2, SIRT1, and AMPK/mTOR; acti-
vation of potassium channels; and regulation of mitochondrial biogenesis by PGC-1a [66]. Furthermore, expos-
ing cells and mice to H2S can ameliorate age-associated vascular ageing [67]. Treatment of cultured endothelial
cells with nicotinamide mononucleotide (NMN, an NAD+-elevating supplement) improves vascular remodel-
ling in response to ischaemic injury and enhances endurance and capillary density in old mice, effects that are
augmented by co-treatment with H2S-donating compounds [67]. The augmentation of vascular health by
NAD+ and H2S boosting treatment is proposed to be due to the convergence of these signalling pathways
through SIRT1. However, the same authors also reported that treatment with H2S in isolation enhanced basal
mitochondrial respiration levels in HUVEC cultures, an effect not seen when using NMN [67]. This indicates
that H2S has protective effects independent of NAD. Other evidence for a protective role for H2S in cardiac cell
culture models include improved glucose utilisation, improved metabolic efficiency of glycolysis and the citric
acid cycle, and protection against induced cardiomyocyte hypertrophy [68]. Furthermore, CSE expression and
H2S production were found to be reduced in a model of aged primary rat cardiomyocytes [69]. Treatment of
these cells with sodium hydrosulfide (NaHS, a H2S-donating compound) improved cardioprotection in
response to ischaemia-reperfusion events via inhibition of mitochondrial permeability transition pore opening
and improved mitochondrial membrane potential [69]. Peleli et al. [70] used a mouse model with knock-out
(KO) of MPST, one of the three enzymatic producers of H2S (see section Endogenous production), to study the
effect on sulfur-containing chemical species. In these MPST KO mice there was no significant effect on H2S,
polysulfides, or sulfane sulfur level in heart tissue, nor did it affect blood pressure or vascular reactivity relative
to wild-type controls, but did elevate several cardiac ROS markers [70]. However, while some positive cardio-
protective phenotypes were observed in these mice at 2–3 months of age (including protection from IRI), dele-
terious phenotypes (including hypertension, cardiac hypertrophy, and reduced myocardial nitric oxide
production) were reported at 18 months of age [70]. The authors suggest that the cardioprotective effects in
young mice could be explained by increased cardiac ROS levels providing a pre-conditioning against IRI,
whereas at old age it appears that ablation of MPST is deleterious to heart function. This study is the first to
investigate the cardiovascular phenotype in MPST KO mice and further studies should aim to extend under-
standing in the role and pathophysiology of MPST in the onset of age-related heart disease.

Neurological ageing
As neuromodulation was the first functional role described for endogenous H2S in humans [71], it is unsurpris-
ing that H2S has been implicated as a key player in brain ageing. One conduit for multiple neuropathological
processes is the receptor for advanced glycation end-products (RAGE). RAGE is among several receptors that
bind to advanced glycation end-products, proteins and lipids that have been modified by reaction with sugar
molecules in a non-enzymatic manner that accumulate in tissue with age, including the brain [72]. It should be
noted that while the transmembrane forms of RAGE are implicated in neurotoxic signalling, soluble forms of
RAGE have instead been shown to confer neuroprotective effects, in part due to inhibition of
membrane-associated RAGE [73]. RAGE also binds to beta-amyloid, engendering deleterious effects and, as
such, has drawn interest as a potential target in the treatment of Alzheimer’s disease [74]. Treatment with
exogenous H2S in cells has been shown to inhibit stabilisation of membrane-associated RAGE dimers and the
modality for this inhibition was direct persulfidation of a cysteine residue on RAGE [75]. Beyond RAGE signal-
ling, other ageing processes are subject to H2S regulation in neural cell systems. In a cell culture model of
hyperglycaemia-induced hippocampal senescence, treatment of cells with a H2S donor resulted in a reduction
in senescence markers and improved autophagic flux in a SIRT1-dependent manner [76]. H2S also influences
synaptic plasticity, as shown by Abe and Kimura’s work on H2S-facilitated long-term potentiation (LTP) [71].
Thus, stimulation of N-methyl-D-aspartic acid (NMDA) receptors in active rat hippocampal synapses was aug-
mented by AdoMet, a CBS-activating compound [71]. More recently, Lu et al. [77] screened a group of aged
mice on cognitive ability and showed CBS protein levels were significantly lower in mice with impaired cogni-
tion and that the cognitive impairment in these mice was rescued following administration of a H2S donor
(NaHS). These effects were associated with altered sensitivity of metabotropic glutamate receptors to local
calcium levels [77], likely due to H2S modulation of neuronal calcium homeostasis [78]. Similarly, the ability of
rats to learn an adaptive associative response to fear conditioning was dependent on endogenous H2S produc-
tion by CBS [79]. When CBS was inhibited by hydroxylamine or amino-oxyacetate, amygdalar and hippocam-
pal H2S levels were reduced, NMDA-receptor mediated LTP was significantly impaired, and fear conditioning

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 3491

Biochemical Journal (2021) 478 3485–3504
https://doi.org/10.1042/BCJ20210517

https://creativecommons.org/licenses/by/4.0/


responses were dampened. All these effects were rescued by the application of H2S donor compounds, even in
the presence of CBS inhibitors, indicating that the loss of H2S production is what mediates these effects. In
agreement, a similar reduction in fear conditioning-stimulated LTP due to reduced tissue H2S production and
reversal of this effect by application of a sulfide donor was observed in synaptic plasticity in aged rats [80]. H2S
also modulates the biological response to ischaemic stroke, which accounts for over 80% of all strokes [81].
Both endogenous and exogenous sources of H2S confer neuroprotective effects at low doses and deleterious
effects at higher doses. For instance, H2S production via CBS is greatly elevated following stroke and inhibitors
of CBS activity reduced infarct volume in rat models of stroke, whereas administration of H2S-donating com-
pounds increased infarct volume [82]. However, elevated H2S activity ameliorated deleterious pro-inflammatory
response co-ordinated by microglia, a major contributor to the cerebral IRI pathology. Inhalation of a low dose
of H2S for 3 h immediately after induced cerebral IRI in rats resulted in suppression of this inflammation
response through protein kinase C-dependent reduction in aquaporin 4 protein expression, resulting in a
reduction in ischaemia infarct size and improved neurobehavioral outcomes [83].

Renal ageing
H2S production in the kidney is driven by CSE and CBS activity with expression of these enzymes concentrated
particularly within the proximal tubule [84]. As H2S production through these enzymes is part of the transsulfura-
tion pathway there is overlap with homocysteine metabolism which is associated with mortality in late-stage
kidney disease [85]. Given the kidney’s role in filtering blood content, it is unsurprising that they are sensitive to
nutritional intake. Various studies demonstrated a link between diet composition and renal ageing, with amino
acid content emerging as a key driver. Dietary restriction (DR) is the most well-characterised intervention for
improving health and lifespan (see section H2S in dietary restriction) and typically involves a reduction in gross
calories consumed within a set period [86]. However, recent studies have highlighted a specific requirement for
restriction of essential amino acids (EAA) in DR protocols for renal protective effects to occur [87]. In a study by
Yoshida et al. [88] mice were placed under ‘simple DR’ (40% reduction in calorie intake) and DR with supplemen-
tation of EAAs (DR + EAA) or non-EAA (DR +NEAA). They found that while DR and DR+NEAAs groups dis-
played extended lifespan and protection from tubulointerstitial lesions, these effects were lost in groups subjected
to DR + EAA supplementation. More specifically, they found that excluding methionine from the EAA supplemen-
tation was sufficient to restore DR-induced benefits on longevity, kidney function and oxidative stress, and was cor-
related with an increase in tissue H2S levels and increased CSE gene expression. Wang et al. similarly found that
methionine restriction alone was sufficient to extend lifespan and improve markers of renal ageing in mice. Their
mechanistic investigations suggest that AMPK-dependent H2S signalling protected kidney tissue from the onset of
senescence [89]. Additionally, various histological and functional markers of renal ageing were described in both
male and female marmosets between ∼3 and 16 years of age, with these changes correlating with an age-associated
reduction in CBS protein levels across both sexes, although a significant age-associated reduction in H2S produc-
tion was observed only in male marmosets [90]. Another major consequence of renal ageing is acute kidney injury
(AKI), which is driven in part by IRI [91]. A single incidence of AKI has profound implications for mortality; hos-
pital patients with AKI commonly have 30–40% mortality rates and as high as 60% for AKI patients admitted to
intensive care units [92]. Renal IRI can be ameliorated by the action of H2S and NO signalling which improve
blood flow by causing local vasodilation, inhibiting inflammatory cytokines, and reducing ROS production [93].

H2s in lifespan extension
Ageing is plastic and modifiable by a variety of environmental, genetic, and pharmaceutical interventions [86].
This section will consider established lifespan extension interventions and assess the potential mechanistic role
of H2S in their modulation of biological ageing.

H2s in dietary restriction
DR is an umbrella term for a panel of interventions that have been known to consistently improve longevity
across taxa for more than 100 years [94–96]. The conservation of this response suggests an evolutionary origin
of longevity through DR, best understood through the framework of the disposable soma, mutation accumula-
tion, and antagonistic pleiotropy theories of ageing, among others [97,98]. DR typically confers significant
health benefits, and improves late-life health by reducing the incidence and/or trajectory of many age-related
pathologies, including cognitive decline, metabolic syndrome, CVD and many cancers [94,99]. Many of these
health benefits are also observed in non-human primates exposed to life-long DR [99]. However, cognitive
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defects under DR have been reported in rats and atrophy of grey matter volume in DR fed primates [100,101].
Critically, many of the positive health benefits found in model organisms under DR are replicated in humans
under DR protocols that carefully supply 100% of essential daily nutrients, but the impact on lifespan is cur-
rently unknown [94,95]. The application of DR as a preventive therapeutic tool in humans is promising [102]
but remains a challenge, largely due to the difficulty in avoiding accidental malnutrition. Additionally, DR
in humans has several reported drawbacks including infertility, sarcopenia, osteoporosis, and reduced immun-
ity [103]. As such, the challenges of applying DR in the wider human population are prohibitive and we may
be better served by gaining an understanding of the mechanisms that underlie DR and designing therapeutics
targeting them more selectively.
Our understanding of the mechanisms that underpin the effect of DR on lifespan remain imprecise despite

decades of investigations. What is certain is a major contribution to DR-induced longevity is from reduced
nutrient signalling and improved insulin sensitivity through modulation of signalling pathways including
mTOR, insulin/insulin-like signalling (IIS), and NAD metabolism. Murine models with compromised TOR or
IIS signalling molecules (such as global loss of ribosomal S6 protein kinase 1 or insulin receptor substrate 1,
respectively) showed marked increases in lifespan and a delay in age-related physiological decline [104,105].
Several studies identified H2S as a potentially conserved mechanism underlying DR-induced longevity and
healthspan improvements. In a series of seminal papers led by Dr James Mitchell, the positive effects of mul-
tiple DR regimes were dependent on elevated H2S production in yeast, worms, fruit flies, and mice [106–110].
It is also clear that the effects attributed to DR can largely be recapitulated by the removal of specific dietary
components from the diet, even if total calorie intake is maintained [111]. Such interventions include restric-
tion of total protein or tryptophan intake, but perhaps the best studied is methionine restriction, which appears
to be closely tied to the transsulfuration pathway and H2S homeostasis [94]. Life-long methionine restriction in
mice protected against renal senescence and elevated endogenous H2S production, with complementary in vitro
assays indicating a mechanistic role for H2S in this protection [89]. Given that the SAAs (methionine and cyst-
eine) are the canonical sources for endogenous de novo H2S production, it is perhaps unsurprising that restric-
tion of methionine modulates H2S production. However, it is counterintuitive that restriction of the dietary
source for de novo H2S synthesis ultimately results in elevation of H2S levels; a conundrum that has several pos-
sible solutions but no concrete answer to date [107]. One resolution to this apparent contradiction is that DR
reduces hypothalamic–pituitary signalling, which functions partly through the inhibition of H2S production by
growth hormone and thyroid hormone at the transcriptional and protein levels, respectively [112]. As such,
DR-mediated reduction in growth and thyroid hormone release may reduce inhibition of H2S production
enzymes. One alternative explanation for the observation that reduced calorie intake elevates H2S levels despite
reduced pools of SAAs is that elevation of autophagic processes under nutrient-limiting conditions generates
the substrate pool for H2S biogenesis. DR and fasting interventions have been shown to elevate autophagy pro-
cesses across tissues in mice and humans [113]. Indeed, induction of H2S biogenesis under DNA damage stress
has been demonstrated to be a autophagy-dependent response in vitro [114], and cysteine pools are maintained
through autophagic processes in pancreatic cancer [115]. Methionine has also been shown to indirectly inhibit
the induction of autophagy by elevating S-adenosylmethioine (SAM) levels, which in turn promotes methyla-
tion of protein phosphatase 2A, leading to autophagy inhibition [116]. Together, these studies support the
premise that elevated autophagy replenishes the cellular cysteine pool, allowing for the generation of H2S under
nutrient-limiting conditions. More studies that directly measure H2S levels under such conditions are required
to definitively support this.

H2s in dwarf mouse models
Beyond dietary interventions, various mutations in model organisms confer significant longevity benefits. In
fact, the Ames dwarf mouse has the longest extension in lifespan achieved by genetic, dietary, or pharmaceut-
ical intervention with mean and maximal lifespan increase in over 45% in both sexes [117]. The dwarf mouse
models have genetic disruption of anterior pituitary gland function either through mutations in transcription
factors like Pit1 and Prop1 (as in the Snell and Ames dwarf mice models, respectively) or in growth hormone
signalling receptors such as growth hormone receptor and growth hormone-releasing hormone receptor, both
of which result in long-lived dwarf mice [117–119]. There have been relatively few studies that link the reduced
pituitary signalling phenotype to the action of H2S, with the notable exception of Hine et al. [112] who showed
that both the Snell and Ames dwarf models had up-regulation of H2S production pathways. This is in part due
to ablation of the transcriptional regulation of CSE and CBS expression by thyroid hormone signalling and
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through substrate availability control by autophagic processes, respectively, in dwarf mice [112]. This correlates
well with previous research that used labelled metabolites to demonstrate an increase in the flux of methionine
through the transsulfuration pathway in Ames mice [120]. These studies unveiled a rerouting of metabolism
through transsulfuration in the liver, brain, and kidneys of the mice with a concomitant, but non-significant,
increase in hepatic CSE gene expression compared with wild-type controls [120]. Hepatic CSE specific activity
is also elevated in Ames mice [121]. The expected result of this altered metabolism is that the Ames mice will
have an elevated pool of cysteine from which H2S can be generated, which may contribute to the findings of
Hine et al. [112] that these mice have improved H2S production capacity. Interestingly, while restriction of
dietary methionine extended lifespan and increased hepatic H2S levels in many models, the Ames models
showed no increased lifespan on a methionine-restricted diet [122]. H2S levels have not been measured in
Ames mice under methionine-restricted conditions, however, Brown-Borg et al. [123] showed that much of the
rerouting of metabolic processes through transsulfuration observed in Ames mice was unaffected by methionine
restriction. This was opposed to the expected up-regulation of transsulfuration as seen in wild-type animals on
methionine restriction [123]. From this, we could infer that intact growth hormone signalling is essential for
‘sensing’ dietary amino acid abundance and plays an important role in coordinating altered metabolism in
response to differential methionine abundance. Further work is required to assess if H2S plays a role in this
proposed mechanism for growth hormone regulation of methionine metabolism as well as in the extraordinary
lifespan extension of growth hormone mutant mice.

H2s in longevity through pharmaceutical intervention
Longevity is plastic in response to a variety of pharmaceutical interventions, and chief among these are inhibi-
tors of nutrient-sensing pathways such as Rapamycin (targets mTOR signalling), and the anti-diabetic drugs
Metformin (targets AMPK signalling) and Acarbose (targets IIS signalling) [94]. H2S signalling overlaps with
all of these mechanisms.

Rapamycin and mTOR signalling
Within the context of mTOR signalling, H2S can be either stimulatory or inhibitory, as recently reviewed [124].
This is counterintuitive as both H2S and Rapamycin were implicated as pro-longevity molecules and therefore
we might anticipate they would both act upon the mTOR pathway in a similar manner, i.e. suppression of
mTOR activity. This is the case in some instances, such as a study in brain tissue from diabetic mice where
treatment with a H2S donor reduced protein synthesis by inhibiting mTOR signalling and increasing autopha-
gic processes [125]. Furthermore, exogenously increased H2S concentration induces autophagy in cells and is
associated with inhibition of TOR activity [126,127]. However, contradictory studies showed an anti-autophagic
role for H2S via mTOR signalling with myriad effects ranging from rescuing high-fat diet-induced liver disease,
protecting against diabetic myopathy, stimulating angiogenesis, and stimulating osteoclastogenesis [128–131].
Along with conflicting results in mTOR signalling, we lack a full appreciation of the effect of Rapamycin on
H2S production pathways. To date only one study has investigated this, using Rapamycin in Saccharomyces cer-
evisiae and human cells [132]. The authors found that Rapamycin inhibited H2S production through the
depression of CSE and CBS gene transcription in both cell models, indicating a conserved role of Rapamycin
in regulating H2S generation [132]. More work is required to test how conserved this response to Rapamycin
treatment is across tissues and species. There also remains a lack of studies that combine Rapamycin and H2S
donors. Such approaches offer an additional understanding of how these compounds co-interact with mTOR
signalling. One example of such an approach used a human hepatocellular carcinoma cell line and treatment
with Rapamycin and a H2S-donor separately or in combination [133]. Wang et al. also found that both treat-
ments inhibited mTOR signalling and stimulated anti-tumour autophagic and pro-apoptotic pathways and
were additive when used in combination. The sum of work performed by researchers has confirmed the theory
that longevity through Rapamycin inhibition of mTOR is subject to regulation by H2S. However, further
studies are required to dissect out the precise conditions where H2S modulates mTOR in alignment with
Rapamycin, in opposition, or whether there is a more nuanced interaction between these molecules.

Metformin and AMPK signalling
Metformin is another putative lifespan-extending drug that interacts with H2S signalling. Metformin’s mechan-
ism of action remains only partially resolved, but appears to operate largely through activation of AMPK
(which in turn inhibits mTOR and IIS signalling pathways) [134]. Early studies showed that there was a
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correlational link between metformin treatment in mice and the elevation of H2S levels in the brain, heart,
kidney, and liver tissues [135]. Following this discovery, the role of H2S in the pharmacological activity of
AMPK signalling and metformin treatment was studied in earnest and this body of work was collected in a
2017 review [136]. How metformin increases H2S levels is becoming increasingly apparent and appears related
to the ability of metformin to remodel DNA methylation patterns [137]. Work by Ma et al. [138] showed that
a high methionine diet (methionine forming 2% of diet) resulted in the elevation of plasma homocysteine
levels and a reduction in plasma H2S levels, effects that were rescued by metformin treatment. Complementary
cell culture assays suggest that metformin treatment removes homocysteine-stimulated hypermethylation of the
CSE promotor region, resulting in greater mRNA and protein expression of CSE and elevation of H2S produc-
tion [138]. Similarly, a metabolomics study in rats found that metformin treatment ameliorated oxidative liver
damage caused by exposure to bisphenol A through elevation of CSE and CBS levels [139]. Our emerging
understanding of the transcriptional control of H2S producing genes presents a clear connection between met-
formin and H2S production. However, as the modes of action of metformin remain only partially understood,
more work is required to fully understand the interplay between H2S, AMPK signalling, and metformin.

Acarbose and IIS signalling
Acarbose inhibits carbohydrate digestion and glucose absorption and is known to extend maximum lifespan in
male and female mice, but only extends median lifespan in males [140]. There is currently a scarcity of studies
interrogating the interaction of Acarbose with H2S. This presents a potentially fruitful area of novel research as
H2S is already known to modulate insulin signalling and whole-animal glucose metabolism across tissues, cellu-
lar processes that appear intimately linked with longevity [141]. As with other signalling pathways, the effects
of H2S are complex, with independent studies reporting either protective or deleterious effects [142]. The
endogenous production of H2S in adipose cells was first described by Feng et al. [143] who showed that ele-
vated CSE expression and H2S production was correlated with insulin resistance in rats, suggestive of a deleteri-
ous diabetic phenotype associated with H2S expression in adipocytes. Similar results were found in a
hepatocyte cell line and primary mouse hepatocytes which showed that supraphysiological levels of H2S, either
through H2S donor compounds or adenovirus-induced overexpression of CSE, negatively impacted glucose
uptake and storage as glycogen [144]. These effects were attributed in part to inhibition of both the AMPK and
IIS signalling pathways [144]. Finally, pancreatic beta-cells under chronic exogenous H2S treatment exhibited
suppression of insulin secretion and were protected against oxidative stress-induced apoptosis via elevated
glutathione content and reduced ROS [145]. The authors suggest that this cytoprotection may constitute a
homeostatic response to maintain islet beta-cell numbers in the presence of cytotoxic extracellular glucose con-
centrations (which is common in patients with uncontrolled Type 1 diabetes), but at the cost of reduced
insulin secretion [145]. However, many other studies implicate a protective role of H2S in insulin signalling
pathways. Studies in a mouse myoblast cell model insulin resistance reported a reduction in H2S production,
despite elevation in CSE protein levels [146]. Treatment of these cells with exogenous H2S improved insulin
sensitivity and mitochondrial function in part through phosphorylation and activation of the insulin receptor
pathway [146]. CSE activity and H2S production in adipocytes also mediated translocation of glucose trans-
porter 4 (GLUT4), an essential step in the effective uptake and utilisation of glucose [147]. Work by Xue et al.
[148] showed that H2S donor treatment increased activation of insulin receptor and improved glucose uptake
in adipocytes and myocytes and that chronic H2S donor treatment decreased blood glucose, improved insulin
sensitivity and glucose tolerance, and elevated phosphorylation of insulin signalling pathway enzymes in a dia-
betic rat model. However, the beneficial effect of H2S donors on whole-animal carbohydrate metabolism is con-
tradicted by Gheibi et al. [149] who showed that chronic administration of H2S donor compounds in a type-II
diabetic rat model resulted in dose-dependent impairment of glucose tolerance, pyruvate tolerance, and insulin
secretion. These two rat studies underline the importance of H2S donor concentration in the interpretation of
the biological effects of H2S. The Xue et al. paper used NaSH over the range of 168–670 mg/Kg/day for 10
weeks, whereas the Gheibi et al. study used a higher range of 280–5600 mg/Kg/day for 9 weeks. The majority of
the deleterious effects of chronic NaHS treatment reported by Gheibi et al. were found in the highest dosage
groups, indicating that their treatment range may well approach the dosage at which NaHS begins to confer
deleterious or toxic side-effects. The often contradictory work compiled to date shows that the interaction
between H2S and the molecular, cellular, and physiological role of insulin signalling remains poorly under-
stood. As such, any potential overlap between H2S and Acarbose in improving longevity and late-life health
remains unresolved and more work is required to investigate this potentially important signalling commonality.
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H2s in lifespan shortening
Progeria syndromes
Progeroid syndromes are a set of genetic disorders characterised by a shortened lifespan and the development
of phenotypes normally associated with advanced age [150]. Progeroid syndromes mimic many characteristics
of normal human ageing to varying degrees, and therefore present invaluable insight into dysregulation of
normal physiological ageing [151]. While all progeroid conditions are extremely rare, the most common is
Hutchinson–Gilford progeria syndrome (HGPS). HGPS is an example of a laminopathy, a sub-set of progeria
caused by various mutations in the LMNA gene which encodes for lamin proteins [150]. Lamins are a class of
intermediate filaments, serving as scaffolds that anchor chromatin and transcription factors to the nuclear per-
iphery [152]. Dysfunctional post-translational processing of lamin A leads to a permanently farnesylated and
methylated lamin A isoform, named progerin. The expression of progerin produces disruption of the nuclear
membrane, leading to premature senescence, and ageing. Progerin also accumulates in small amounts during
physiological ageing due to spontaneous activation of the cryptic splice site observed in HGPS [153]. This sug-
gests that normal and accelerated ageing share at least some common molecular basis. Moreover, many of the
hallmarks of physiological ageing are observed in HGPS patients [154]. Overall, the link between progerin accu-
mulation and hallmarks of ageing, the manifestation of age-related diseases in HGPS patients, the expression of
progerin during normal ageing and the well-characterised genetic defects in HGPS make it a relevant human
ageing model [155].

H2s in progeria
Therapeutic treatments for patients with progeroid diseases remain critically lacking, with an average life
expectancy in HGPS of less than 15 years [156]. Current treatments include farnesyltransferase inhibitors, rapa-
mycin analogues, sulforaphane, and vitamin D analogues which all have clear impacts on disease symptoms
but have yet to provide substantial improvements to patient lifespan or comorbidities [156]. While no studies
have investigated the role of H2S in HGPS to date, there is known overlap between H2S and the mechanisms
that underpin the effects of rapamycin (see section H2S in dwarf mouse models), sulforaphane, and vitamin D
treatments. Sulforaphane is an isothiocyanate compound found naturally in cruciferous vegetables that acts as a
H2S donor. Beyond HGPS, treatment or ingestion of sulforaphane-rich vegetable homogenates is a promising
treatment in Alzheimer’s disease and boosts antiviral responses of natural killer cells in human clinical trials
[157,158]. The mechanism through which sulforaphane operates in vitro appears to involve the generation of
H2S, with sulforaphane treatment elevating H2S levels upon addition to cells and tissue homogenates [157,159].
Furthermore, sulforaphane treatment in a human prostate cancer cell lines impeded cancer cell survival via
H2S-mediated JNK and MAPK signalling [159]. Finally, the activity of sulforaphane was attributed largely to its
potent activation of NRF2 by modification of KEAP1 [160] and insulin signalling [161], mechanisms that are
also directly influenced by H2S signalling (see sections Post-translational modification (persulfidation) and
Acarbose and IIS signalling). Given that sulforaphane is a compound that is essentially a naturally occurring
H2S donor and has been shown to operate through biological mechanisms that are known H2S signalling path-
ways, there have been a surprisingly limited number of studies that directly monitor H2S levels following sulfor-
aphane treatment, and none in the context of HGPS. Future studies should aim to monitor H2S production,
disposal, and activity in sulforaphane treated HGPS models to better understand the interplay between these
compounds.
Vitamin D and related compounds have also been used in the treatment of HGPS [162], and while the con-

nection to H2S is not as immediately evident as the H2S-donating sulforaphane, evidence exists for a common-
ality in their modes of action. Vitamin D treatment in mice elicits a dose-dependent elevation of tissue H2S
levels in the kidney and brain [163]. Cell culture studies found that H2S formation was central to vitamin
D-induced protection of adipocytes from inflammation and impaired glucose utilisation due to high glucose
culture conditions [147]. Finally, a population study found a correlation between reduced plasma H2S and
vitamin D levels in African American type-II diabetics compared with Caucasians with type-II diabetes, and in
vitro studies in monocyte culture also found an elevation of CSE expression and H2S production following
vitamin D treatment [164].
Together, the strong overlap between proven treatments for HGPS and established molecular mechanisms

under the influence of H2S (mTOR signalling, NRF2 response, and vitamin D signalling) it is surprising there
have been so few studies addressing the role of H2S in the management of HGPS. While there has been no
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research directly linking H2S to HGPS, there has been work published in another progeria syndrome, Werner
syndrome (WS). The study showed that the cellular morphological phenotype of human WS cells, characterised
by increased protein aggregation, high levels of oxidative stress and nuclear dysmorphology, was ameliorated by
treatment with NaHS [165]. The beneficial effects of NaHS treatment were due to inhibition of the mTOR
pathway, as rapamycin treatment displayed similar effects to NaHS treatment. Furthermore, the enzymes
involved in the endogenous production of H2S were down-regulated in WS cells, suggesting that reduced H2S
levels may be one of the causes of WS phenotype [165]. Overall, this study hints at the importance of the TSP
and H2S production in WS progeria and stresses the importance of further research across all progeroid
diseases.

The potential for H2S therapeutics against ageing
With the accumulated evidence that H2S is central to physiology and pathology across species and tissues, the inev-
itable question is whether we can leverage our understanding of H2S to design translational interventions, poten-
tially even as a treatment against ageing [166]. Studies that show clinically relevant roles for H2S in age-related
diseases have fuelled this discussion. One such example is critical limb ischaemia (CLI), the end stage of peripheral
arterial disease which is fast becoming a major morbidity in the aging population, with incidence increasing at
twice the rate of global population growth and a higher global incidence than cancer, dementia, HIV/AIDs, and
heart failure [167]. Islam et al. [168] examined gastrocnemius tissues sampled from post-amputation limbs of
patients with CLI to interrogate regulation and signalling of H2S in these patients. CLI patients showed decreased
transcription of CSE, CBS, and MPST mRNAs, reduced H2S and sulfane sulfur levels, a reduction in NRF2 and
transcription of its target genes such as catalase and glutathione peroxidase and an increase in markers of oxidative
stress such as malondialdehydes and protein carbonyls [168]. While their study was limited by the difficulty in
obtaining human control samples from amputees without CLI, the results show a potentially pathological role of
dysregulated H2S production and signalling in a clinical setting. Further work is required to develop this under-
standing and attempt H2S-based therapies for this growing clinical population. Another major clinical presentation
in the ageing population is the increased risk of osteoporosis. A genome-wide association study (GWAS) identified
nonsynonymous single nucleotide polymorphisms in the H2S oxidising enzyme gene SQR as a susceptibility
variant in postmenopausal osteoporosis risk in Korean women [169]. Validation studies in a preosteoblast cell line
found overexpression of this variant improved markers of osteoblast differentiation [169]. The study did not have a
direct measure of H2S in individuals with this variant and so could not determine for certain if the variant resulted
in an increase or decrease in the H2S oxidation activity of SQR. Nonetheless, this implicates H2S in osteoblast
maintenance. This is supported by other studies that have described conflicting roles for H2S in bone remodelling
[170,171]. Furthermore, a GWAS meta-analysis of age-related hearing impairment identified CSE as one of the
seven loci that was reproducibly identified as a candidate in the onset of hearing loss [172], while another identified
a variant in the promotor region of CBS in peripheral neuropathy caused by the chemotherapy treatment of mul-
tiple myeloma [173]. These studies help foster the potential for H2S-based therapies as they suggest a role for H2S
in many age-related pathologies and provide novel targets for drug development.
The emerging understanding of how H2S exerts influence over clinically relevant biological processes raises

hopes for the development of a new class of therapeutics. However, several major obstacles prevent this from
being immediately achievable. The chemical nature of H2S itself poses the greatest challenge to its use as a
therapy. The volatility of H2S impedes its study in basic research as H2S gas readily escapes into the air on the
bench. Furthermore, as H2S reacts so readily with a wide range of other chemical species, it would prove chal-
lenging to control off-target effects in a potential H2S-based therapy. Of greatest concern, however, is the
powerful inhibition of COX by H2S. It has been proposed that the regulation of H2S production and oxidation
is so well conserved across species largely due to the necessity to precisely modulate intracellular H2S levels in
order to avoid toxicity by COX inhibition. There may be some hope, however, that chronic administration of
H2S need not be toxic. Reed et al. [174] investigated cognitive outcomes in the urban population of Rotorua,
New Zealand where residents have been exposed to unusually high atmospheric concentrations of volcanic H2S
for decades. As H2S is a known environmental toxin, their hypothesis was that this population would have
reduced cognition compared with controls, but they found that areas of the city with lower (but still abnormally
high) ambient H2S had no significant reduction in measures of cognition while those exposed to the highest
levels of ambient H2S actually showed better performance in reaction time and in the digit symbol tests [174].
Related studies on the population of Rotorua found no association between H2S exposure and asthma risk, per-
ipheral neuropathy or cancer incidence, and actually indicated a potential protective effect against Parkinson’s
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disease [175–178]. While these studies are indicative of safe, long-term exposure to H2S in humans, there are
limitations in their design including the difficulties in estimating the ambient H2S levels throughout the
decades, misclassification of individuals into the wrong exposure group, and it is impossible to confirm causal-
ity for any of the observed effects as the studies were epidemiological in nature. These limitations necessitate
further study to best understand the therapeutic window for safe and effective H2S exposure. The challenges of
H2S therapies and the positive and negative considerations for each of the established H2S-donating com-
pounds was reviewed recently [179]. Given these challenges, any progress in the development of H2S therapies
is contingent on better measurements of tissue H2S concentrations in vivo, the improved resolution of flux
through H2S production, oxidation, and signalling, the establishment of the therapeutic window for H2S com-
pounds, and innovations in the administration and targeting of H2S in therapies. These are not insubstantial
open questions for the field but given the rapid rise in interest of H2S biology in recent years, our understand-
ing of these questions is likely to expand greatly.

Future directions and conclusions
Increasing evidence shows that H2S is integral to multiple healthspan- and lifespan-extending interventions,
whether dietary, pharmacological, or genetic in nature. This is due to the capability of H2S to participate in a
multitude of biological processes by virtue of its diverse signalling modalities. There is a high degree of evolu-
tionary conservation across taxa for the production of H2S itself through the transsulfuration pathway and in
the signalling pathways it interacts with. Together, these attributes implicate H2S as a powerful modulator of
healthspan, severity of disease, and longevity. However, there are many aspects of our understanding that
remain vague. Most prominently, due to the short half-life and chemical promiscuity of H2S, it is extremely
challenging to obtain accurate measures of H2S and related chemical species in vivo. This limitation means that
while we are increasingly certain of a correlation between H2S and various markers of longevity and healthspan,
it is difficult to ascertain which specific chemical species confers the observed effects and where these effects
are occurring at the tissue, cellular or even sub-cellular level. In addition, while this review has focussed on the
many beneficial effects of H2S, it should not be forgotten that excessive levels of H2S are extremely toxic in bio-
logical systems. As such, future research should focus on better understanding the precise mechanisms by
which H2S operates and the development of more sophisticated methods for measuring in vivo H2S levels.
Only once these advancements are made can we begin in earnest to work towards H2S-based therapeutics.
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KO, knock-out; LTP, long-term potentiation; MPST, or TUM1, 3-mercaptopyruvate sulfurtransferase; MSBT,
methylsufonylbenzothiazole; NMDA, N-methyl-D-aspartic acid; NMN, nicotinamide mononucleotide; NRF2,
nuclear factor erythroid 2-related factor 2; PLP, pyridoxal-50-phosphate; RAGE, receptor for advanced glycation
end-products; RBCs, red blood cells; ROS, reactive oxygen species; RSS, reactive sulfur species; SAAs,
sulfur-containing amino acids; sGC, soluble guanylate cyclase; SOU, sulfide oxidation unit; SQR, sulfur:quinone
oxidoreductase; SRB, sulfate-reducing bacteria; TST, thiosulfate sulfurtransferase; WS, Werner syndrome.
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