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Abstract

Single-cell gene expression studies promise to unveil rare cell types and cryptic states in 

development and disease through a stunningly high-resolution view of gene regulation. However, 

measurements from single-cell RNA-Seq are highly variable, frustrating efforts to assay how 

expression differs between cells. We introduce Census, an algorithm available through our single-

cell analysis toolkit Monocle 2, which converts relative RNA-Seq expression levels into relative 

transcript counts without the need for experimental spike-in controls. We show that analyzing 

changes in relative transcript counts leads to dramatic improvements in accuracy compared to 

normalized read counts and enables new statistical tests for identifying developmentally regulated 

genes. We explore the power of Census through reanalysis of single-cell studies in several 

developmental and disease contexts. Census counts can be analyzed with widely used regression 

techniques to reveal changes in cell fate-dependent gene expression, splicing patterns, and allelic 

imbalances, demonstrating that Census enables robust single-cell analysis at multiple layers of 

gene regulation.

Introduction

Differential gene expression analysis, typically powered by statistical regression, is central 

to nearly all single-cell transcriptomic studies. As experiments now capture tens of 

thousands of cells1,2, such regressions could in principle be used to detect gene regulatory 

changes across individual cells as a function of developmental progression, position in an 

embryo, or genetic sequence. However, they report measurements with high variability, 

frustrating efforts to build models that can detect such changes3,4. Numerous studies have 

reported high rates of “drop-out”, wherein some cells of a nominally homogeneous 
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population express high levels of a gene and others none at all. Drop-outs have spurred the 

deployment of hurdle models5 that overcome limitations over simpler regression approaches, 

typically at a cost in speed, numerical stability, or design flexibility for the user.

Single-cell protocols that use exogenous RNA “spike-in” standards6 or unique molecular 

identifiers7,8 (UMIs) enable analysis to be performed at the level of transcript counts rather 

than read counts. Previous work by Grun et al. suggested that comparing UMIs, rather than 

read counts, between cells would improve regression analysis. However, because UMI 

protocols work by counting 3’ end tags, they are limited to measuring gene expression and 

do not report expression at allele- or isoform-resolution. Spike-in-based protocols, which 

convert a cell’s relative abundances to transcript counts through a linear regression between 

the spikes’ normalized read counts and their known molecular concentrations, can report 

measurements at this resolution. However, exogenous standards must be carefully calibrated 

for single-cell experiments lest they dominate the libraries, and may be subject to different 

rates of degradation or reverse transcription than endogenous RNA. Many published studies 

have chosen to forgo the use of spike-in controls, restricting subsequent reanalysis.

Here, we introduce Census, an algorithm that converts conventional measures of relative 

expression such as transcript per million (TPM) in single cells to relative transcript counts 

without the need for spike-in standards or UMIs. “Census counts” eliminate much of the 

apparent technical variability in single-cell experiments and are thus easier to model with 

standard regression techniques than normalized read counts. We demonstrate the power of 

transcript count analysis with a new regression model, BEAM (Branch Expression Analysis 

Modeling), for detecting genes that change following fate decisions in development. We also 

analyze Census counts at the splice isoform and allele level, demonstrating that our approach 

robustly detects developmental regulation at those resolutions. Census and BEAM are 

implemented in Monocle 2, the second major release of our open-source single-cell analysis 

toolkit.

Results

Estimating relative transcript counts in spike-in-free experiments

Census exploits two properties of single-cell RNA-Seq datasets produced with current 

protocols (Figure 1a). First, mRNA degradation following cell lysis and inefficiencies in the 

reverse transcription reaction result in the capture of as few as 10% of the transcripts in a 

cell as cDNA. Second, most protocols rely on template-switching reverse transcriptases 

primed at the polyA tail of mRNAs and thus generate full-length cDNAs9. Such protocols 

typically generate libraries in which genes are detected most frequently as a single cDNA 

molecule (Figure 1b, Supplementary Figure 1). Thus, all detectably expressed genes 

measured at or below the mode of the (log-transformed) relative abundance distribution in 

each cell should be present at around 1 cDNA copy (see Methods).

We assessed Census’ accuracy by re-analyzing several experiments that included spike-in 

controls4,10,11,12,13,14,15. Reanalysis of developing lung epithelial cells with Census 

recovered estimates of total per-cell transcript counts that were correlated with but not equal 

to those derived by linear regression against spike-in controls (Figure 1c), likely because of 
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Census’ inability to control for non-linear cDNA amplification during library construction. 

However, changes in Census counts between groups of cells collected at the same time 

points were highly similar to changes measured via spike-in controls (Figure 1d,e). Census 

produced accurate changes in relative transcript counts for seven additional datasets, 

including two based on UMIs4,10,13, demonstrating that the algorithm can work well with 

different single-cell RNA-Seq protocols. (Supplementary Figure 1,2). Downsampling and 

simulation experiments determined that Census counts faithfully capture changes in 

expression between groups of cells with as few as 100,000 reads per cell and over a wide 

range of mRNA capture rates (Supplementary Figure 3, 4). Taken together, these 

benchmarking experiments show that Census recovers an accurate measure of changes in 

relative transcript counts between single cells without the need for spike-in controls.

Census counts improve differential analysis accuracy

We next assessed whether using Census counts improved downstream differential analysis. 

We tested several popular tools16,17 for differential expression with both read counts and 

relative transcript counts, including two tools specifically developed for single-cell data, 

Monocle18, and SCDE19 (Figure 2a, Supplementary Figure 5). When provided with read 

counts as a measure of expression, consensus between the tools was poor, with only 1,971 of 

5,805 (34%) differentially expressed genes (DEGs) reported by all tools (except SCDE, 

which has very high precision but low recall), and few agreed with those reported by a 

nonparametric, permutation-based test between spike-in derived expression levels (Figure 

2b, Methods). Tools designed for bulk RNA-Seq analysis, such as DESeq217, produce false 

discovery rates as high as 61%. SCDE, which includes explicit modeling of drop-outs 

returned few false positives but also captured a smaller fraction of the true positive set.

Repeating these tests using Census counts showed marked improvements in differential 

expression accuracy compared to read counts and TPM (Figure 2a). We attribute the 

improvements to the fact that the negative binomial distribution, which underlies most 

commonly used RNA-Seq analysis software16,18,19, fits relative transcript count data much 

better than read count data, as noted by Grun et al.4 (Supplementary Figure 5). For example, 

when targeting a false discovery rate of 10%, DESeq2’s empirical false discovery rate 

dropped dramatically from 61% to 22% with little to no drop in sensitivity, which remains as 

high as 82%. Monocle’s false discovery rate dropped from 53% to 11%. Importantly, using 

Census counts dramatically improved agreement between the tools, which all agreed on 

2,437 DEGs among a total of 4,220 (70%), similar to the 62% (2,367 / 3,793) consensus 

genes obtained with spike-in derived levels (Figure 2b). Census also improved DE accuracy 

relative to gold standards derived from bulk RNA-Seq18 measurements (Supplementary 

Figure 6). Taken together, our benchmarks demonstrate that single-cell relative transcript 

counts produced by Census can be more accurately compared with commonly used 

differential analysis methods than normalized read counts, and are thus preferable when 

spike-in standards or UMIs are unavailable.
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Differential analysis of branch points in developmental trajectories reveals regulators of 
cell fate

Many single-cell gene expression studies aim to identify gene regulatory circuits that control 

cell-fate decisions made during development20,21. We recently developed Monocle, an 

algorithm that organizes single cells along trajectories and can describe the gene expression 

changes executed during cell differentiation. Monocle introduced the concept of 

“pseudotime”, which quantifies each cell’s progress through development. Pseudotime 

resolves cascades of gene regulatory changes that accompany differentiation and other 

dynamic cellular programs18. Monocle produces more reliable tests for differential 

expression along a trajectory when provided with Census counts than with relative 

expression values (Supplementary Figure 7).

Single-cell trajectories can have multiple outcomes, such as during the generation of 

alternative developmental lineages22. Analyzing cells at branch points where cells are 

diverted along two or more mutually exclusive paths could reveal the mechanisms by which 

such decisions are made. For example, scrutinizing genes upregulated in common myeloid 

progenitors but downregulated in common lymphoid progenitors has shed light on the 

molecular regulation of cell fate in hematopoiesis23,24.

To explore a developmental fate decision at single-cell resolution, we reanalyzed RNA-seq 

data from a recent study investigating the specification of the distal lung epithelium25. 

Treutlein et al. sequenced developing epithelial cells to define the cellular intermediates 

giving rise to type I (AT1) and type II (AT2) pneumocytes. Monocle reconstructed a 

trajectory with a single branch point leading from progenitors to two outcomes 

corresponding to the AT1 and AT2 fates. The beginning of the trajectory contained cells with 

high levels of markers of active proliferation26 (Ccnb2, Cdk1), whereas these genes were 

expressed at much lower levels after the branch point (Figure 3a). High expression of a 

known marker of AT1 cells27 (Pdpn) was restricted to cells on one branch of the tree, 

whereas cells expressing an AT2 marker28 (Sftpb) at high levels were located on the other 

branch. Cells classified as AT1 and AT2 according to known markers by Treutlein et al. fell 

exclusively along the branches, with what the authors termed “bipotent progenitors (BP)” at 

or near the branch point. (Supplementary Figure 8).

To detect cell fate-dependent genes in a statistically robust manner, we developed BEAM, a 

generalized linear modeling (GLM) 29 strategy for analyzing branched single-cell 

trajectories (Figure 3b; Supplementary Figure 9, see Methods). BEAM identified 1,219 

genes (FDR < 5%) as either AT1- or AT2- fate dependent, including canonical markers27 

such as as Pdpn and Sftpb (Figure 3c). AT1-restricted genes were strongly enriched for 

ontological terms related to tube development, cytoskeletal remodeling, and cell 

morphogenesis (Supplementary Figure 10, Supplementary Table 1), while AT2-restricted 

genes were enriched for terms related to lipid processing, consistent with the production of 

lipid-rich surfactant by AT2 cells in the mature lung. Regulatory DNA elements proximal to 

these genes were enriched for binding sites of 74 transcription factors, eleven of which 

exhibited significant branch-dependent expression. Supplementary Figure 11) These factors 

included several such as Tcf7l2 that are well known to regulate lung development30-35.
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Disruption of interferon signaling induces a branch in the dendritic cell LPS stimulation 
trajectory

Branch points in single-cell trajectories represent steps in a program of transcriptional 

change in which cells must choose between one of several mutually exclusive gene 

expression programs. Branches could arise not only during development, but also in 

response to mutations, treatment with drugs, or other cellular perturbations. We reanalyzed a 

recent study36 from Shalek and colleagues, which dissected the transcriptional response of 

murine bone marrow-derived dendritic cells (BMDCs) to lipopolysaccharide (LPS) (Figure 

4a). In BMDCs, LPS triggers a paracrine feedback loop of type I interferon signaling 

mediated in part by Stat137-39. The authors compared BMDCs from wild-type (WT) mice to 

those from mice that lack the receptor for Interferon alpha (Ifnar1-/-) or Stat1 (Stat1-/-). 

Monocle recovered a trajectory with a single branch point, with cells from Infar-/- or Stat1-/- 

mice distributed on an alternative trajectory in response to LPS stimulation compared with 

those from WT mice (Figure 4b).

BEAM identified 870 genes (FDR < 5%), many associated with interferon signaling, 

dependent on this branch (Figure 4c, Supplementary Figure 12). Peaks corresponding to 

open chromatin collected by Lavin et al40 proximal to branch-dependent genes are enriched 

for Stat1/2 and Irf1/2 binding motifs (Supplementary Figure 13). These factors were 

themselves significantly branch-dependent, with branching pseudotimes substantially earlier 

than their putative targets, confirming that BEAM can distinguish the regulatory factors that 

drive branching in single-cell trajectories from genes downstream (Figure 4e, f). Monocle 2 

and BEAM demonstrated that loss of a key paracrine loop generates an “alternative 

trajectory”, suggesting that single-cell trajectory analysis can be useful for defining how a 

signaling pathway regulates a larger process.

Census counts enable single-cell differential splicing analysis

Methods for detecting splicing changes in single-cell RNA-Seq experiments are beginning to 

appear, but have grappled with isoform-level measurement variability. For example, Welch 

et al. described SingleSplice41, which uses a hurdle model to compare observed variation in 

isoform frequencies against expected technical variation, but its contrasts are limited to tests 

for excess variability within groups of cells, rather than as a function of arbitrary variables in 

a regression, and it requires calibration with spike-in standards.

We used Census to estimate isoform-level transcript counts in differentiating myoblasts, a 

classic model system for vertebrate splicing. Modeling isoform counts from each gene as a 

Dirichlet-multinomial distribution captured pseudotime-dependent shifts in splicing in 74 

genes (FDR < 0.1), including well-characterized components of the molecular machinery 

required for muscle contraction such as tropomyosin TPM1, which has been intensely 

studied in myoblasts as a model of alternative splicing42,43 (Figure 5). TPM1 has three well-

characterized sets of alternatively spliced exons, with exons 6b and 9b excluded in 

myoblasts but included in myotubes44. These exons became progressively more frequent in 

TPM1 mRNAs, with inclusion of exon 6b preceding inclusion of exon 9b. Each isoform of 

the 74 differentially spliced genes showed one of seven distinct pseudotemporal expression 

patterns, (Supplementary Figure 14a, b) coinciding with shifts in the actin family from 
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widely expressed members (ACTB, ACGT) partly replaced with muscle specific ones 

(ACTA1, ACTA2). (Supplementary Figure 14c). Our analysis supports the view that 

cytoskeletal reorganization during myoblast differentiation is globally coordinated not only 

at the level of genes but across individual splice variants.

Census counts enable allelic balance analysis in single cells

Single-cell analysis could in principle shed light on the degree to which the two alleles of 

each gene are regulated in a coordinated manner. Recently, Deng et al. tracked gene 

expression genome wide in single-cells from pre-implantation mouse embryos of mixed 

genetic background (CAST/EiJ × C57BL/6J) 45. Coupling allele-level relative abundances 

from Kallisto46 with Census produced relative allele transcript counts which, when modeled 

similarly to isoform counts, recapitulated many of the key observations made in the initial 

study. As expected, nearly all RNAs matched the maternal allele in zygotes and early 2-cell 

embyros, consistent with little to no transcription from the embryonic genome (Figure 6a). 

Allelic balance for most genes equilibrated to 50% as transcription from the embryonic 

genome began in mid- to late- 2-cell embryos, with the X chromosome notably excepted 

(Figure 6a). Inactivation of the paternal X chromosome in female embryos was manifest by 

the 16-cell stage, with progressively fewer genes exhibiting contributions from the paternal 

X (Figure 6b, c), although genes known to escape inactivation were notably excepted 

(Supplementary Figure 15).

In addition to pre-implantation allelic dynamics, Deng et al. reported widespread stochastic 

monoallelic gene expression in individual cells. This claim has been challenged by Kim et 
al. 47, who analyzed allele-specific expression in embryonic stem cells using a statistical 

model that attributed much of the apparent stochastic monoallelic expression to technical 

sources. We tested whether using Census to estimate allelic transcript counts instead of 

allelic read counts would reduce the apparent stochastic monoallelic expression to expected 

levels. Consistent with the generative model used by Kim et al., the expected rate of 

monoallelic expression was near 100% for genes expressed at a single copy, and decreased 

with increasing expression (Figure 6e). Of 6,608 “allele-informative” genes in the genome, 

95.0% produced observed monoallelic transcript counts within the expected range. In 

contrast, only 77% of genes fell within the range obtained by fitting similar models to 

normalized read counts for each allele. We interpret this to mean that a substantial portion of 

apparent monoallelic expression arose because the sequenced libraries correspond to a small 

proportion of the true RNA molecules in each cell (due to dropout), a technical artifact that 

is accounted for when allelic gene expression is modeled using Census-estimated relative 

transcript counts but not when it is modeled using normalized read counts.

Discussion

Efforts to detect changes in gene regulation in development have grappled with high 

technical and biological variability, demanding specialized statistical methods that explicitly 

model drop-outs and other nuisance variation. Here, we show that analyzing changes in 

relative transcript counts leads to dramatic reductions in apparent technical variability 

compared to normalized read counts, making single-cell RNA-Seq compatible with widely 
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used regression techniques. We have developed Census, a normalization algorithm that can 

convert relative expression levels from read counts into per-cell transcript counts without the 

need for spike-in standards or UMIs. The algorithm requires only that genes are most 

frequently present at 1 cDNA molecule in each cell’s library. We show through reanalysis of 

several datasets that this is the case with most current protocols, owing to mRNA capture 

rates lower than 50% and their generation of full-length cDNAs during reverse transcription. 

Census cannot control for amplification biases, and thus does not produce estimates of lysate 

mRNA abundances that perfectly match those derived with spike-ins or UMIs. When spike-

ins or UMIs are available, transcript counts should be recovered using them rather than 

Census. However, we show through extensive benchmarking that differential analysis results 

with Census counts are highly concordant with those from spike-ins. Importantly, tools 

widely used for bulk RNA-Seq analysis that perform poorly when provided with read counts 

work vastly better with Census counts, alleviating the need for software tailored for single-

cell RNA-Seq.

To illustrate their power, we have developed three regression-based methods for detecting 

changes in Census counts. The first, BEAM, builds on our previous work tracking gene 

expression changes in single-cell trajectories, helping pinpoint the moment at which cell-fate 

decisions occur in a complex biological process. BEAM identified hundreds of genes 

differentially regulated during specification of the type I and type II pneumocytes in the 

alveolar epithelium. Surprisingly, branched cell trajectories arise not only in development, 

but also in response to genetic perturbations, suggesting that branch analysis may be useful 

in many biological contexts. The second method uses Census counts to find genes 

undergoing pseudotime-dependent changes in splicing. Reanalysis of differentiating 

myoblasts showed widespread alteration in isoform ratios in genes involved in muscle 

contraction and cytoskeletal structure, with some genes such as TPM1 showing a sequence 

of pseudotime-dependent shifts. The third method captures changes in allelic transcript 

counts derived with Census. By reanalyzing data from pre-implantation embryos, we 

confirmed the authors’ timing of transcriptional activation of the embryonic genome and X 

chromosome inactivation. In contrast to the original study, we do not see substantial 

evidence of random, monoallelic expression on the autosomes, and attribute this observation 

to inadequate modeling of dropouts in normalized read counts. Monoallelic expression at the 

transcript count level was in line with expectations under a simple overdispersed binomial 

regression model.

Together, our analyses show that single-cell differential expression analyses conducted at the 

level of normalized transcript counts are more robust and accurate than analyses of 

normalized read counts. We provide a new algorithm, Census, that makes relative transcript 

count analysis widely accessible, as well as examples of regression models, in particular 

BEAM, that leverage them for high-resolution dissection of gene regulation. We expect that 

such techniques will continue to unveil new mechanisms of gene regulation, including at the 

allele and isoform level, in development and disease.
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Data Availability Statement

Code availability

A version of monocle 2 (version: 1.99) used to produce all the figures, supplementary data is 

provided in Supplementary Software. The newest Monocle 2 is available through 

Bioconductor as well as GitHub (https://github.com/cole-trapnell-lab/monocle-release). 

Supplementary Software also includes a helper package including helper functions as well 

as all analysis code which can reproduce all figures in this study.

Data availability

Eleven public sc RNA-seq datasets are used in this study, of which 8 datasets used ERCC 

spike-in. Here is a summary list of all the data:

Datasets with spike-in:

Lung: GSE5258325

Noise model: GSE54695 4

Neuron reprogramming: GSE67310 15

Human Preimplantation Embryos: E-MTAB-3929 10

Pancreas: E-MTAB-506111

Cortex: http://linnarssonlab.org/cortex/ 12

Marker-free: GSE54006 13

Quantitative assessment data: GSE51254 14

Datasets without spike-in:

HSMM: GSE52529 18

Dendritic cell knockout: GSE41265 36

Allele-specific gene expression: GSE45719 45

Online Methods

A generative model for single-cell RNA-seq experiments with a spike-in ladder

Census is motivated by a generative model of single-cell (sc) RNA-Seq similar to the one 

developed by Kim et al.47. When performing sc-RNA-seq, each individual cell is lysed to 

recover its endogenous RNA molecules, some fraction of which may be degraded or lost. 

Lysis thus involves an RNA recovery rate α. Spike-in transcripts are then added into the cell 

lysate. Note that spike-in transcripts are added to the lysate as naked RNA, and thus may be 
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degraded at different rates from the endogenous RNA. We denote the ladder recovery rate as 

β. The RNA counts in the lysate can be written:

where Yl, Sl, S, are the transcript counts of endogenous RNA in cell lysate, spike-in 

transcript counts in cell lysate and the spike-in transcript counts added into the cell lysate. 

The first subscript in all variables (here and below) corresponds to cell while the second 

subscript corresponds to gene index. Note that we are not able to directly observe , the 

true transcript counts for gene j in cell i and thus α is an unknown variable.

The RNA molecules and spike-in transcripts will then be subjected to reverse transcription 

and amplified to make a cDNA library. The expected number of cDNA molecules generated 

from each RNA molecules is denoted by θ. The cDNA counts can be written:

where Yd, Sd, are the cDNA counts of endogenous RNA, spike-in cDNA counts successfully 

converted from the corresponding transcript counts Yl, Sl in cell lysate under a uniform 

capture rate θ, which for current protocols is less than 1.

Our model generates sequencing reads from the cDNA. The relative cDNA abundances are 

calculated as  for endogenous RNA, or  for spike-in RNA.

The model then generates γ reads per cDNA molecule on average; with sufficient 

sequencing, γ will be larger than 1; we expect each cDNA molecule to generate at least one 

sequencing read. This process can be regarded as a multinomial sampling of R reads 

 from the distribution of relative cDNA abundances mentioned 

above which can be represented as:

where , denotes the reads sampled for cDNA from the endogenous RNA or spike- in 

RNA in cell i,  denotes the reads sampled for cDNA from the endogenous RNA j or 

spike-in RNA j in cell i.

Qiu et al. Page 9

Nat Methods. Author manuscript; available in PMC 2017 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The model described here is essentially a special case of the model in Kim et al., and differs 

mainly in that their model describes transcript-level capture rates and sequencing rates with 

beta and gamma distributions, respectively. In contrast, we simply use global constants for 

these rates. As Census does not make use of variance estimates from the generative model, 

this simpler model is sufficient for calculating key statistics (e.g. mode of the transcript 

counts) needed to convert relative to absolute abundances.

A simulator for the sc-RNA-seq process

To generate an in silico library for a single cell, we built a simulator that first selects G genes 

at random from a relative expression profile (Pbulk) derived from a bulk RNA-Seq 

experiment to represent the hypothetical relative abundance of a single-cell in cell lysate. 

These values are rescaled to proportions (i.e. summing to 1), or ρscaled.

These proportions are then used to parameterize a multinomial distribution from which T 
transcripts are drawn to obtain the transcripts in the library space where we also consider 

there is αi percentage of the RNA is degraded. Therefore, we have:

To this pool of transcripts, a fixed number of spike-in transcripts are added, forming a 

mixture of simulated “endogenous” and “spike-in” mRNAs where the degradation of spike-

in transcripts is represented by βi. Of these, θi percent are selected uniformly at random to 

simulate incomplete mRNA capture by the reverse transcription process. Finally, the 

abundances of these cDNAs relative to one another were used to parameterize another 

multinomial, from which Ri reads are sampled. The read counts are then used to calculate 

the relative abundance for the spike-in and the endogenous RNA.

In this study, we systematically simulated the sc RNA-seq process obtained from bulk RNA-

Seq measurements made in Trapnell and Cacchiarelli et al18 by varying the gene number G, 

capture rate θ, endogenous RNA degradation α, spike-in degradation β, total endogenous 

transcript count T and total number of reads R. Results based on simulation are shown in 

Supplemental Figure 4.

Estimating the capture rate based on spike-in ladder

Similar to Kim et al.47, spike-in transcripts can be used to infer the rate at which lysate 

RNAs are converted to cDNA. The probability of observing a particular spike-in transcript in 

the sequenced read counts can be used to estimate the capture rate θ. For a given spike-in 

transcript i with transcript counts s calculated using the above procedure, the probability to 

observe at least one copy of this transcript is p = 1 – (1 – θ)s. We assume the capture rate, θ, 

is the same for all spike transcripts and thus can use the following objective function to 

estimate the capture rate using all spike transcripts:
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where  is the probability for all transcripts with s copies have non-zero TPM values. In 

order to robustly estimate θ, we assume a constant capture rate for cells collected in each 

time point (lung or neuron experiment) or the whole dataset (other experiments) and pool 

them for estimating θ.

Census

Census aims to convert relative abundances Xij into lysate transcript counts Yij. Without loss 

of generality, we consider relative abundances is on the TPM scale, and assume that a gene’s 

TPM value is proportional to the relative frequencies of its mRNA within the total pool of 

mRNA in a given cell’s lysate, i.e., . The generative model discussed 

above predicts that when only a minority of the transcripts in a cell is captured in the library, 

signal from most detectably expressed genes will originate from a single mRNA. Because 

the number of sequencing reads per transcript is proportionate to molecular frequency after 

normalizing for length (i.e. TPM or FPKM), all such genes in a given cell should have 

similar TPM values.

Census works by first identifying the (log-transformed) TPM value in each cell i, written as 

, that corresponds to genes from which signal originates from a single transcript. Because 

our generative model predicts that these most detectable genes should fall into this category, 

we simply estimate  as the mode of the log-transformed TPM distribution for cell i. This 

mode is obtained by log-transforming the TPM values, performing a Gaussian kernel density 

estimation and then identifying the peak of the distribution. Given the TPM value for a 

single transcript in cell i, it is straightforward to convert all relative abundances to their 

lysate transcript counts. We estimate the total number of mRNAs captured for cell i:

where Fx represents the cumulative distribution function for the TPM values for cell i, ε is a 

TPM value below which no mRNA is believed to be present (by default, ε = 0.1), and ni is 

the number of genes with TPM values in the interval . That is, we simply calculate the 

total number of single-mRNA genes and divide this number by the fraction of the library 

contributed by them to estimate the total number of captured mRNAs in the cell. This 

number is scaled by  to yield an estimate for the number of mRNAs that were in the cell’s 

lysate, including those that were not actually captured. This scaling step is performed mainly 

to facilitate comparison with spike-in derived estimates. While we do not know the capture 

rate θ a priori, it is a highly protocol-dependent quantity that appears to have little 
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dependence on cell type or state. Throughout our analysis, we assume a value of 0.25, which 

is close to the lung and neuron experiments of Truetlein et al.

With an estimate of the total lysate mRNAs Mi in cell i, we simply rescale its TPM values 

into mRNA counts for each gene:

Limitations of Census

Census and our generative model of single-cell RNA-Seq assume that TPM is proportional 

to the true relative abundance in the cell lysis, i.e., . However, non-linear 

amplification at any stage of the library construction protocol could distort this relationship. 

We can see this distortion when fitting the linear regression model, log(TPMij) = k ∗ log(Yij) 

+ b, to the spike-in data recovers a value of k that deviates from 1, which indicates that 

TPMij ∝ (Yij)k. In practice, we find that k ranges from around 0.5 to near 1, depending on 

the protocol and the laboratory. We have not observed k much larger than 1.

The inability to estimate k without making strong assumptions surrounding the expected 

number of total RNAs in a given cell means that Census and indeed any measure of relative 

abundance not normalized by spike-in standards will be limited in its ability to recapitulate 

the transcript counts derive from spike-based conversion. We argue here that this limitation 

is not onerous in differential analysis because its impact on fold changes between cells is 

small.

Testing for branch-dependent expression

Monocle assigns each cell a pseudotime value and a “State” encoding the segment of the 

trajectory it resides upon based on the PQ-tree algorithm (see the supplemental material for 

Trapnell and Cacchiarelli et al for further information18). Transcript counts values were 

variance-stabilized49 via the technique described by Anders and Huber prior to tree 

construction.

In Monocle 2, we extended the capability to test for branch-dependent gene expression by 

formulating the problem as a contrast between two negative binomial GLMs.

The null model

for the test assumes the gene being tested is not a branch specific gene, whereas the 

alternative model:
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assumes that the gene is a branch specific gene where : represents an interaction term 

between branch and transformed pseudotime, NB means negative binomial distribution. 

Each model includes a natural spline (here with three degrees of freedom) describing smooth 

changes in mean expression as a function of pseudotime. The null model fits only a single 

curve, whereas the alternative will fit a distinct curve for each branch. Our current 

implementation of Monocle 2 relies on VGAM’s “smart” spline fitting functionality, hence 

the use of the sm.ns() function instead of the more widely used ns() function from the 

splines package in R50. Likelihood ratio testing was performed with the VGAM lrtest() 
function, similar to Monocle’s other differential expression tests50. A significant branch-

dependent genes means that the gene has distinct expression dynamics along each branch, 

with smoothed curves that have different shapes.

To fit the full model, each cell must be assigned to the appropriate branch, which is coded 

through the factor “Branch” in the above model formula. Monocle’s function for testing 

branch dependence accepts an argument specifying which branches are to be compared. 

These arguments are specified using the ‘State’ attribute assigned by Monocle during 

trajectory reconstructions. For example, in our analysis of the Truetlein et al data 25, 

Monocle reconstructed a trajectory with two branches (LAT1, LAT2 for AT1 and AT2 

lineages, respectively), and three states (SBP, SAT1, SAT2 for progenitor, AT1, or AT2 cells). 

The user specifies that he or she wants to compare LAT1 and LAT2 by providing SAT1 and 

SAT2 as arguments to the function. Monocle then assigns all the cells with state SAT1 to 

branch LAT1 and similarly for the AT2 cells. However, the cells with SBP must be members 

of both branches, because they are on the path from each branch back to the root of the tree. 

In order to ensure the independence of data points required for the LRT as well as the 

robustness and stability of our algorithm, we implemented a strategy to partition the 

progenitor cells into two groups, with each branch receiving a group. The groups are 

computed by simply ranking the progenitor cells by pseudotime and assigning the odd-

numbered cells to one group and the even numbered cells to the other. We assign the first 

progenitor to both branches to ensure they start at the same time which is required for 

downstream spline fitting and clustering. The branch plots in Figure 3d visualize the branch 

specific spline curves fit by this method.

Branch time point detection

The branching time point for each gene can be quantified by fitting a separate spline curves 

for each branch from all the progenitor to each cell fate. To robustly detect the pseudotime 

point  when a gene i with a branching expression pattern starts to diverge between two 

cell fates L1, L2, we developed the branch time point detection algorithm. The algorithm 

starts from the end of stretched pseudotime (pseudotime t = 100, see below) to calculate the 

divergence (Di (t = 100) = xL1(t = 100) – xL2 (t = 100)) of gene i’s expression (xL1(t = 100), 

xL2(t = 100)) between two cell fates, L1 L2, (for a branching gene, the divergence at this 

moment should be large if not the largest across pseudotime). It then moves backwards to 

find the latest intersection point between two fitted spline curves, which corresponds to the 

time when the gene starts to diverge between two branches. To add further flexibility, the 

algorithm moves forward to find the time point when the gene expression diverges up to a 
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user controllable threshold (ε), or Di (t) ≥ ε(t), and defines this time point as the branch time 

point, , for that particular gene i.

Analysis of human skeletal muscle myoblasts

We used the HSMM data from our previous publication18 to benchmark the performance of 

developmental tree reconstruction and pseudotime DEG test between relative abundance or 

census counts. Relative abundances are converted into transcript counts using Census with 

default parameters with parameter t* estimated from the relative abundance data for each 

cell. Potential contaminating fibroblast cells with transcript counts of Mef2c less than 5 and 

Myf5 less than 1 were removed which yields 142 cells for downstream analysis.

The union of genes which are differentially expressed between the four time points in 

relative abundance or recovered transcript counts scale are used to reduce dimension and 

order the cells. Transcript counts were variance stabilized. The ordering of developmental 

trajectories between these two approaches is compared using spearman correlation. 

Pseudotime tests are performed on both the relative abundance and transcript counts scale 

where the pseudotime dependent genes are collected as those with q values less than 0.05 

(Benjamini-Hochberg correction). The benchmark set is obtained from the permutation test 

based on a modified algorithm from the glm.perm package as previously described (see 

section Benchmarking differential expression analysis in supplementary notes).

Differential splicing analysis was conducted by first converting isoform-level TPM values 

from Cufflinks to transcript counts using Census with default parameters. Each gene’s 

isoform-level transcript counts Z1, … ,Zk were then modeled using a generalized linear 

model with a Dirichlet-multinomial response using the VGAM package (version 1.0-1). The 

Dirichlet-multinomial distribution is a compound distribution, where the probabilities that 

parameterize a multinomial are themselves drawn from a Dirichlet distribution with an 

additional over dispersion parameter ϕ. That is, the Dirichlet encodes the frequencies of the 

isoforms π and the variation in this frequency vector, while the multinomial captures the 

sampling of actual transcripts according to these frequencies. The Dirichlet has proven 

effective in previous analyses of splicing changes in bulk RNA-Seq studies 51.

To test for pseudotime-dependent shifts in the frequencies of the isoforms produced by each 

gene, we fit the following model to the observed isoform-level Census RNA counts:

Only isoforms with at least one copy detected in at least 15 cells were included in the model 

for each gene, in order to ensure numerical stability within VGAM. We then compared this 

full model to the null
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by likelihood ratio test. Note that each gene’s ϕ was estimated by maximum likelihood 

separately, as we did not wish to assume that these dispersion parameters are a smooth 

function of expression level, as is commonly done in RNA-Seq.

Analysis of pre-implantation embryos

Allele-specific relative gene expression values (transcripts per million) were estimated by 

applying Kallisto46 to the raw reads of Deng et al.45 using an allele-specific transcriptome 

index. This index consisted of cDNA sequences from GENCODE vM9, corresponding to 

the paternal (C57BL/6J) alleles, plus the same sequences with maternal (CAST/EiJ) SNP 

alleles overlaid (CAST genotypes from Keane et al. 52; only homozygous variants relative to 

the C57BL/6J reference were used).

The TPM values for the two alleles for each gene were converted to allelic RNA counts 

using Census with default parameters. The number of RNA molecules from each allele of 

each gene were modeled using a quasibinomial GLM. The quasibinomial is a binomial that 

allows for over (or under) dispersion with respect to the binomial through a parameter ϕ. Its 

probability mass function is:

where p encodes the probability that an RNA originated from the maternal allele (without 

loss of generality).

Quasibinomial GLMs were fit to each gene using VGAM, using the option “dispersion=0” 

to direct VGAM to estimate the dispersion parameter for each model from each gene’s 

maternal and paternal RNA counts Zm and Zp, respectively. To test for embryo stage-

dependent allelic balance shifts in each gene, we fit a full model

And a null

to these data, and compared them using an F-test 29. As for isoform-level modeling, the 

dispersion parameter was fit separately for each gene. We note that the quasibinomial is 

similar to the beta-binomial, the two category case of the Dirichlet-Multinomial. We 

explored the use of the beta-binomial for this analysis, and while we reached qualitatively 

similar conclusions regarding escape from X inactivation and monoallelic expression, we 

felt that the quasibinomial provided a better fit for the data.

Analysis of X chromosome inactivation was performed on female embryos at the 4-, 16- and 

early blastocyst stages. Embryos were sexed by hierarchically clustering cells on the basis of 

variance stabilized transcript counts for genes on the Y chromosome. Cells fell into two 
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clearly defined clusters, only one of which expressed “informative” Y genes. Embryos 

comprised of these cells were annotated as male.

To quantify the number of genes escaping X inactivation at each stage, we used the 

quasibinomial GLMs to assess the probability that less than 10% of the RNA from a gene 

originated from the inactive chromosome. (10% is a widely accepted threshold for escape 

from X inactivation53,54). To do so, we constructed a 95% prediction interval on the allelic 

ratio for each gene by simulating random variates from its GLM via the VGAM package’s 

simulate.vlm(). That is, we calculated the number of simulated observations that were less 

than 10% percent maternal or paternal. Using this statistic, we calculated a significance 

score for contribution from the maternal and paternal alleles for each gene on the X 

chromosome, corrected these for multiple testing (via Benjamini-Hochberg), and reported 

the number of genes with significant maternal and paternal contributions.

We used a similar simulation-based procedure to construct prediction intervals for expected 

monoallelic expression. After fitting a quasibinomial GLM for each (autosomal) gene’s 

allele RNA counts, we simulated 100 random variates from each gene’s model and counted 

the number of times the model reported RNAs from only one of the two alleles. We then 

collected these counts into quantiles based on the gene’s expression level to generate 95% 

prediction intervals for monoallelic expression as a function of expression level. The exact 

same fitting, simulation, and prediction interval estimation procedure was used for both 

RNA counts and estimated allelic read counts from Kallisto.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Census approximates relative transcript counts in single cells without external RNA 
standards
(a) The typical procedure for estimating lysate mRNA abundances via spike-in standards in 

single-cell RNA-Seq. Losses at various stages alter the distribution of relative gene 

expression levels within a single cell. (b) Distribution of the transcript counts corresponding 

to each cell’s most frequently observed relative abundance (i.e. TPM) in cDNA or lysate 

RNA space in the lung epithelial data from Treutlein et al. Modes are obtained by log-

transforming the data, performing a Gaussian kernel density estimation, and then 

exponentiating back to the original scale. (c) Total transcripts per lung epithelial cell 

estimated via spike-in controls versus counts from the spike-free algorithm in Census. Blue 

line indicates linear regression. Black line indicates perfect concordance. (d) MA plot for 

expressed genes based on contrasts between cells from E14.5 and cells from all other time 

points. The top panels show Census transcript counts while the bottom panels show 

transcript counts derived by spike-in regression. (e) Fold changes for expressed genes based 

on data from Census transcripts or transcripts with spike-in regression of contrasts between 

cells from E14.5 and cells from all other time points.
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Figure 2. Use of Census counts improves accuracy of differential expression analysis and can be 
performed on libraries with or without spike controls
(a) Receiver-operating characteristic (ROC) curves showing differential expression (DE) 

analysis accuracy from various tools provided with relative expression levels, normalized 

read counts, and transcript counts estimated with spike-ins or Census. Cells from E14.5 and 

E18.5 from Treutlein et al. were provided to each tool. A permutation-based test was applied 

to the spike-in-based expression levels to determine a ground truth set of DE genes. In 

addition to Census and spike controls, we include transcript counts derived by scaling the 

TPM values by the correct per-cell total RNAs. This control shares Census’ inability to 

control for amplification bias, but begins with the same total per-cell transcript counts 

available through spike-ins. Comparing this control to spike-based regression reveals the 

impact of amplification bias on differential analysis in single cells. Comparing it to Census 

assesses how error in estimating total transcript counts translates into error in differential 

analysis. (b) Consensus in differential analysis results between Monocle, DESeq2, edgeR, 

and permutation tests using different measures of expression. The total height of each bar 

reflects the size of the union of DE genes reported by any of the four tests. The smaller bar 

reports the number of DE genes identified by all tests.
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Figure 3. BEAM identifies genes with branch-dependent expression and potential drivers during 
lung epithelial fate specification
(a) Monocle 2 recovers a branched single-cell trajectory beginning with bronchoalveolar 

progenitors (BP) and terminating at type I (AT1) and type II (AT2) pneumocytes. High 

expression of known markers of proliferation (Ccnb2, Cdk2) is restricted to progenitor cells, 

whereas high expression of known AT1 (Pdpn) and AT2 (Sftpb) markers is restricted to their 

corresponding lineages. Size of circles denotes level of expression. (b) Branching 

Expression Analysis Modeling (BEAM) is a statistical framework for identifying genes with 

expression that changes over a single-cell trajectory in a branch-dependent manner. BEAM 

first uses generalized linear models with natural splines to perform a regression on the data 

in which the branch assignments of the cells are known (alternative model), fitting a separate 

curve for each branch. It also performs another regression in which the branch assignments 

are not known (null model), fitting a single curve for all the data, and then compares these 

models via a likelihood ratio test. (c) Null and alternative model fits for the AT1/2 markers 

(Ager / Sftpb) and housekeeping genes (Hprt and Pgk1). Solid lines indicate the smoothed 

expression curves for each branch in the alternative model while dashed line corresponding 

to the fitted curve in the null model used in the BEAM test.
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Figure 4. Loss of interferon signaling generates a branch in the trajectory followed by immune-
stimulated dendritic cells
(a) Experimental design used by Shalek et al. to compare BMDCs from Ifnar1-/- and Stat1-/- 

knockout mice against the wild type as they respond to LPS. (b) Single-cell trajectory 

recovered by Monocle 2. (c) Kinetic clusters of branch-dependent genes identified by 

BEAM are functionally enriched for interferon signaling and other immune-related 

processes. (d) Branch time point for the significant branching antiviral regulators and their 

significant branching targets collected from Fig. 4 of. 48) (e) Branch time points for the TFs 

with motifs enriched in nearby DHS site from significant branch genes from cluster 5 and 

their potential target genes in cluster 5 (panel c). For all boxplots in this study, the upper and 

lower “hinges” correspond to the first and third quartiles (the 25th and 75th percentiles). The 

whiskers extend from the upper (or lower) hinge to the highest (or lowest) value that is 

within 1.5 * IQR of the hinge, where IQR is the inter-quartile range, or distance between the 

first and third quartiles. Data beyond the end of the whiskers are outliers and plotted as 

points. The center line corresponds to the median.
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Figure 5. Census enables robust analysis of differential splicing during cell differentiation
(a) Splicing structure of TPM1, with the three alternatively spliced sets of exons highlighted. 

(b) Percent-spliced-in (PSI) values for TPM1 alternative exons. PSI values were computed 

by summing Census counts for isoforms including each exon and dividing by the total 

TPM1 transcript count in each cell. Black lines indicate loess smoothing of the PSI values as 

a function of pseudotime.
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Figure 6. Census detects shifts in allelic balance in single cells during embryogenesis
(a) A quasibinomial regression model detects changes in allelic balance in single cells as a 

function of embryo stage. (b) Spread of X chromosome inactivation as measured by Census 

for female embryos at the 4-cell, 16-cell, and early blastocyst stage. Compare with Fig 2B 

from Deng et a l45. (c) Number of genes with at least 10% contribution from the maternal 

and paternal copies of X chromosome. (d) Observed monoallelic expression in single cells 

from late stage embryos as measured by Census transcript counts (top) or normalized read 

counts (bottom). Red line indicates median fraction of monoallelic calls as a function of 

average transcript count across cells. Only autosomal genes are shown. Black bars indicate 

95% prediction interval generated by a quasibinomial regression model fit to each gene, with 

the median of the gene intervals indicated by the blue line. Light red points indicate 

individual genes that fall outside the prediction interval.
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