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Abstract
The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein neces-

sary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-

specific immune responses that pose unique challenges for vaccine development. DEKnull

is a synthetic DBP based antigen that has been engineered through mutation to enhance in-

duction of blocking inhibitory antibodies. We determined the x-ray crystal structure of

DEKnull to identify if any conformational changes had occurred upon mutation. Computa-

tional and experimental analyses assessed immunogenicity differences between DBP and

DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to inter-

rogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally simi-

lar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts

within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor

binding pockets, two important structurally conserved protective epitope motifs. All B-cell

epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The

DEKnull protein retains binding to conformationally dependent inhibitory antibodies.

DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced

immunogenicity to polymorphic regions responsible for strain-specific immunity while retain-

ing conserved protein folds necessary for induction of strain-transcending blocking

inhibitory antibodies.

Author Summary

Plasmodium vivax is an oft neglected causative agent of human malaria. It inflicts tremen-
dous burdens on public health infrastructures and causes significant detrimental effects on
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socio-economic growth throughout the world. P. vivaxDuffy Binding Protein (DBP) is a
surface protein that the parasite uses to invade host red blood cells and is a leading
vaccine candidate. The variable nature of DBP poses unique challenges in creating an
all-encompassing generalized vaccine. One method to circumvent this problem is to syn-
thetically engineer a single artificial protein antigen that has reduced variability while main-
taining conserved protective motifs to elicit strain-transcending protection. This synthetic
antigen is termed DEKnull. Here, we provide structural and biochemical evidence that
DEKnull was successfully engineered to eliminate polymorphic epitopes while retaining the
overall fold of the protein, including conserved conformational protective epitopes. Our
work presents validation for an improved iteration of the DBP P. vivax vaccine candidate,
and provides evidence that protein engineering is successful in countering DBP polymor-
phisms. In doing so, we also lay down the foundation that engineering synthetic antigens is
a viable approach and should be considered in future vaccine designs for pathogens.

Introduction
Plasmodium vivax is a causative agent of malaria, inflicting significant morbidity and impeding
economic growth in highly endemic areas [1,2]. Increasing evidence indicates the severity of
disease, economic impact, and burden of P. vivax has been severely underestimated [1,2].
Among the proposed methods for disease control, vaccines are appealing for a multitude of
reasons. Vaccines are cost-effective, efficient, and have been historically successful in combat-
ing infectious diseases especially in resource poor environments [3]. Individuals living in re-
gions with P. vivax develop naturally acquired protective immunity and antibodies isolated
from those naturally immune have anti-DBP inhibitory effects that correlate with results from
in vitro functional assays [4–6].

Establishment of a successful host infection necessitates specific receptor-ligand interactions
between host red blood cells and Plasmodium parasites [7]. For P. vivax, the critical interaction
is that between the merozoite Duffy binding protein (DBP) and the Duffy antigen receptor for
chemokines (DARC) on reticulocytes. DARC-negative individuals are resistant to clinical
P. vivax infection, and naturally immune individuals can possess anti-DBP antibodies that in-
hibit the DBP-DARC interaction and prevent parasite growth [6,8–12]. Additionally, polyclon-
al antibodies elicited by recombinant DBP exhibit similar protective and inhibitive effects to
naturally acquired antibodies [6,11,13,14]. Certain isolates of P. vivax have been reported to in-
vade Duffy-negative cells [15]. However, sequencing of these isolates identified a gene encoding
a DBP paralog suggesting the increased copy number and/or expression of DBP may enable in-
vasion into Duffy-negative cells [16]. Together, this highlights the central importance of the
DBP-DARC interaction in P. vivax infection and presents DBP as a crucial parasite protein
that can be developed as a vaccine target.

DBP is a member of the Duffy binding-like erythrocyte binding protein (DBL-EBP) family,
and binds DARC through a conserved cysteine-rich DBL domain known as region II (DBP-II)
[17–22]. DBP-II engages DARC through a multimeric assembly mechanism where two DBP-II
domains initially bind one DARC to form a heterotrimer that rapidly recruits a second DARC
to form a heterotetramer [23–26]. DBP-II amino acids F261-T266, L270-K289, and
Q356-K367 form critical contacts with the DARC ectodomain during this process [23]. This
receptor-induced ligand-dimerization model is conserved amongst other members of the
DBL-EBP family and provides spatial orientation for DBL domains at the parasite-RBC mem-
brane interface [24–30]. Residues that mediate multimeric assembly are important targets of
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protective immunity as the epitopes of naturally acquired anti-DBP-II antibodies that disrupt
the DBP-DARC interaction localize to residues at the dimerization interface, DARC binding
pockets, and the RBC proximal face of DBP-II [10]. However, clusters of highly polymorphic
residues flank these protective epitopes, which is a pattern seen in pathogens undergoing selec-
tive pressure that results in an immune evasion where allelic variants can escape immunity elic-
ited by a previous infection [10,21,26,31–37]. Therefore, polymorphic residues of DBP appear
to have a high potential to be the basis of strain specific immune responses that misdirects im-
mune responses away from conserved targets of broadly neutralizing protection. Although
strain specific immunity can be protective these seemingly more immunogenic epitopes offer
limited value because of the strain-limited nature of the immunity. Genetic analysis of DBP-II
alleles reveal a high dN/dS ratio often seen when selection pressure drives allelic diversity as a
mechanism for immune evasion [38–42]. In order to proceed with DBP as a P. vivax vaccine
target, it is therefore critical to address the challenges presented by polymorphism and immune
misdirection inherent in this allelic diversity.

Immunization with DBP-II elicits weakly reactive and allele specific immune responses, a
far cry from the end objective of inducing strain-transcending protection [38]. The poor pro-
tectivity appears to be due in part to polymorphic non-functional residues diverting the im-
mune response away from the more conserved, less immunogenic, critical receptor binding
residues [10,38,43–45]. Consistent with this view, the most polymorphic region, identified as
the DEK epitope, is positioned immediately adjacent to the conserved DARC-binding groove
(Fig. 1) [10,23]. Antibodies to the DEK epitope can disrupt DBP function, but inhibition is
strain limited. Therefore, we refer to DEK as a decoy epitope that distracts the immune re-
sponse away for more conserved functional epitopes that could serve as basis of a broadly neu-
tralizing protective immunity. To overcome this inherent deficiency of DBP as an immunogen,
a novel synthetic DBP-II antigen termed DEKnull was engineered where the polymorphic resi-
dues that comprise the DEK epitope were mutated to amino acids not usually present (Fig. 1,
S1 Fig) [38]. These proof of principle studies demonstrated the feasibility of redirecting the im-
mune response to conserved, critical residues by eliminating polymorphic epitopes with the
goal to create a vaccine that induces a greater percentage of protective antibodies to more con-
served, less immunogenic epitopes. Indeed, anti-DEKnull sera lost reactivity towards the poly-
morphic patch as predicted, but still retained the ability to generate inhibitory antibodies,
including epitopes reactive to naturally-occurring immune antibodies of persons infected with
P. vivax [38,46]. DEKnull also induced strong anamnestic responses that were protective and

Fig 1. Location of DEK polymorphisms on Sal1 DBP-II.DEK polymorphisms (DEKAQQRRKQ) mapped onto the Sal1 DBP-II and DARC heterotetramer.
DEK residues are shown in brown and side chains are displayed as sticks. The two DBP-II molecules are in green and yellow. The two DARC peptides are in
purple and blue.

doi:10.1371/journal.pntd.0003644.g001
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cross-reactive against a panel of different DBP-II alleles [5]. Furthermore, DEKnull produced a
more consistent inhibitory profile across variants [46].

However, mutation can alter the three-dimensional structure of a protein that in turn would
alter the available epitopes presented in a synthetic antigen. This study presents the structure
of a synthetic Plasmodium antigen and its implications for the future of vaccine design in tar-
geting malaria. We determined the structure of DEKnull to identify if any shifts in fold and sec-
ondary structure or sub-domain rearrangements had occurred, and whether these changes
affect DEKnull’s potential as a vaccine surrogate for native alleles [26]. The effects of mutating
the DEK polymorphic patch on conserved protective epitopes was identified by comparison
with the pre-existing Sal1 structure [26]. We examined and compared the epitope profile of
DEKnull to DBP-II using computational approaches as well as through interrogation with a
panel of DBP monoclonal antibodies [47]. Together these studies inform future efforts to guide
the rational design of the next iteration of a synthetic DBP-II antigen to improve its immuno-
genicity and ability to mount a thoroughly protective response.

Materials and Methods

Protein expression and purification
DEKnull was obtained by oxidative refolding. Inclusion bodies expressed in E. coli were solu-
blized in 6 M guanidinium hydrochloride and refolded via rapid dilution in 400 mM L-argi-
nine, 50 mM Tris pH 8.0, 10 mM EDTA, 0.1 mM PMSF, 2 mM reduced glutathione, and 0.2
mM oxidized glutathione. Refolded protein was captured on SP Sepharose Fast Flow resin (GE
Healthcare), eluted with 50 mMMES pH 6.0, 700 mMNaCl, and dialyzed overnight in 50 mM
MES pH 6.0, 100 mMNaCl. The protein was subsequently purified by sequential size exclusion
chromatography (GF200) and ion exchange chromatography (HiTrapS). Protein was finally
buffer exchanged into 10 mMHEPES pH 7.4, 100 mMNaCl with size exclusion chromatogra-
phy. Sal1 DBP-II was purified similarly as DEKnull, but without overnight dialysis.

Protein crystallization and data collection
DEKnull crystals were grown by hanging-drop vapor diffusion. First, 1 μL of protein solution
at 3–9 mg/mL was mixed with 1 μL of reservoir containing 0.2 M di-sodium tartrate, 20% PEG
3350 to create needle clusters. Crystals were shattered and microseeded into a mix of 1 μL of
protein solution at 4 mg/mL and 1 μL of reservoir containing 0.2 M lithium chloride, 20% PEG
3350. Large needle rods of DEKnull grew within a week and were flash frozen in liquid nitro-
gen. Data was collected to a resolution of 2.1 Å at beamline 4.2.2 of the Advanced light Source,
Lawrence Berkeley National Laboratory and processed with XDS [48].

Structure solution and analysis
The DEKnull structure was solved by molecular replacement in PHASER [49] using a single
Sal1 DBP-II domain from 3RRC as a starting model. Manual rebuilding in COOT [50] and re-
finement in PHENIX led to a final refined model with final R-factor/R-free of 21.77%/25.88%
with good geometry as reported by MOLPROBITY [50–52]. The MOLPROBITY score of 0.81
places this structure in the top 100th percentile of structures 1.85–2.35 Å. 98.22% of residues lie
in favored, 1.78% of residues lie in additionally allowed, and 0% lie in disallowed regions of the
Ramachandran plot. Atomic coordinates and structure factors have been deposited into the
Protein Data Bank with accession code 4YFS.
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ELISA assays with anti-DBP antibodies
The ELISAs were performed as previously described [28]. Briefly, BSA, Sal1 DBP-II, and
DEKnull were coated on the plate overnight at 4°. The plates were washed with PBS/Tween-20
and then blocked with 2% BSA in PBS/Tween-20 for one hour at room temperature. The plates
were washed with PBS/Tween-20 and then incubated with anti-DBP antibodies (2C6, 2D10,
2H2, 3C9, 2F12, 3D10) individually for one hour at room temperature. The plates were again
washed with PBS/Tween-20 and then incubated with an anti-mouse secondary antibody conju-
gated to Alexafluro-488 for 30 minutes at room temperature. After a final wash step, the fluo-
rescence was measured using a POLARstar Omega (BMG Labtech) plate reader.

Results

Structure of the synthetic DEKnull antigen
We obtained the crystal structure of the DEKnull antigen to a resolution of 2.1 Å (Table 1).
DEKnull maintains the overall fold and conserved disulfide bonding patterns of a DBL domain
similar to that found in P. vivax DBP Sal1, from which DEKnull is derived [23,26]. The DBL
fold is a conserved structural feature in other important Plasmodium adhesion proteins, in-
cluding the P. falciparum EBA-175 and EBA-140, P. knowlesi α-DBP protein, and the

Table 1. Data collection and refinement statistics for DEKnull.

Data collection

Space Group P21
Cell dimensions

a, b, c (Å) 55.63, 37.35, 78.20

α, β, γ (◦) 90, 108.77, 90

Resolution (Å)* 20–2.1 (2.2–2.1)

Rsym* 0.116 (0.460)

I/σI* 8.51 (2.11)

Completeness (%)* 96.7 (97.5)

Redundancy* 2.9 (2.7)

Refinement

Resolution (Å) 20–2.1

No. reflections 17,535

Rwork/Rfree 21.77/25.88

No. atoms†

Protein 2,641

Ligand/ion 0

Water 128

B-factors†

Protein 22.96

Ligand/ion 0

Water 22.59

R.m.s. deviations

Bond lengths (Å) 0.004

Bond angles (°) 0.749

Data were collected from a single crystal.

*Highest resolution shell is shown in parenthesis
†Does not include hydrogens

doi:10.1371/journal.pntd.0003644.t001
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NTS-DBL1α1, DBL6ε, and DBL3x domains of PfEMP-1 (Fig. 2A) [26,27,53–58]. DEKnull also
retains the characteristic three sub-domain architecture of DBL domains with critical intra-
domain disulfide bonding patterns (Fig. 2B). Sub-domain 1 (S1) contains residues K215 to
L253 with two disulfide bonds, C217-C246 and C230-C237. Sub-domain 2 (S2) contains resi-
dues H262 to E386 and has a single disulfide bond C300-C377. Sub-domain 3 (S3) contains
residues P387 to S508 and has three disulfide bonds: C415-C432, C427-C507, and C436-C505.
All cysteines in DEKnull are involved in disulfide bonding and are structurally conserved with
Sal1 DBP-II [26].

Alignment of DEKnull and Sal1 DBP-II structures shows minimal differences with an over-
all root-mean-square (r.m.s.) deviation of 0.435 Å (Fig. 2C), indicating there is minimal differ-
ences overall between the native and engineered domains. S1 alignment has a r.m.s. deviation
of 0.308 Å and is not significantly different (Fig. 2D). S2 alignment has a r.m.s. deviation of
0.288 Å, and the only change is the region comprising K366 to I376, which is now structured in
DEKnull as compared to Sal1 DBP-II (Fig. 2D). S3 alignment has a r.m.s. deviation of 0.310 Å
and show shifts in loops G417 to D423 and K465 to T473, changes that can be attributed to sol-
vent exposed flexible loops (Fig. 2D). Strikingly, the DEKAQQRRKQ polymorphic stretch
within S2 overlaps well between DEKnull and Sal1 DBP-II. Alteration of these amino acids to
ASTAATSRTS had no affect on the secondary structure nor do they shift peptide backbone
Cαs (Fig. 3A, 3B).

The dimer interface and DARC binding residues play important roles in host-receptor bind-
ing [23,26]. These functional regions are recognized by naturally acquired antibodies that
block the DBP-DARC interaction [10,23]. Any DBP-II based synthetic antigen must accurately
replicate the three-dimensional conformation of these regions for antibody generation and epi-
tope recognition. We therefore examined if the changes in DEKnull altered these important
functional regions. The dimerization and DARC binding surfaces overlap well with the

Fig 2. DEKnull is structurally similar to Sal1 DBP-II. (A) DEKnull separated into three sub-domains, sub-domain 1 (S1—red), sub-domain 2 (S2—blue),
and sub-domain 3 (S3—green). (B) S1 (red) contains a β-hairpin, S2 (blue) is a helix bundle, and S3 (green) is a helix bundle. Domain boundaries and
disulfide bonding cysteines are labeled. (C) Structural alignment of DEKnull (solid colors) with Sal1 DBP-II (light tinted colors) with r.m.s. deviation of 0.435Å.
(D) Structural alignment of individual DEKnull sub-domains (solid colors) with Sal1 DBP-II sub-domains (light tinted colors). S1 alignment has a r.m.s.
deviation of 0.308 Å. S2 alignment has a r.m.s. deviation of 0.288 Å. S3 alignment has a r.m.s. deviation of 0.310 Å.

doi:10.1371/journal.pntd.0003644.g002
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parental Sal1 DBP-II; there is no allosteric change to secondary structure or peptide backbone
Cαs, retaining the conformational shape of protective targets (Fig. 3C, 3D). Furthermore, De-
fine Secondary Structure of Proteins (DSSP) analysis assigns identical secondary structure ele-
ments between that of Sal1 DBP-II and DEKnull [59,60]. Together, these structural data
demonstrate that the DEKnull conformation is not significantly different from that of the natu-
rally occurring allele, except for the polymorphic DEK epitope, and supports the development
of DEKnull as a DBP vaccine.

Epitope changes in DEKnull
B-cell epitopes fall within two classes: linear and conformational. Linear epitopes are continu-
ous stretches of amino acids in which the primary structure alone is responsible for immunoge-
nicity and antibody recognition. Conformational epitopes can be continuous or discontinuous,
but require a fold for immunogenicity and antibody binding. Ablation of the fold through the
use of denaturants eliminates antibody recognition of conformational epitopes. While vaccines

Fig 3. DEKnull mutations do not affect protein secondary structure. (A) and (B) Two views of a structural alignment of Sal1 DBP-II DEKAQQRRKQ
polymorphic region (white) and DEKnull ASTAATSRTSmutant region (blue). Mutated residues are labeled and shown as sticks. (C) Structural alignment of
DARC binding sites on Sal1 DBP-II (white) and DEKnull (blue). DARC binding residues are labeled and shown as sticks. (D) Structural alignment of DBL
dimerization interfaces on Sal1 DBP-II (white) and DEKnull (blue). Dimerization residues are labeled and shown as sticks.

doi:10.1371/journal.pntd.0003644.g003
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are able to induce either class, natively folded antigens tend to have a bias towards inducing
conformational-dependent antibodies that are protective [61,62]. As a result, it is important to
identify and characterize inhibitory and non-inhibitory epitopes on Sal1 DBP-II.

Bioinformatic B-cell epitope prediction methods for conformational epitopes are a powerful
tool that can aid in the rational design and analysis of vaccine targets. DiscoTope is a widely
used web-based computational algorithm that focuses on identifying potential discontinuous
conformational epitopes based on available crystal structures [63]. DiscoTope analysis of
Sal1 DBP-II identifies several distinct epitopes with the strongest signal located at the
DEKAQQRRKQ polymorphic patch that is altered within DEKnull (Fig. 4A). The predicted
residues are all solvent exposed and are spread across the entire surface of the protein, with no
discernible predilection for certain sub-domains (Fig. 4B). DEKnull is predicted to have similar
patches of epitopes, but lacks the signal at the DEK location induced by the mutational changes
(Fig. 4A, 4C). Comparisons between the Sal1 DBP-II and DEKnull prediction results demon-
strate only the DEKAQQRRKQ region is significantly different (Fig. 4A). An important con-
cern of removing decoy-epitopes through mutation is the possibility of introducing novel
epitopes caused by the amino acid changes. DiscoTope analysis determines that no new epi-
topes specific to DEKnull are introduced further demonstrating that DEKnull is a suitable sur-
rogate antigen from native alleles of DBP-II.

Functional epitopes are conserved in DEKnull
The structural and computation approaches indicate that there are no signification changes to
epitopes in DEKnull with the exception of the mutated DEKAQQRRKQ epitope. We sought to
independently assess the DEKnull antigen retained recognizable epitopes by interrogation with
a panel of conformationally dependent anti-Sal1 DBP-II antibodies [47] in ELISA assays. Two
non-inhibitory and four inhibitory antibodies were probed; all six antibodies showed no differ-
ence in antigen recognition between that of Sal1 DBP-II and DEKnull (Fig. 5). This provides
evidence that the DEKnull mutations have minimal effect on the overall structural fold of the
protein, and are consistent with the antigenicity results seen in the DiscoTope B-cell epitope
prediction (Fig. 4). It is interesting to note that two non-inhibitory antibodies, 3D10 and 2F12,
bound to both DBP-II Sal1 and DEKnull equally well (Fig. 5). This suggests that DEKnull still
retains at least one other immunogenic region that may continue to function in immune eva-
sion, necessitating further development of DEKnull as a vaccine candidate.

Discussion
The central role of P. vivax DBP and the necessity of DARC recognition in parasite invasion
during the asexual red blood stage makes it an ideal vaccine target [8]. Anti-DBP antibodies
isolated from naturally immune individuals and those generated through immunization are
able to prevent DBP-DARC interactions and inhibit parasite growth [6]. However, the inherent
polymorphic nature of DBP poses challenges that must be overcome in order to maximize its
effectiveness as a vaccine [39,40]. Polymorphic immunodominant epitopes divert the immune
system away from weakly immunogenic protective epitopes that are conserved across alleles,
resulting in strain-specific responses as opposed to strain-transcending protection [43,45].
This is seen not only with DBP, but is an inherent problem observed with other Plasmodium
vaccine candidates wherein single allele vaccinations often provide strain-specific inhibition
but are yet susceptible to alternate alleles [4,10,64–72].

Currently two parallel strategies exist to enhance DBP as a vaccine candidate and to bypass
the issue of polymorphism—a multi-allele vaccine composed of variants found in endemic
areas, and a modified vaccine that directs immune responses towards conserved epitopes in
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Fig 4. DiscoTope B-cell epitope prediction of Sal1 DBP-II and DEKnull. (A) Graphical representation of DiscoTope B-cell epitope scores for Sal1 DBP-II
(blue line) and DEKnull (red line). Prediction threshold is shown in green. DEK residues are located at amino acids 339–348 and shown above the
corresponding location in the graph. (B) Two views of Sal1 DBP-II predicted epitopes mapped onto crystal structure. (C) Two views of DEKnull predicted
epitopes mapped onto crystal structure.

doi:10.1371/journal.pntd.0003644.g004
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order to impart broad protection [46,66,73,74]. The synthetic antigen DEKnull is the brain-
child of the latter, an antigen in which a dominant variant B-cell epitope is mutated from
the parent Sal1 allele [38]. Vaccination studies with DEKnull demonstrate early proof-of-
concept success in manipulating the immune system towards protective responses [5,46].
Further iterations in design are expected to improve immunogenicity, protectivity, and cross-
reactivity [5,46].

Here, we present the first structure of DEKnull, a synthetic Plasmodium vaccine candidate.
These results demonstrate that the DEKnull antigen has insignificant structural changes rela-
tive to the parent Sal1 structure [26]. There are virtually no differences in overall DBL fold, ori-
entations of sub-domains 1–3, disulfide bonding, or within the secondary structure and
backbone of the mutated region itself (Fig. 2, Fig. 3). The conservation of DBL fold in DEKnull
is confirmed with immunological assays examining reactivity against a panel of conformational
dependent α-DBP-II(Sal1) antibodies [47]. Of the six antibodies tested, none had significant
binding differences between Sal1 and DEKnull (Fig. 5).

The structure of DEKnull additionally allowed us to perform state-of-the-art bioinformatic
B-cell epitope analysis through the use of DiscoTope [63]. The prediction results are significant
for several reasons. First, the strong signal of the DEK polymorphic patch on the DBP-II Sal1
allele supports that it is strongly immunogenic and can divert immune responses away from
conserved protective epitopes. Second, the loss of DEK antigenicity in DEKnull compared to
Sal1 further reflects a success in synthetic antigen design in achieving the desired manipulation
of epitopes. Third, the DEK mutation did not confound the design of the synthetic antigen by
introducing novel epitopes. And finally, the conservation of the remaining epitopes between
Sal1 and DEKnull indicates that the mutation does not change the protein’s overall epitope
profile suggesting protective epitopes have been retained.

Fig 5. ELISA with anti-DBP conformational specific antibodies. ELISA assays for conformational anti-DBP antibodies with BSA as a negative control,
Sal1 DBP-II as a positive control, and DEKnull protein. Four inhibitory (3C9, 2H2, 2C6, 2D10) and two non-inhibitory (3D10, 2F12) antibodies were tested.

doi:10.1371/journal.pntd.0003644.g005
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The results first and foremost reflect a success in the strategy of using a modified antigen to
bypass DBP allele polymorphisms and poor-protectivity induced by strain-specific epitopes.
This study demonstrate that antigen engineering to focus the immune response to conserved
functional regions, such as the DARC binding residues and/or DBP dimer interface, is a viable
and practical approach. The predicted dominant variant B-cell epitope was eliminated without
affecting immunogenicity of the remaining epitopes. Furthermore, the results presented here
build upon previous works to establish that protein engineering is a viable approach towards
problematic multi-allelic vaccine targets and should guide future vaccine design in other
pathogens [5,38].

It has been shown that preliminary immunogenicity studies with DEKnull elicited an im-
mune response comparable to Sal1 DBP-II [5]. A next key step in evaluating DEKnull as a vac-
cine construct is to demonstrate that DEKnull is able to generate highly potent antibodies that
are broadly protective across multiple strains. As a corollary, and one that is predicted in silico
by DiscoTope results presented here (Fig. 4), DEKnull must also not generate DEKnull-specific
antibodies that would be useless against natural alleles.

The ELISA data presented show that DEKnull still possess non-inhibitory epitopes (Mab
3D10 and Mab 2F12, Fig. 5). Characterizing these antibodies will give insight towards the de-
sign of future versions of DEKnull. A continual process of eliminating non-protective epitopes
from this synthetic antigen will better focus immune responses towards protective targets. Fu-
ture studies will examine further iterations of DEKnull to improve upon its overall immunoge-
nicity, broad-spectrum inhibitory profile across different P. vivax DBP alleles, as well as to
address the antigenicity of remaining non-protective epitopes.

Supporting Information
S1 Fig. Sequence alignment of Sal1 DBP-II and DEKnull. Sequence alignment of Sal1
DBP-II and DEKnull. The highly polymorphic stretch (DEKAQQRRKQ) is underlined and
mutated residues (ASTAATSRTS) in DEKnull are denoted with asterisks (�).
(TIFF)
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